[go: up one dir, main page]

JPH03233267A - Absorption type water cooler/heater - Google Patents

Absorption type water cooler/heater

Info

Publication number
JPH03233267A
JPH03233267A JP2828590A JP2828590A JPH03233267A JP H03233267 A JPH03233267 A JP H03233267A JP 2828590 A JP2828590 A JP 2828590A JP 2828590 A JP2828590 A JP 2828590A JP H03233267 A JPH03233267 A JP H03233267A
Authority
JP
Japan
Prior art keywords
temperature regenerator
hot water
low temperature
temperature
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2828590A
Other languages
Japanese (ja)
Inventor
Satoshi Miyake
聡 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2828590A priority Critical patent/JPH03233267A/en
Publication of JPH03233267A publication Critical patent/JPH03233267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To increase a temperature of hot water while being fed by a supplying solution adjusting mechanism of a small-sized low temperature regenerator by a method wherein a temperature of hot water is detected and a supplied volume of solution for the low temperature regenerator is correspondingly controlled. CONSTITUTION:A hot water temperature is detected and an amount of liquid to be supplied to a low temperature regenerator 10 is correspondingly controlled. As an amount of supplied solution for the low temperature regenerator 10 is reduced, a heat exchanging medium in the low temperature regenerator 10 is reduced, so that a heat exchanging operation at the low temperature regenerator 10 is prohibited. With such an arrangement, a pressure saturation temperature of coolant vapor in the high temperature regenerator acting as a heat exchanging heat source for the low temperature regenerator 10 is increased. In turn, since the heating source for the supplied hot water is a coolant vapor, if the pressure saturation temperature of the high temperature regenerator 9 is increased, high hot water temperature can be attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸収式冷温水機に係り、特に、冷房用の冷水
及び暖房用の温水を同時に併給する事ができる吸収式冷
温水機に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an absorption type water chiller/heater, and particularly relates to an absorption type chiller/heater that can simultaneously supply cold water for cooling and hot water for heating. .

〔従来の技術〕[Conventional technology]

冷水温水同時併給形吸収式冷温水機に於いて、併給時の
温水温度の低下は現在流通機にあり、熱源品位の面から
好ましくない問題である。これを解決する従来の技術は
、凝縮器に通水する冷却水水量を制御する方法が知られ
ている。
In absorption type cold/hot water machines that simultaneously supply cold and hot water, a drop in hot water temperature during co-supply currently exists in distribution machines, which is an undesirable problem from the standpoint of heat source quality. As a conventional technique for solving this problem, a method is known in which the amount of cooling water flowing through the condenser is controlled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術は、冷却水制御を行うため、大形の制御弁が
必要であり、コストの増大がさけられなかった。
Conventional technology requires a large control valve to control cooling water, which inevitably increases costs.

本発明の目的は、コンパクトな制御装置により、従来同
様の機能を持つ冷温水機を提供することにある。
An object of the present invention is to provide a cold/hot water machine that has the same functions as conventional ones using a compact control device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、低温再生器供給溶液量の制御機能を備える
事により達成される。
The above object is achieved by providing a function to control the amount of solution supplied to the low temperature regenerator.

〔作用〕[Effect]

低温再生器供給溶液量を減少させると、低温再生器に於
ける熱交換媒体が減少するので低温再生器に於ける熱交
換が阻害される。これにより、低温再生器の熱交換熱源
である高温再生器の冷媒蒸気の圧力飽和温度が上昇する
When the low temperature regenerator feed solution amount is reduced, the heat exchange medium in the low temperature regenerator is reduced, thereby inhibiting heat exchange in the low temperature regenerator. This increases the pressure saturation temperature of the refrigerant vapor in the high temperature regenerator, which is the heat exchange heat source for the low temperature regenerator.

一方、併給温水の熱源は高温再生器の冷媒蒸気であるか
ら、高温再生器の圧力飽和温度が上昇すれば、高い温水
温度が得られる。
On the other hand, since the heat source of the co-supplied hot water is the refrigerant vapor of the high-temperature regenerator, if the pressure saturation temperature of the high-temperature regenerator increases, a high hot water temperature can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

まず、冷水温水同時併給形の吸収式冷温水機のサイクル
について、第1図により説明する。
First, the cycle of an absorption type cold/hot water machine that simultaneously supplies cold and hot water will be explained with reference to FIG.

