[go: up one dir, main page]

JPH0754772Y2 - Direct-fired double-effect absorption chiller / heater - Google Patents

Direct-fired double-effect absorption chiller / heater

Info

Publication number
JPH0754772Y2
JPH0754772Y2 JP3316190U JP3316190U JPH0754772Y2 JP H0754772 Y2 JPH0754772 Y2 JP H0754772Y2 JP 3316190 U JP3316190 U JP 3316190U JP 3316190 U JP3316190 U JP 3316190U JP H0754772 Y2 JPH0754772 Y2 JP H0754772Y2
Authority
JP
Japan
Prior art keywords
end plate
temperature regenerator
high temperature
tube
dilute solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3316190U
Other languages
Japanese (ja)
Other versions
JPH03124173U (en
Inventor
正彦 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP3316190U priority Critical patent/JPH0754772Y2/en
Publication of JPH03124173U publication Critical patent/JPH03124173U/ja
Application granted granted Critical
Publication of JPH0754772Y2 publication Critical patent/JPH0754772Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、直焚二重効用吸収冷温水機に係り、特に炉筒
煙管式高温再生器を備えてなる直焚二重効用吸収冷温水
機および該冷温水機に装着される炉筒煙管式高温再生器
に関する。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to a direct-heating double-effect absorption cold / hot water machine, and more particularly to a direct-heating double-effect absorption cold / hot water machine equipped with a furnace tube smoke tube high-temperature regenerator. And a flue tube high temperature regenerator mounted on the water heater.

〔従来の技術〕[Conventional technology]

直焚二重効用吸収冷温水機の高温再生器は、第2図に示
される通り、加熱媒体側が、都市ガスあるいは灯油等の
化石燃料を燃焼させる炉筒部と発生した燃焼ガスが通過
する煙管部により構成される炉筒煙管式高温再生器が主
に使用されている。また、通常、炉筒部で発生した燃焼
ガスを鏡板に一度接触させて方向を反転させ、方向反転
後煙管部に流入させる構成となっているものが多い。
As shown in Fig. 2, the high-temperature regenerator of a direct-burning double-effect absorption chiller-heater has a heating medium side on which the heating cylinder side burns fossil fuel such as city gas or kerosene, and a smoke tube through which the generated combustion gas passes. Mainly used is a flue tube high-temperature regenerator composed of parts. In many cases, the combustion gas generated in the furnace tube portion is usually brought into contact with the end plate once to reverse the direction and then flow into the smoke tube after the direction is reversed.

鏡板は、上述のように高温の燃焼ガスが直接接触するこ
とによる過熱防止と高温になった鏡板からの大気中への
放熱の防止のために、ジャケット構造となっており、希
溶液は高温熱交換器を通過後、鏡板の前記ジャケット構
造内部へ流入するようになっている。ジャケット構造内
部を通過した希溶液は、鏡板上部及び下部の開口部を経
て炉筒部及び煙管部周囲(以下、炉筒煙管部という)に
流入し、燃焼ガスにより加熱される。
As mentioned above, the end plate has a jacket structure to prevent overheating due to direct contact with high temperature combustion gas and to prevent heat dissipation from the heated end plate to the atmosphere. After passing through the exchanger, it flows into the inside of the jacket structure of the end plate. The dilute solution that has passed through the inside of the jacket structure flows into the periphery of the furnace tube and the smoke tube section (hereinafter referred to as the furnace tube smoke tube section) through the upper and lower openings of the end plate and is heated by the combustion gas.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかし、鏡板に流入する希溶液は、高温熱交換器で加熱
されたのち鏡板に流入するので、温度が約135℃と高
く、冷房時の高温再生器中での希溶液の沸騰温度(約15
0℃)との温度差が小さいため、燃焼ガス(約1200℃)
により加熱された鏡板部で溶液の一部が沸騰し、高温の
冷媒蒸気が発生する。この冷媒蒸気で鏡板のジャケット
構造の上部が満たされることにより、ジャケット構造の
上部からの炉筒煙管部への希溶液の流入が妨げられ、希
溶液の流れが妨げられた部分での高温再生器の局部的過
熱を生じ易く、高温再生器の耐久性低下の要因となって
いた。
However, since the dilute solution flowing into the end plate is heated in the high temperature heat exchanger and then flows into the end plate, the temperature is high at about 135 ° C, and the boiling temperature (about 15 ° C) of the dilute solution in the high temperature regenerator during cooling is about 15 ° C.
Because the temperature difference with (0 ℃) is small, combustion gas (about 1200 ℃)
A part of the solution boils at the end plate portion heated by, and high-temperature refrigerant vapor is generated. By filling the upper part of the jacket structure of the end plate with this refrigerant vapor, the flow of the dilute solution from the upper part of the jacket structure to the smoke tube part of the furnace tube is blocked, and the high temperature regenerator at the part where the flow of the dilute solution is blocked. Was likely to be locally overheated, which was a factor of lowering the durability of the high temperature regenerator.

