[go: up one dir, main page]

JPH03234051A - Manufacture of capacitive element - Google Patents

Manufacture of capacitive element

Info

Publication number
JPH03234051A
JPH03234051A JP2030886A JP3088690A JPH03234051A JP H03234051 A JPH03234051 A JP H03234051A JP 2030886 A JP2030886 A JP 2030886A JP 3088690 A JP3088690 A JP 3088690A JP H03234051 A JPH03234051 A JP H03234051A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
film
silicon film
forming
capacitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2030886A
Other languages
Japanese (ja)
Inventor
Takeshi Mitsushima
光嶋 猛
Shuichi Mayumi
周一 真弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2030886A priority Critical patent/JPH03234051A/en
Publication of JPH03234051A publication Critical patent/JPH03234051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To increase the memory cell capacity without sacrifice of the flatness on the surface of a semiconductor substrate by forming a polycrystalline silicon film on the semiconductor substrate, implanting ions into the polycrystalline silicon film and then roughening the surface of the polycrystalline silicon film. CONSTITUTION:An LOCOS oxide film 12, and a gate oxide film 13 are formed on a P-type semiconductor substrate 11, a poly-Si gate 14 is formed on the gate oxide film 13, a source/drain diffusion layer 15 and a CVD oxide film 16 are formed thereon, a contact hole 17 is made at a predetermined position on the source/drain diffusion layer 15, a poly-Si film 18 is formed thereon and thermally diffused with phosphorus, and then argon, arsenic or silicon ions are implanted into the poly-Si film 18 thus forming an impurity injection layer 19. At this time, micro irregularities are formed on the surface of the impurity injection layer 19. A capacitive insulation layer 20 composed of a silicon nitride film and a silicon oxide film is then formed thereon.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多結晶シリコン膜上に容量絶縁膜を形成する
容量素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a capacitive element in which a capacitive insulating film is formed on a polycrystalline silicon film.

従来の技術 記憶容量がメガビットクラスの大容量ダイナミックラン
ダムアクセスメモリ(以後、ダイナミックメモリと記す
)では素子数の大容量化にともない半導体記憶素子(以
後、メモリと記す)1個あたりの面積が小さくなってき
た。この結果、メモリセルの容量を確保するために、従
来の基板表面に形成したブレーナキャパシタ(ブレーナ
容量素子)にかわり、半導体基板上の大きな段差を利用
した多結晶シリコンを一方の電極とし、この多結晶シリ
コン上に容量絶縁膜を形成するスタックドキャパシタが
採用されてきている。
Conventional technology In large-capacity dynamic random access memory (hereinafter referred to as dynamic memory) with a megabit class storage capacity, the area per semiconductor memory element (hereinafter referred to as memory) has become smaller as the number of elements increases. It's here. As a result, in order to secure the capacity of memory cells, instead of the conventional Brehner capacitor (Brehner capacitive element) formed on the surface of the substrate, polycrystalline silicon was used as one electrode, making use of the large step difference on the semiconductor substrate. Stacked capacitors in which a capacitive insulating film is formed on polycrystalline silicon are being used.

以下に、半導体記憶装置等に用いられる従来の記憶素子
の製造方法について第4図(a)、(b)の工程順断面
図を用いて説明する。以下工程順に説明する。
A conventional method for manufacturing a memory element used in a semiconductor memory device or the like will be described below with reference to step-by-step cross-sectional views of FIGS. 4(a) and 4(b). The steps will be explained below in order.