蒸発器1内は約百分の1気圧に保たれており、この中で
冷媒2(水)は冷媒ポンプ3により冷水が通る伝熱管4
上にスプレーされ、冷水の熱を奪い蒸発して冷却効果が
生しる。蒸発した冷媒蒸気は、冷却水により低圧に保た
れ、吸収器5へ流れ込み、ここで吸収器伝熱管6の上に
スプレーされる臭化リチウム水溶液により吸収され、臭
化リチウム水溶液は稀釈される。この稀釈溶液は溶液ポ
ンプ7により熱交換器8を経て、一部は高温再生器9へ
、残りは低温再生器10へ、それぞれ、送り込まれ、高
温再生器9では、直接、熱#111により加熱されて蒸
気と濃溶液に分離される。また、低温再生器10では稀
釈溶液は高温再生器9で発生した蒸気により加熱されて
蒸気と濃溶液に分離される。この様にして濃縮された溶
液は、再び、熱交換器8を経て吸収器5内にスプレーさ
れる。
The inside of the evaporator 1 is maintained at about 1/100th atmospheric pressure, and the refrigerant 2 (water) is pumped through the heat transfer tube 4 by the refrigerant pump 3.
It is sprayed on top, absorbs the heat of the cold water and evaporates, creating a cooling effect. The evaporated refrigerant vapor is maintained at a low pressure by cooling water and flows into the absorber 5 where it is absorbed by an aqueous lithium bromide solution sprayed onto the absorber heat exchanger tubes 6, and the aqueous lithium bromide solution is diluted. This diluted solution is sent to the high temperature regenerator 9 and the rest to the low temperature regenerator 10 through the heat exchanger 8 by the solution pump 7. In the high temperature regenerator 9, it is directly heated by heat #111. separated into vapor and concentrated solution. Further, in the low-temperature regenerator 10, the diluted solution is heated by the steam generated in the high-temperature regenerator 9 and separated into steam and concentrated solution. The solution thus concentrated is again sprayed into the absorber 5 via the heat exchanger 8.

低温再生器10で溶液を加熱し、凝縮したドレンは凝縮
器12へ導かれる。
The solution is heated in the low temperature regenerator 10, and the condensed condensate is led to the condenser 12.

また、低温再生器10で発生した蒸気は凝縮器12で凝
縮する。この様にしてできた凝縮冷媒は蒸発器1へ導か
れ、スプレーされてサイクルを一巡する。
Further, the steam generated in the low temperature regenerator 10 is condensed in the condenser 12. The condensed refrigerant thus produced is led to the evaporator 1, where it is sprayed and goes around the cycle.

また、高温再生器9で発生した蒸気は温水器16へ導か
れ、ここで温水器伝熱管17を流れる温水を加熱し、凝
縮したドレンは高温再生器9へ導かれてサイクルを一巡
する。
Further, the steam generated in the high-temperature regenerator 9 is guided to the water heater 16, where it heats the hot water flowing through the water heater heat exchanger tube 17, and the condensed drain is guided to the high-temperature regenerator 9 to complete the cycle.

ここで、温水の温度は、高温再生器9で発生した蒸気の
圧力飽和温度によって左右されるが、前述の様に、高温
再生器9で発生した蒸気は低温再生器10でも熱交換を
行っているため、熱交換相手である低温再生器9に供給
される溶液の流量や、その時の高温再生器9の直接熱源
11の量のいかんによっては高温再生器9の圧力飽和温
度は上昇しなくなってしまう。
Here, the temperature of the hot water depends on the pressure saturation temperature of the steam generated in the high-temperature regenerator 9, but as mentioned above, the steam generated in the high-temperature regenerator 9 also exchanges heat with the low-temperature regenerator 10. Therefore, depending on the flow rate of the solution supplied to the low-temperature regenerator 9, which is the heat exchange partner, and the amount of the direct heat source 11 of the high-temperature regenerator 9 at that time, the pressure saturation temperature of the high-temperature regenerator 9 will no longer rise. Put it away.

第2図により、本発明の他の実施例を説明する。Another embodiment of the present invention will be explained with reference to FIG.

第2図は、第1図と比べて、低温再生器溶液供給配管2
0の途中に制御弁18.変換器19を備えた点が異なっ
ている。制御弁18は、温水温度、又は、高温再生器圧
力、又は、高温再生鉛蒸気温度の信号により、変換器1
9を介して開閉される。
Figure 2 shows the low temperature regenerator solution supply piping 2 compared to Figure 1.
Control valve 18. The difference is that a converter 19 is provided. The control valve 18 controls the converter 1 by a signal of hot water temperature, high temperature regenerator pressure, or high temperature regenerated lead steam temperature.
It is opened and closed via 9.