本考案の課題は、炉筒煙管式高温再生器の鏡板部におけ
る希溶液の沸騰を抑制し、該高温再生器の局部的過熱の
発生を避けるにある。
An object of the present invention is to suppress boiling of a dilute solution in the end plate portion of a high temperature regenerator of a flue tube, and to avoid occurrence of local overheating of the high temperature regenerator.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の課題は、直焚二重効用吸収冷温水機の高温再生器
において、炉筒煙管部とジャケット構造の鏡板部との間
に希溶液が流通しないように仕切壁を設けることにより
達成される。
In the high temperature regenerator of the direct-fired double-effect absorption chiller-heater, the above-mentioned problems can be achieved by providing a partition wall so that the dilute solution does not flow between the furnace tube smoke pipe part and the end plate part of the jacket structure. .

上記の課題は、また、少なくとも1個の希溶液を加熱す
る熱交換器と、該熱交換器で加熱された希溶液をさらに
加熱する炉筒煙管式高温再生器とを含んでなり、かつ、
前記炉筒煙管式高温再生器の鏡板部はジャケット構造を
なしている直焚二重効用吸収冷温水機において、前記熱
交換器の希溶液入口側配管と前記炉筒煙管式高温再生器
のジャケット構造をなしている鏡板部とを連通すること
によっても達成される。
The above-mentioned problem also includes a heat exchanger that heats at least one dilute solution, and a furnace tube smoke tube high-temperature regenerator that further heats the dilute solution heated by the heat exchanger, and
In the direct-burning double-effect absorption chiller-heater in which the end plate portion of the furnace tube smoke tube high-temperature regenerator has a jacket structure, in the diluted solution inlet side pipe of the heat exchanger and the jacket of the furnace tube smoke tube high-temperature regenerator. It is also achieved by communicating with the end plate part having the structure.

上記の課題は、さらに、炉筒煙管式高温再生器の炉筒煙
管部とジャケット構造をなしている鏡板部との間に希溶
液が流通しないように仕切壁が設けられている請求項2
に記載の直焚二重効用吸収冷温水機によっても達成され
る。
The above-mentioned subject is further provided with a partition wall so that the dilute solution does not flow between the furnace tube smoke tube part of the furnace tube smoke tube type high temperature regenerator and the end plate part forming the jacket structure.
It is also achieved by the direct-fired double-effect absorption chiller / heater described in.

〔作用〕[Action]

希溶液が熱交換器の入口側で分流され、一方は熱交換器
で昇温されたのち、高温再生器の炉筒煙管部に流入する
が、他方は熱交換器を通ることなく、高温再生器の鏡板
部に流入する。つまり、鏡板部には、高温再生器の直前
に配置された熱交換器で昇温されない、比較的低温の希
溶液が流入するため、燃焼ガスにより高温となっている
鏡板部で加熱されても希溶液の沸騰点に達しない。この
ため、鏡板部で冷媒蒸気が発生せず、冷媒蒸気の存在に
よる希溶液の流れの阻害、あるいは希溶液が存在しない
で冷媒蒸気が存在することによる局部的な過熱が起らな
い。
The dilute solution is diverted at the inlet side of the heat exchanger, one of which is heated by the heat exchanger and then flows into the flue tube of the high temperature regenerator, while the other is reheated at high temperature without passing through the heat exchanger. Flows into the end plate of the vessel. In other words, since the dilute solution of a relatively low temperature, which is not heated by the heat exchanger arranged immediately before the high temperature regenerator, flows into the end plate part, even if the end plate part is heated by the combustion gas, it is heated. The boiling point of the dilute solution is not reached. For this reason, no refrigerant vapor is generated in the end plate portion, and the flow of the dilute solution due to the presence of the refrigerant vapor is not obstructed, or the local overheating due to the presence of the refrigerant vapor without the dilute solution does not occur.