P型半導体基板】1上に選択酸化法によりLOGO3酸
化膜12を形成する。次にP型半導体基板31を酸化し
てゲート酸化膜13を形成する。この後、ゲート酸化膜
13上に多結晶シリコンゲート14を形成する。次に、
たとえば砒素をイオン注入してソース・ドレイン拡散層
15を形成する。さらにその上に絶縁膜として気相成長
法によりCVD酸化膜16を形成した後、上記CVD酸
化膜をホトレジストをマスクにしてエツチングを行いソ
ース・ドレイン拡散層15上の所定の箇所にコンタクト
ホール17を形成した後、気相成長法により多結晶シリ
コン膜18を形成しこの多結晶シリコン膜18に燐を熱
拡散して導電性を高め、容量素子の下方の電極とする(
第4図(a))。
A LOGO3 oxide film 12 is formed on the P-type semiconductor substrate 1 by selective oxidation. Next, the P-type semiconductor substrate 31 is oxidized to form the gate oxide film 13. Thereafter, a polycrystalline silicon gate 14 is formed on the gate oxide film 13. next,
For example, the source/drain diffusion layer 15 is formed by ion-implanting arsenic. Furthermore, after forming a CVD oxide film 16 as an insulating film by vapor phase growth, the CVD oxide film is etched using a photoresist as a mask to form contact holes 17 at predetermined locations on the source/drain diffusion layer 15. After the formation, a polycrystalline silicon film 18 is formed by a vapor phase growth method, and phosphorus is thermally diffused into this polycrystalline silicon film 18 to increase its conductivity and serve as the lower electrode of the capacitive element.
Figure 4(a)).

この多結晶シリコン膜18の表面上に気相成長法を用い
て窒化シリコン膜を堆積しさらにこの窒化シリコン膜を
熱酸化して容量絶縁膜20を形成する。その上に気相成
長法により多結晶シリコン膜21を形成し、この多結晶
シリコン膜21に燐を熱拡散して導電性を高め容量素子
の他方の電極とする。以上のようにして容量素子が形成
される(第4図(b))。
A silicon nitride film is deposited on the surface of this polycrystalline silicon film 18 using a vapor phase growth method, and this silicon nitride film is further thermally oxidized to form a capacitor insulating film 20. A polycrystalline silicon film 21 is formed thereon by a vapor phase growth method, and phosphorus is thermally diffused into this polycrystalline silicon film 21 to increase its conductivity and serve as the other electrode of the capacitive element. A capacitive element is formed as described above (FIG. 4(b)).

発明が解決しようとする課題 しかしながら、上記従来の製造方法では、キャパシタの
容量は多結晶シリコン膜18の表面積により決定される
ため、メモリセル面積の縮小化にともない多結晶シリコ
ン膜18の膜厚を増加することによって、表面積を太き
(する必要がある。
Problems to be Solved by the Invention However, in the conventional manufacturing method described above, the capacitance of the capacitor is determined by the surface area of the polycrystalline silicon film 18, so as the memory cell area is reduced, the thickness of the polycrystalline silicon film 18 is reduced. By increasing the surface area, it is necessary to thicken it.

ところが、この場合、容量素子形成後、厚い多結晶シリ
コン膜18による半導体基板表面の段差が大きくなり半
導体記憶素子形成のため配線形成が困難になるという問
題がある。
However, in this case, there is a problem in that after the capacitor element is formed, the step difference on the surface of the semiconductor substrate due to the thick polycrystalline silicon film 18 becomes large, making it difficult to form wiring for forming the semiconductor memory element.

本発明は上記従来の課題を解決するもので半導体基板表
面の段差を大きくせずメモリセル容量を増加させる容量
素子の製造方法を提供することを目的とするものである
The present invention solves the above-mentioned conventional problems, and aims to provide a method for manufacturing a capacitive element that increases memory cell capacity without increasing the level difference on the surface of a semiconductor substrate.

課題を解決するための手段 この目的を達成するために本発明の容量素子の製造方法
は、半導体基板上に多結晶シリコン膜を形成した後、多
結晶シリコン膜に例えばアルゴン、砒素あるいはシリコ
ンをイオン収入することにより、多結晶シリコンの表面
を荒らす工程を備えている。また、半導体基板上に多結
晶シリコン膜を形成した後、例えば酸素、アルゴンある
いは砒素をイオン注入した後、多結晶シリコン膜の表面
をエツチング除去する工程を備えている。また5、半導
体基板上に多結晶シリコン膜を形成した後、酸素をイオ
ン注入した後、多結晶シリコン膜上にエピタキシャルシ
リコンを選択成長する工程を備えている。
Means for Solving the Problems To achieve this object, the method for manufacturing a capacitive element of the present invention involves forming a polycrystalline silicon film on a semiconductor substrate, and then ionizing, for example, argon, arsenic, or silicon into the polycrystalline silicon film. It has a process of roughening the surface of polycrystalline silicon by heating. The method also includes a step of forming a polycrystalline silicon film on a semiconductor substrate, implanting ions of oxygen, argon, or arsenic, and then etching away the surface of the polycrystalline silicon film. 5. After forming a polycrystalline silicon film on a semiconductor substrate, oxygen ions are implanted, and then epitaxial silicon is selectively grown on the polycrystalline silicon film.