温水温度、又は、高温再生器蒸気圧力、温度が低下する
と、これを検知した変換器19は制御弁18を閉じる。
When the hot water temperature or the high temperature regenerator steam pressure or temperature decreases, the converter 19 detects this and closes the control valve 18.

これにより、低温再生器1oに供給される溶液量が減少
し、それにつれて高温再生器9で発生した冷媒蒸気は、
低温再生器10で凝縮しにくくなるため、高温再生器9
の圧力は上昇を始める。
As a result, the amount of solution supplied to the low-temperature regenerator 1o decreases, and as a result, the refrigerant vapor generated in the high-temperature regenerator 9
Since it becomes difficult to condense in the low temperature regenerator 10, the high temperature regenerator 9
pressure begins to rise.

高温再生器9の圧力が上昇すると、その飽和温度も上昇
するため、結果として、これと熱交換する温水の温度を
上昇させる。
When the pressure of the high temperature regenerator 9 increases, its saturation temperature also increases, and as a result, the temperature of the hot water that exchanges heat with it increases.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、小形の低温再生器の供給溶液調整機構
によって併給時の温水温度の上昇が画れる。
According to the present invention, the rise in hot water temperature during co-feeding can be controlled by the supply solution adjustment mechanism of the small-sized low-temperature regenerator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図は本発明の
他の実施例の系統図である。 1・・・蒸発器、3・・・冷媒ポンプ、5・・・吸収器
、7・・・溶液ポンプ。 宅 ノ 第 図
FIG. 1 is a system diagram of one embodiment of the present invention, and FIG. 2 is a system diagram of another embodiment of the invention. 1... Evaporator, 3... Refrigerant pump, 5... Absorber, 7... Solution pump. house diagram

Claims (1)

【特許請求の範囲】[Claims] 1、蒸発器、吸収器、高温及び低温再生器、熱交換器、
温水器、溶液ポンプ、冷媒ポンプおよびこれらを作動的
に結合する配管系とを含む冷水温水同時併給形吸収式冷
温水機において、温水温度を検知しこれに応じて前記低
温再生器への供給溶液量を制御することを特徴とする吸
収式冷温水機。
1. Evaporators, absorbers, high and low temperature regenerators, heat exchangers,
In a cold/hot water simultaneous co-supply type absorption chiller/heater that includes a water heater, a solution pump, a refrigerant pump, and a piping system that operatively connects these, the temperature of the hot water is detected and the solution supplied to the low temperature regenerator is detected in accordance with the detected hot water temperature. An absorption type water chiller/heater that is characterized by volume control.
JP2828590A 1990-02-09 1990-02-09 Absorption type water cooler/heater Pending JPH03233267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2828590A JPH03233267A (en) 1990-02-09 1990-02-09 Absorption type water cooler/heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2828590A JPH03233267A (en) 1990-02-09 1990-02-09 Absorption type water cooler/heater

Publications (1)

Publication Number Publication Date
JPH03233267A true JPH03233267A (en) 1991-10-17

Family

ID=12244336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2828590A Pending JPH03233267A (en) 1990-02-09 1990-02-09 Absorption type water cooler/heater

Country Status (1)

Country Link
JP (1) JPH03233267A (en)

Similar Documents

Publication Publication Date Title
JPH03233267A (en) Absorption type water cooler/heater
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP3381094B2 (en) Absorption type heating and cooling water heater
JPH0340301B2 (en)
JPH0445363A (en) Absorption refrigerating and heating hot water supply machine
JPH0754772Y2 (en) Direct-fired double-effect absorption chiller / heater
JP2647487B2 (en) Solution heat exchange mechanism in absorption cycle
JPH0198863A (en) Absorption refrigerator
JPH0443264A (en) Absorption type heat source device
JP3724975B2 (en) Steam tank absorption chiller / heater
KR100213794B1 (en) Ammonia absorption air conditioner
KR0177715B1 (en) High temperature water supply absorption type heating and cooling device
JP2584275B2 (en) Absorption refrigerator
JPH0783530A (en) Water and lithium bromide absorption refrigerator
KR0137580Y1 (en) Liquid refrigerant chiller of absorption chiller, heater
JPH0222312B2 (en)
JPH03105171A (en) Absorption type water cooler/heater
JPS6033463A (en) Absorption type heat pump
JP2000055501A (en) Absorption type heat pump device and method for operating same
JP2000171121A (en) Absorption refrigerating machine
JPS5831261A (en) Absorption heat pump
JPH0752039B2 (en) Air-cooled absorption chiller / heater
JPS5817390B2 (en) Heat recovery type absorption chiller/heater
JP2000161812A (en) Control device of absorption refrigerating machine
JPS6222056B2 (en)