高温再生器の炉筒煙管部とジャケット構造をなしている
鏡板部との間に希溶液が流通しないように仕切壁が設け
られていると、熱交換器で加熱されて高温になっている
希溶液が炉筒煙管部から鏡板部に流れる恐れがなく、鏡
板部での沸騰が確実に抑制される。
If a partition wall is installed between the smoke tube of the high temperature regenerator and the end plate of the jacket structure so that the dilute solution does not flow, it will be heated to a high temperature by the heat exchanger. There is no possibility that the solution will flow from the furnace tube to the end plate, and boiling at the end plate can be reliably suppressed.

〔実施例〕〔Example〕

本考案の実施例を第1図を参照して説明する。図に示さ
れる吸収冷温水機は、希溶液を加熱する炉筒煙管式高温
再生器(以下、高温再生器という)1と、該高温再生器
1で加熱された希溶液から冷媒蒸気を分離する分離器2
と、該分離器2の液相部に接続して設けられ該分離器2
で生成される中間濃溶液を加熱流体とする高温熱交換器
3と、該高温熱交換器3の加熱流体側に中間濃溶液管4
を介して接続され該中間濃溶液を加熱して冷媒蒸気と濃
溶液を生成する低温再生器5と、該低温再生器5の液相
部(底部)に接続され前記濃溶液を加熱流体とする低温
熱交換器6と、該低温熱交換器6の加熱流体側(濃溶液
側)に散布ノズル14を備えた濃溶液管13を介して接続さ
れ該濃溶液に冷媒蒸気を吸収させる吸収器7と、該吸収
器7に連通して設けられ図示されていない凝縮器9から
供給される液冷媒を蒸発させる蒸発器8と、前記低温再
生器5の気相部に接続して設けられ、供給される冷媒蒸
気を凝縮させる図示されていない凝縮器9と、前記吸収
器7の底部に接続され該吸収器7で生成された希溶液を
前記低温熱交換器6の被加熱流体側に送り込む溶液ポン
プ10とを備えてなっている。前記濃溶液管13は溶液バイ
パス弁15を介して前記吸収器7の底部に連通している。
An embodiment of the present invention will be described with reference to FIG. The absorption chiller-heater shown in the figure separates a furnace tube smoke tube high temperature regenerator (hereinafter referred to as a high temperature regenerator) 1 for heating a dilute solution and a refrigerant vapor from the dilute solution heated by the high temperature regenerator 1. Separator 2
And the separator 2 connected to the liquid phase portion of the separator 2.
The high temperature heat exchanger 3 which uses the intermediate concentrated solution generated in step 1 as a heating fluid, and the intermediate concentrated solution pipe 4 on the heating fluid side of the high temperature heat exchanger 3.
Connected to the low temperature regenerator 5 for heating the intermediate concentrated solution to generate the refrigerant vapor and the concentrated solution, and the low temperature regenerator 5 connected to the liquid phase portion (bottom) to use the concentrated solution as a heating fluid. A low-temperature heat exchanger 6 and an absorber 7 which is connected to the heating fluid side (concentrated solution side) of the low-temperature heat exchanger 6 through a concentrated solution pipe 13 equipped with a spraying nozzle 14 for absorbing refrigerant vapor in the concentrated solution. An evaporator 8 which is provided in communication with the absorber 7 and which evaporates a liquid refrigerant supplied from a condenser 9 (not shown); and an evaporator 8 connected to the gas phase part of the low temperature regenerator 5 and supplied. A condenser 9 (not shown) for condensing the refrigerant vapor to be generated, and a solution which is connected to the bottom of the absorber 7 and sends the dilute solution produced in the absorber 7 to the heated fluid side of the low temperature heat exchanger 6. It is equipped with a pump 10. The concentrated solution pipe 13 communicates with the bottom of the absorber 7 via a solution bypass valve 15.