作用 本発明の手段を用いると、多結晶シリコン膜に不純物元
素をイオン注入するため多結晶シリコン膜表面の凹凸が
増加し表面積が増加する。その結果、容量素子の容量を
増加させることができる。
Operation When the means of the present invention is used, impurity elements are ion-implanted into the polycrystalline silicon film, so that the surface roughness of the polycrystalline silicon film increases and the surface area increases. As a result, the capacitance of the capacitive element can be increased.

また、多結晶シリコン膜に不純物元素をイオン注入した
後、多結晶シリコン膜表面を途中までエツチング除去す
るため多結晶シリコン膜表面の凹凸が増加し表面積、ひ
いては容量素子の容量が増加する。また、多結晶シリコ
ン膜に酸素をイオン注入した後、この多結晶シリコン膜
上にシリコンを選択成長するため多結晶シリコン膜表面
の凹凸が増加し表面積、ひいては容量素子の容量が増加
する。
Further, after ion-implanting an impurity element into the polycrystalline silicon film, the surface of the polycrystalline silicon film is etched away halfway, which increases the unevenness of the surface of the polycrystalline silicon film, thereby increasing the surface area and thus the capacitance of the capacitive element. Furthermore, after oxygen ions are implanted into the polycrystalline silicon film, silicon is selectively grown on the polycrystalline silicon film, which increases the unevenness of the surface of the polycrystalline silicon film, increasing the surface area and thus the capacitance of the capacitive element.

実施例 以下、本発明の容量素子の製造方法の第1の実施例を第
1図(a)〜(C)の工程順断面図を用いて詳しく説明
する。P型半導体基板11上に選択酸化法によりLOC
O8酸化膜12を形成し素子分離を行う。次にP型半導
体基板11を酸化してゲート酸化膜13を形成し、ゲー
ト酸化膜13上に多結晶シリコンゲート14を形成する
。この後、たとえば砒素をイオン注入してソース・ドレ
イン拡散層15を形成する。さらにその上に絶縁膜とし
て気相成長法によりCVD酸化膜16を形成した後、上
記CVD酸化膜をホトレジストをマスクにしてエツチン
グを行い、ソース・ドレイン拡散層15上の所定の箇所
にコンタクトホール17を形成した後、気相成長法によ
り例えば膜厚4000Aの多結晶シリコン膜18を形成
しこの多結晶シリコン膜18に燐を熱拡散させることに
より導電性を高める(第1図(a))。この多結晶シリ
コン膜18上にアルゴン、砒素、あるいはシリコンをイ
オン注入法により例えば1×10! 67/ 、J注入
し不純物注入層19を形成する。この時、イオン注入に
よる物理的損傷のために不純物注入層19の表面は微細
な凹凸が発生する(第1図(b))。この凹凸上に加工
された多結晶シリコン膜18(不純物注入層19)上に
気相成長により窒化シリコン膜および酸化シリコン膜か
ら成る容量絶縁膜20を形成する。その上に気相成長法
により第3の多結晶シリコン膜21を形成し、この多結
晶シリコン膜21に燐を熱拡散して導電性を高め容量素
子の他方の電極として容量素子が完成する(第1図(C
))。
EXAMPLE Hereinafter, a first example of the method for manufacturing a capacitive element of the present invention will be described in detail using step-by-step cross-sectional views of FIGS. 1(a) to (C). LOC is formed on the P-type semiconductor substrate 11 by selective oxidation.
An O8 oxide film 12 is formed to perform element isolation. Next, the P-type semiconductor substrate 11 is oxidized to form a gate oxide film 13, and a polycrystalline silicon gate 14 is formed on the gate oxide film 13. Thereafter, source/drain diffusion layers 15 are formed by ion-implanting, for example, arsenic. Furthermore, after forming a CVD oxide film 16 as an insulating film by vapor phase growth, the CVD oxide film is etched using a photoresist as a mask, and contact holes 17 are formed at predetermined locations on the source/drain diffusion layer 15. After forming the polycrystalline silicon film 18, a polycrystalline silicon film 18 having a thickness of, for example, 4000 Å is formed by vapor phase growth, and the conductivity is increased by thermally diffusing phosphorus into the polycrystalline silicon film 18 (FIG. 1(a)). Argon, arsenic, or silicon is ion-implanted onto this polycrystalline silicon film 18 by, for example, 1×10! 67/, J is implanted to form an impurity implantation layer 19. At this time, fine irregularities occur on the surface of the impurity implanted layer 19 due to physical damage caused by the ion implantation (FIG. 1(b)). A capacitor insulating film 20 made of a silicon nitride film and a silicon oxide film is formed by vapor phase growth on the polycrystalline silicon film 18 (impurity injection layer 19) processed into the unevenness. A third polycrystalline silicon film 21 is formed thereon by a vapor phase growth method, and phosphorus is thermally diffused into this polycrystalline silicon film 21 to increase conductivity and serve as the other electrode of the capacitive element.A capacitive element is completed ( Figure 1 (C
)).