高温再生器1の被加熱流体側が鏡板部と炉筒煙管部とか
らなっていること及び鏡板部がジャケット構造になって
いるのは前記従来例と同様であるが、本実施例において
は、鏡板部1Aと、炉筒煙管部1Bとは仕切壁1Cで仕切ら
れ、それぞれ独立の区画となっており、その間での希溶
液の交流はない。また、前記低温熱交換器6の被加熱流
体側と前記高温熱交換器3の被加熱流体側とは希溶液管
11で連通され、さらに、前記高温熱交換器3の被加熱流
体側と高温再生器1の炉筒煙管部1Bとが連通されてい
る。一方、高温再生器1の鏡板部1Aの一端と前記希溶液
管11とが連通され、鏡板部1Aの他端は、前記中間濃溶液
管4に連通されている。分離器2は、切換弁12を介して
蒸発器8に接続されている。
Although the heated fluid side of the high temperature regenerator 1 is composed of the end plate part and the furnace tube smoke pipe part and the end plate part has the jacket structure as in the prior art example, in the present embodiment, the end plate is The section 1A and the furnace tube smoke tube section 1B are partitioned by a partition wall 1C and are independent sections, respectively, and there is no dilute solution exchange between them. The heated fluid side of the low temperature heat exchanger 6 and the heated fluid side of the high temperature heat exchanger 3 are diluted solution tubes.
11, the fluid to be heated side of the high temperature heat exchanger 3 and the furnace tube smoke tube portion 1B of the high temperature regenerator 1 are communicated with each other. On the other hand, one end of the end plate 1A of the high temperature regenerator 1 is connected to the dilute solution pipe 11, and the other end of the end plate 1A is connected to the intermediate concentrated solution pipe 4. The separator 2 is connected to the evaporator 8 via a switching valve 12.

上記構成の吸収冷温水機の冷房時の動作を次に説明す
る。器弁12及び溶液バイパス弁15はいずれも閉じられ
る。吸収器7から溶液ポンプ10により送り出された希溶
液は、低温熱交換器6で濃溶液により加熱されたのち分
流され、一方は高温再生器1の鏡板部1Aに流入し、燃焼
ガスに加熱されて低温再生器5に流れ込む。鏡板部に流
入する希溶液の温度は、従来の高温熱交換器を通過後の
ものに比べ約80℃前後と低く、鏡板部で昇温されても10
0℃前後であり冷房時の希溶液の沸点以下である。この
ため、鏡板部へ流入した希溶液は沸騰することなく液相
状態で鏡板部を通過し、中間濃溶液管4を経て低温再生
器5へ流れ込む。
The operation of the absorption chiller-heater having the above structure during cooling will be described below. Both the device valve 12 and the solution bypass valve 15 are closed. The dilute solution sent from the absorber 7 by the solution pump 10 is heated by the concentrated solution in the low temperature heat exchanger 6 and then split, and one of the diluted solutions flows into the end plate portion 1A of the high temperature regenerator 1 and is heated by the combustion gas. Flows into the low temperature regenerator 5. The temperature of the dilute solution flowing into the end plate is about 80 ° C lower than that after passing through the conventional high temperature heat exchanger, and even if the temperature is increased in the end plate,
It is around 0 ° C and is below the boiling point of the dilute solution during cooling. Therefore, the dilute solution that has flowed into the end plate portion passes through the end plate portion in a liquid state without boiling, and then flows into the low temperature regenerator 5 through the intermediate concentrated solution pipe 4.

また、低温熱交換器出口(希溶液管11)で分流された残
りの希溶液は、高温熱交換器3でさらに加熱されたあ
と、高温再生器1の炉筒煙管部1Bへ流入し、燃焼ガスに
より加熱される。加熱された該希溶液は、分離器2で中
間濃溶液と冷媒蒸気に分離され、中間濃溶液は、高温熱
交換器3の加熱流体側を経て、鏡板部1Aで加熱された前
記希溶液と合流して低温再生器5に流入する。分離器2
で分離された冷媒蒸気は低温再生器5に送られて、低温
再生器に流入する前希溶液と中間濃溶液の混合体を加熱
してさらに冷媒蒸気を発生させる。冷媒蒸気を発生させ
た該混合体は、濃溶液となり、低温熱交換器6の加熱流
体側を経て吸収器7に送られる。
Further, the remaining dilute solution diverted at the outlet of the low-temperature heat exchanger (dilute solution pipe 11) is further heated by the high-temperature heat exchanger 3 and then flows into the furnace tube smoke pipe section 1B of the high-temperature regenerator 1 for combustion. It is heated by gas. The heated dilute solution is separated into the intermediate concentrated solution and the refrigerant vapor in the separator 2, and the intermediate concentrated solution passes through the heating fluid side of the high temperature heat exchanger 3 and the diluted solution heated in the end plate portion 1A. They merge and flow into the low temperature regenerator 5. Separator 2
The refrigerant vapor separated in (4) is sent to the low temperature regenerator 5 to heat the mixture of the pre-dilute solution and the intermediate concentrated solution flowing into the low temperature regenerator to further generate the refrigerant vapor. The mixture that has generated the refrigerant vapor becomes a concentrated solution and is sent to the absorber 7 via the heating fluid side of the low temperature heat exchanger 6.

低温再生器5で発生した冷媒蒸気及び低温再生器5で希
溶液と中間濃溶液の混合体の加熱に用いられた冷媒蒸気
は、凝縮器で凝縮されて液冷媒となり、蒸発器8に供給
される。蒸発器8に供給された液冷媒は、該蒸発器8に
内装された冷水コイル上で冷水コイル内の冷房用流体か
ら蒸発熱を奪って蒸発して冷媒蒸気となり、該流体を冷
却する。
The refrigerant vapor generated in the low temperature regenerator 5 and the refrigerant vapor used for heating the mixture of the dilute solution and the intermediate concentrated solution in the low temperature regenerator 5 are condensed in the condenser to become the liquid refrigerant and supplied to the evaporator 8. It The liquid refrigerant supplied to the evaporator 8 deprives the heat of evaporation from the cooling fluid in the cold water coil on the cold water coil installed in the evaporator 8 and evaporates to become a refrigerant vapor, which cools the fluid.

蒸発器8で発生した冷媒蒸気は、蒸発器8に連通する吸
収器7に流入し、該吸収器7内に内装された冷却コイル
上に散布される前記濃溶液に吸収されて希溶液となる。
蒸発器8で発生した冷媒蒸気が濃溶液に吸収されるた
め、蒸発器内の圧力は所要の低圧に保持され、蒸発器内
での液冷媒の蒸発は連続的に行われる。
The refrigerant vapor generated in the evaporator 8 flows into the absorber 7 communicating with the evaporator 8 and is absorbed by the concentrated solution sprayed on the cooling coil installed in the absorber 7 to become a dilute solution. .
Since the refrigerant vapor generated in the evaporator 8 is absorbed by the concentrated solution, the pressure inside the evaporator is maintained at a required low pressure, and the evaporation of the liquid refrigerant inside the evaporator is continuously performed.