本発明にかかる第1の実施例の場合、電気的容量から見
積もると多結晶シリコン膜18の表面積はアルゴンを注
入した場合10%、砒素を注入した場合8%、シリコン
砒素を注入した場合5%増加した。それに伴って容量素
子の容量が増加した。
In the case of the first embodiment according to the present invention, the surface area of the polycrystalline silicon film 18 is estimated from the electrical capacitance to be 10% when argon is implanted, 8% when arsenic is implanted, and 5% when silicon arsenic is implanted. increased. Along with this, the capacitance of capacitive elements has increased.

本発明の容量素子の製造方法の第2の実施例を第2図(
a)〜(C)の工程順断面図を用いて詳しく説明する。
A second embodiment of the method for manufacturing a capacitive element of the present invention is shown in FIG.
This will be explained in detail using step-by-step sectional views of a) to (C).

なお、容量素子の下方の電極である多結晶シリコン膜1
8の形成までは第1の実施例と全く同様であるため、工
程説明を省略する。多結晶シリコン膜18を形成した後
、まず、酸素、アルゴン、もしくは砒素を例えばlXl
0”cdイオン注入し不純物注入層19を形成する(第
2図(a))。
Note that the polycrystalline silicon film 1 which is the lower electrode of the capacitive element
Since the steps up to the formation of 8 are completely the same as those in the first embodiment, a description of the steps will be omitted. After forming the polycrystalline silicon film 18, first, oxygen, argon, or arsenic is added, for example, lXl.
0''cd ions are implanted to form an impurity implanted layer 19 (FIG. 2(a)).

この後、例えばSFsを主成分とするガスを用いてプラ
ズマエツチング技術を行って不純物注入層19および多
結晶シリコン膜18を途中までエツチングする。この時
、多結晶シリコン膜18の表面の凹凸が著しく増加する
。これたは多結晶シリコン膜18(あるいは不純物注入
層19)中の不純物の分布が不均一であり、また、多結
晶シリコン幕のエツチング速度が著しく不純物濃度に影
響されるためである(第2図(b))。後は、第1の実
施例と同様に容量絶縁膜20、他方の電極となる多結晶
シリコン膜21を形成して容量素子が完成するく第企図
(C))。本発明にかかる第2の実施例の場合、多結晶
シリコン膜18の上部表面積の増加率は注入する不純物
、およびその後の多結晶シリコン膜18のエツチング量
に依存するが5〜25%であった。それに伴って容量素
子の容量が増加した。
Thereafter, impurity injection layer 19 and polycrystalline silicon film 18 are etched halfway by performing a plasma etching technique using, for example, a gas containing SFs as a main component. At this time, the unevenness of the surface of the polycrystalline silicon film 18 increases significantly. This is because the distribution of impurities in the polycrystalline silicon film 18 (or impurity injection layer 19) is non-uniform, and the etching rate of the polycrystalline silicon film is significantly affected by the impurity concentration (see Fig. 2). (b)). After that, similarly to the first embodiment, a capacitive insulating film 20 and a polycrystalline silicon film 21 which will become the other electrode are formed to complete the capacitive element (see Figure (C)). In the case of the second embodiment of the present invention, the increase rate of the upper surface area of the polycrystalline silicon film 18 was 5 to 25%, depending on the impurity to be implanted and the amount of subsequent etching of the polycrystalline silicon film 18. . Along with this, the capacitance of capacitive elements has increased.