暖房時には、前記切換弁12及び溶液バイパス弁15が開状
態に切り換えられる。吸収器7で生成される希溶液は、
冷房時と同様、低温熱交換器の被加熱流体側を通って加
熱されたあと、高温再生器1の鏡板部1Aに直接流入する
流れと高温熱交換器3を経て高温再生器1の炉筒煙管部
1Bに流入する流れに分かれる。鏡板部1Aに直接流入した
希溶液は、加熱されたあと、低温再生器5,低温熱交換器
6の加熱流体側を経て濃溶液管13に流れ込み、開かれて
いる前記溶液バイパス弁15を通って吸収器7の底部に入
る。炉筒煙管部1Bに流入した希溶液は、加熱されたあ
と、中間濃溶液と冷媒蒸気になり、共に、分離器2,切換
弁12を経て蒸発器8へ流入し、冷水コイル内の暖房用流
体を加熱する。暖房用流体を加熱したあとの中間濃溶液
と冷媒蒸気は、前記溶液バイパス弁15を通って吸収器7
に入った希溶液と合流して希溶液に戻り、溶液ポンプ10
により、再び低温熱交換器に送り込まれ、上述のサイク
ルが繰り返される。
At the time of heating, the switching valve 12 and the solution bypass valve 15 are switched to the open state. The dilute solution produced in the absorber 7 is
As in the case of cooling, after being heated through the heated fluid side of the low temperature heat exchanger, it flows directly into the end plate 1A of the high temperature regenerator 1 and the high temperature heat exchanger 3 and then the furnace tube of the high temperature regenerator 1. Smoke pipe
Divided into the flow that flows into 1B. The diluted solution directly flowing into the end plate portion 1A is heated, then flows into the concentrated solution pipe 13 through the heating fluid side of the low temperature regenerator 5 and the low temperature heat exchanger 6, and passes through the opened solution bypass valve 15. Enters the bottom of absorber 7. The diluted solution that has flowed into the furnace tube smoke pipe section 1B becomes a medium concentrated solution and a refrigerant vapor after being heated, and both flow into the evaporator 8 through the separator 2 and the switching valve 12 for heating the cold water coil. Heat the fluid. The intermediate concentrated solution and the refrigerant vapor after heating the heating fluid pass through the solution bypass valve 15 and the absorber 7
It merges with the dilute solution that has entered and returns to the dilute solution, and the solution pump 10
Is sent again to the low temperature heat exchanger, and the above cycle is repeated.

上記暖房運転時に、鏡板部1Aに直接流入する時の希溶液
の温度は、約85℃であり、該鏡板部1Aでの昇温幅は約20
℃であるから、鏡板部1Aでの加熱後も、希溶液の温度
は、暖房時の希溶液の沸点(110℃)までは上がらず、
暖房時においても鏡板部1Aでの沸騰は生じない。
During the heating operation, the temperature of the dilute solution when directly flowing into the end plate portion 1A is about 85 ° C, and the temperature rise range in the end plate portion 1A is about 20 ° C.
Since it is ℃, even after heating with the end plate portion 1A, the temperature of the dilute solution does not rise to the boiling point (110 ° C) of the dilute solution during heating,
Boiling does not occur in the end plate portion 1A even during heating.

〔考案の効果〕[Effect of device]

本考案によれば、高温再生器の鏡板部に流入する希溶液
の温度が、高温再生器の炉筒煙管部に流入する希溶液の
温度よりも低くされるので、該鏡板部での希溶液の沸騰
をなくして冷媒蒸気発生を抑制することが可能となり、
冷媒蒸気存在による高温再生器の局部的な過熱のない、
耐久性のよい直焚二重効用吸収冷温水機とする効果が得
られる。
According to the present invention, the temperature of the dilute solution flowing into the end plate portion of the high temperature regenerator is made lower than the temperature of the dilute solution flowing into the furnace tube smoke pipe portion of the high temperature regenerator, so It becomes possible to suppress the generation of refrigerant vapor by eliminating boiling,
There is no local overheating of the high temperature regenerator due to the presence of refrigerant vapor,
The effect of a direct-fired double-effect absorption chiller-heater with good durability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例を示す系統図で、第2図は従来
技術の例を示す系統図である。 1…炉筒煙管式高温再生器、1A…鏡板部、1B…炉筒煙管
部、1C…仕切壁、3…熱交換器(高温熱交換器)。
FIG. 1 is a system diagram showing an embodiment of the present invention, and FIG. 2 is a system diagram showing an example of a conventional technique. 1 ... Reactor tube smoke tube type high temperature regenerator, 1A ... End plate part, 1B ... Reactor tube smoke tube part, 1C ... Partition wall, 3 ... Heat exchanger (high temperature heat exchanger).