なお、多結晶シリコン膜18のエツチング量は20〜2
000Aの範囲で素子の容量増加が認められた。
Note that the etching amount of the polycrystalline silicon film 18 is 20 to 2
An increase in the capacitance of the element was observed in the range of 000A.

本発明の容量素子の製造方法の第3の実施例を第3図(
a)〜(C)の工程順断面図を用いて詳しく説明する。
A third embodiment of the method for manufacturing a capacitive element of the present invention is shown in FIG.
This will be explained in detail using step-by-step sectional views of a) to (C).

なお、容量素子の下方の電極である多結晶シリコン膜1
8の形成までは第1の実施例と金(同様であるため、そ
の工程説明を省略する。多結晶シリコン膜18を形成し
た後、まず、酸素を例えばlXl0”/cnfイオン注
入し、この後、例えば1000℃の熱処理を施して酸化
珪素(SiO2)の核22を多結晶シリコン膜18の表
面に形成し、この後ドライエツチングを用いて多結晶シ
リコン膜18を均一に除去することで、多結晶シリコン
膜18表面は5i02の核22と、多結晶シリコンの露
出した領域が残る(第3図(a))、この後、減圧下で
ジクロルシラン(S i H2Ce :)ガスを用いて
多結晶シリコン膜18の表面の酸化珪素核22以外の領
域に選択的にエビキタシャルシリコン23を例えば膜厚
500A成長する。この処理で多結晶シリコンが露出し
た領域に多結晶シリコンが成長し波形の表面を持つ多結
晶シリコンができる(第3図(b))。この後、第1の
実施例と同様に容量絶縁膜20、他方の電極となる多結
晶シリコン膜21を形成して容量素子が完成する(第3
図(C))。
Note that the polycrystalline silicon film 1 which is the lower electrode of the capacitive element
8 is the same as that in the first embodiment, so a description of the process will be omitted. After forming the polycrystalline silicon film 18, first, oxygen ions, for example, lXl0"/cnf, are implanted, and then For example, heat treatment at 1000° C. is performed to form silicon oxide (SiO2) nuclei 22 on the surface of the polycrystalline silicon film 18, and then dry etching is used to uniformly remove the polycrystalline silicon film 18. On the surface of the crystalline silicon film 18, 5i02 nuclei 22 and exposed areas of polycrystalline silicon remain (FIG. 3(a)). After this, polycrystalline silicon is removed using dichlorosilane (S i H2Ce:) gas under reduced pressure. Eviquitous silicon 23 is selectively grown on the surface of the film 18 in areas other than the silicon oxide nuclei 22 to a thickness of, for example, 500 A. In this process, polycrystalline silicon grows in the exposed area of the polycrystalline silicon, forming a corrugated surface. A polycrystalline silicon film is formed (FIG. 3(b)).After this, as in the first embodiment, a capacitive insulating film 20 and a polycrystalline silicon film 21 which will become the other electrode are formed to complete the capacitive element. (3rd
Figure (C)).

本発明にかかる第3の実施例の場合、多結晶シリコン膜
18の上部表面積の増加率は約150%であった。この
結果、容量素子の容量も著しく増加した。
In the case of the third embodiment according to the present invention, the increase rate of the upper surface area of the polycrystalline silicon film 18 was about 150%. As a result, the capacitance of the capacitive element also increased significantly.

なお、本実施例のいずれの場合も、容量素子の上部電極
として多結晶シリコン膜を用いたがシリサイド等の他の
導電膜を用いた場合でも本発明により同様の効果が期待
できることは明らかである。
Note that in all of the cases in this example, a polycrystalline silicon film was used as the upper electrode of the capacitive element, but it is clear that the same effects can be expected according to the present invention even when other conductive films such as silicide are used. .

発明の効果 以上のように、本発明によれば、容量素子の下方の電極
である多結晶シリコン膜の膜厚を増加することなく、表
面積を増大することが可能であり、半導体基板表面の大
きい段差に起因する配線形成の問題を防止できると共に
メモリセル容量を増加させることが可能である。この結
果、素子容量を確保したままスタックドキャパシタによ
るメモリセル面積がさらに小さくなり、ダイナミックメ
モリの集積度向上に大きく寄与することができる。
Effects of the Invention As described above, according to the present invention, it is possible to increase the surface area without increasing the thickness of the polycrystalline silicon film that is the lower electrode of the capacitive element, and it is possible to increase the surface area of the semiconductor substrate. It is possible to prevent wiring formation problems caused by steps and to increase memory cell capacity. As a result, the memory cell area of the stacked capacitor can be further reduced while maintaining the element capacitance, which can greatly contribute to improving the degree of integration of dynamic memories.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す容量素子の製造工程順
断面図、第2図は本発明の他の実施例を示す容量素子の
製造工程順断面図、第3図は本発明の別の実施例を示す
容量素子の製造工程順断面図、第4図は従来技術を説明
するための製造工程を示す工程順断面図である。 11・・・・・・P型半導体基板、12・・・・・・L
OCO8酸化膜、13・・・・・・ゲート酸化膜、14
・・・・・・多結晶シリコンゲート、15・・・・・・
ソース・ドレイン拡散層、16・・・・・・CVD酸化
膜、17・・・・・・コンタクトホール、18・・・・
・・多結晶シリコン膜、19・・・・・・不純物注入層
、20・・・・・・容量絶縁膜、21・・・・・・多結
晶シリコン膜、22・・・・・・エピタキシャルシリコ
ン。
FIG. 1 is a cross-sectional view of a capacitive element according to an embodiment of the present invention in the manufacturing process, FIG. 2 is a cross-sectional view of a capacitive element according to another embodiment of the present invention in the manufacturing process, and FIG. FIGS. 4A and 4B are cross-sectional views in the order of manufacturing steps of a capacitive element showing another embodiment. FIGS. 11...P-type semiconductor substrate, 12...L
OCO8 oxide film, 13... Gate oxide film, 14
・・・・・・Polycrystalline silicon gate, 15・・・・・・
Source/drain diffusion layer, 16...CVD oxide film, 17...contact hole, 18...
...Polycrystalline silicon film, 19...Impurity injection layer, 20...Capacitive insulating film, 21...Polycrystalline silicon film, 22...Epitaxial silicon .

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板上に多結晶シリコン膜を形成する工程
と、前記多結晶シリコン膜に不純物元素をイオン注入す
る工程と、前記多結晶シリコン膜の表面に絶縁膜を形成
する工程と、前記絶縁膜の上に導電膜を形成することを
特徴とする容量素子の製造方法。
(1) A step of forming a polycrystalline silicon film on a semiconductor substrate, a step of ion-implanting an impurity element into the polycrystalline silicon film, a step of forming an insulating film on the surface of the polycrystalline silicon film, and a step of forming the insulating film on the surface of the polycrystalline silicon film. A method for manufacturing a capacitive element, comprising forming a conductive film on a film.
(2)注入する不純物元素がアルゴン(Ar)、砒素(
As)あるいはシリコン(Si)であることを特徴とす
る特許請求の範囲第(1)項記載の容量素子の製造方法
(2) The impurity elements to be implanted are argon (Ar), arsenic (
The method for manufacturing a capacitive element according to claim 1, wherein the capacitive element is made of As) or silicon (Si).
(3)半導体基板上に多結晶シリコン膜を形成する工程
と、前記多結晶シリコン膜に不純物元素をイオン注入す
る工程と、前記多結晶シリコン膜を膜厚20〜2000
Aエッチング除去する工程と、前記多結晶シリコン膜の
表面に絶縁膜を形成する工程と、前記絶縁膜の上に導電
膜を形成することを特徴とする容量素子の製造方法。
(3) forming a polycrystalline silicon film on a semiconductor substrate; ion-implanting an impurity element into the polycrystalline silicon film; and forming the polycrystalline silicon film to a thickness of 20 to 2000
A method for manufacturing a capacitive element, comprising: a step of removing by etching; a step of forming an insulating film on the surface of the polycrystalline silicon film; and forming a conductive film on the insulating film.
(4)半導体基板上に多結晶シリコン膜を形成する工程
と、前記多結晶シリコン膜に不純物元素をイオン注入す
る工程と、前記多結晶シリコン膜上に多結晶シリコンを
選択成長する工程と、前記多結晶シリコン膜の表面に絶
縁膜を形成する工程と、前記絶縁膜の上に導電膜を形成
することを特徴とする容量素子の製造方法。
(4) forming a polycrystalline silicon film on a semiconductor substrate; ion-implanting an impurity element into the polycrystalline silicon film; and selectively growing polycrystalline silicon on the polycrystalline silicon film; 1. A method of manufacturing a capacitive element, comprising: forming an insulating film on a surface of a polycrystalline silicon film; and forming a conductive film on the insulating film.
JP2030886A 1990-02-09 1990-02-09 Manufacture of capacitive element Pending JPH03234051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2030886A JPH03234051A (en) 1990-02-09 1990-02-09 Manufacture of capacitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2030886A JPH03234051A (en) 1990-02-09 1990-02-09 Manufacture of capacitive element