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】直焚二重効用吸収冷温水機の炉筒煙管式高
温再生器において、炉筒煙管部とジャケット構造の鏡板
部との間に希溶液が流通しないように仕切壁が設けられ
ていることを特徴とする炉筒煙管式高温再生器。
1. A furnace tube smoke tube type high temperature regenerator for a direct-fired double-effect absorption chiller-heater, wherein a partition wall is provided between the furnace tube smoke tube section and the end plate section of the jacket structure so that a dilute solution does not flow. A high-temperature regenerator with a smoke tube.
【請求項2】少なくとも1個の希溶液を加熱する熱交換
器と、該熱交換器で加熱された希溶液をさらに加熱する
炉筒煙管式高温再生器とを含んでなり、かつ、前記炉筒
煙管式高温再生器の鏡板部はジャケット構造をなしてい
る直焚二重効用吸収冷温水機において、前記熱交換器の
希溶液入口側配管と前記炉筒煙管式高温再生器のジャケ
ット構造をなしている鏡板部とが連通されていることを
特徴とする直焚二重効用吸収冷温水機。
2. A heat exchanger for heating at least one dilute solution, and a furnace tube smoke tube high temperature regenerator for further heating the dilute solution heated by the heat exchanger, and the furnace. In the direct-fired double-effect absorption chiller-heater in which the end plate of the tube smoke type high temperature regenerator has a jacket structure, the diluted solution inlet side pipe of the heat exchanger and the jacket structure of the furnace tube smoke type high temperature regenerator are used. A direct-burning double-effect absorption chiller / heater characterized by being communicated with the end plate part that is formed.
【請求項3】炉筒煙管式高温再生器の炉筒煙管部とジャ
ケット構造をなしている鏡板部との間に希溶液が流通し
ないように仕切壁が設けられていることを特徴とする請
求項2に記載の直焚二重効用吸収冷温水機。
3. A partition wall is provided between the flue tube part of the flue tube high temperature regenerator and the end plate part having a jacket structure so that a dilute solution does not flow. Item 3. A direct-fire double-effect absorption chiller-heater according to Item 2.
JP3316190U 1990-03-29 1990-03-29 Direct-fired double-effect absorption chiller / heater Expired - Lifetime JPH0754772Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3316190U JPH0754772Y2 (en) 1990-03-29 1990-03-29 Direct-fired double-effect absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3316190U JPH0754772Y2 (en) 1990-03-29 1990-03-29 Direct-fired double-effect absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH03124173U JPH03124173U (en) 1991-12-17
JPH0754772Y2 true JPH0754772Y2 (en) 1995-12-18

Family

ID=31536591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3316190U Expired - Lifetime JPH0754772Y2 (en) 1990-03-29 1990-03-29 Direct-fired double-effect absorption chiller / heater

Country Status (1)

Country Link
JP (1) JPH0754772Y2 (en)

Also Published As

Publication number Publication date
JPH03124173U (en) 1991-12-17

Similar Documents

Publication Publication Date Title
JPH0754772Y2 (en) Direct-fired double-effect absorption chiller / heater
JP2002162131A (en) Absorptive waste heat recovering facility
JP2627381B2 (en) Absorption refrigerator
US5216891A (en) Solution flows in direct expansion lithium bromide air conditioner/heater
JP3381094B2 (en) Absorption type heating and cooling water heater
KR20200120186A (en) Absorption type chiller-heater
JP3454617B2 (en) Absorption type heat pump device
JP4540086B2 (en) Exhaust gas driven absorption chiller / heater
JP4288799B2 (en) Waste heat input type absorption refrigeration system
JPS629487Y2 (en)
JP4282225B2 (en) Absorption refrigerator
JPS60162166A (en) Multiple effect absorption type refrigerator
JPH0250057A (en) Air-cooled absorption chiller/heater
JP4201403B2 (en) Absorption refrigerator
JPS6135897Y2 (en)
JP4260099B2 (en) Absorption refrigerator
JP2004011928A (en) Absorption refrigeration equipment
JP3723372B2 (en) Waste heat input type absorption chiller / heater
JPS5829424Y2 (en) absorption cold water machine
JPH04214155A (en) Absorption type refrigerating machine
JP2543258B2 (en) Absorption heat source device
JP3742916B2 (en) Air-cooled absorption refrigeration system
JPH0350373Y2 (en)
JP4043101B2 (en) Heat exchanger and regenerator and absorption refrigerator
JP2647487B2 (en) Solution heat exchange mechanism in absorption cycle