Publications (1)

Publication Number Publication Date
JPH03234051A true JPH03234051A (en) 1991-10-18

Family

ID=12316214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2030886A Pending JPH03234051A (en) 1990-02-09 1990-02-09 Manufacture of capacitive element

Country Status (1)

Country Link
JP (1) JPH03234051A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620958A (en) * 1992-04-10 1994-01-28 Internatl Business Mach Corp <Ibm> Formation of rough silicon surface and its application
JPH06216319A (en) * 1992-10-09 1994-08-05 Hyundai Electron Ind Co Ltd Method for forming silicon layer constituting charge storage electrode of semiconductor device
JPH09232543A (en) * 1996-02-28 1997-09-05 Nec Corp Method for manufacturing semiconductor device
US5798290A (en) * 1995-11-06 1998-08-25 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having a capacitor
US6534815B2 (en) 1998-09-11 2003-03-18 Nec Corporation Semiconductor device with stack electrode formed using HSG growth

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620958A (en) * 1992-04-10 1994-01-28 Internatl Business Mach Corp <Ibm> Formation of rough silicon surface and its application
JPH06216319A (en) * 1992-10-09 1994-08-05 Hyundai Electron Ind Co Ltd Method for forming silicon layer constituting charge storage electrode of semiconductor device
US5798290A (en) * 1995-11-06 1998-08-25 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having a capacitor
US6127240A (en) * 1995-11-06 2000-10-03 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having a capacitor
JPH09232543A (en) * 1996-02-28 1997-09-05 Nec Corp Method for manufacturing semiconductor device
US6534815B2 (en) 1998-09-11 2003-03-18 Nec Corporation Semiconductor device with stack electrode formed using HSG growth

Similar Documents

Publication Publication Date Title
KR100188798B1 (en) Micro-Trench Memory Capacitor Manufacturing Method
KR960005245B1 (en) Method for manufacturing a capacitor having a rough electrode surface
US5616511A (en) Method of fabricating a micro-trench storage capacitor
JP2839076B2 (en) Semiconductor device and manufacturing method thereof
JP2671833B2 (en) Semiconductor device and manufacturing method thereof
KR100217274B1 (en) Method for manufacturing a semiconductor device having a capacitor with increased capacitance by roughening the surface of the cumulative electrode
JP2894361B2 (en) Semiconductor device and manufacturing method thereof
KR0171072B1 (en) Semiconductor memory cell manufacturing method and structure
JP2000058790A (en) Semiconductor device and method of manufacturing the same
JPH03234051A (en) Manufacture of capacitive element
KR0120547B1 (en) Fabricating method of capacitor
JP2917894B2 (en) Method for manufacturing semiconductor device
JPH065805A (en) Manufacture of semiconductor device
JPH0344068A (en) Manufacture of semiconductor device
US6309939B1 (en) Method of manufacturing a semiconductor device
KR950011644B1 (en) Method of fabricating a storage node of a capacitor
US6333531B1 (en) Dopant control of semiconductor devices
KR0162597B1 (en) Capacitor Manufacturing Method of Semiconductor Device
JPH0786434A (en) Manufacture of semiconductor device
JP3200593B2 (en) Semiconductor device
JP3233217B2 (en) Method for manufacturing semiconductor device
JPH11176959A (en) Manufacture of semiconductor device
KR0151192B1 (en) Semiconductor Memory Device Manufacturing Method
KR970000975B1 (en) Storage electrode manufacture method of capacitor
KR0124640B1 (en) Capacitor Manufacturing Method of Semiconductor Memory Device