JPH03223117A - Production of bi-based oxide superconductor - Google Patents
Production of bi-based oxide superconductorInfo
- Publication number
- JPH03223117A JPH03223117A JP2017447A JP1744790A JPH03223117A JP H03223117 A JPH03223117 A JP H03223117A JP 2017447 A JP2017447 A JP 2017447A JP 1744790 A JP1744790 A JP 1744790A JP H03223117 A JPH03223117 A JP H03223117A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- oxide superconductor
- heat
- precursor
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は溶融法を適用してBi系酸化物超電導体を製
造する方法に関し、特に溶融後に熱処理を施すことでそ
の超電導特性を向上せしめるものである。[Detailed Description of the Invention] "Industrial Application Field" This invention relates to a method of manufacturing a Bi-based oxide superconductor by applying a melting method, and in particular a method for improving the superconducting properties by applying heat treatment after melting. It is.
「従来の技術」
近年、臨界温度が液体窒素温度を超える値を示す酸化物
系の超電導体が次々と発見されているが、この種の酸化
物超電導体において、高い臨界温度を示し、希土類元素
を含まない酸化物超電導体としてBi系の酸化物超電導
体が注目されている。"Prior Art" In recent years, oxide-based superconductors whose critical temperature exceeds the liquid nitrogen temperature have been discovered one after another. Bi-based oxide superconductors are attracting attention as oxide superconductors that do not contain.
ところが、発見当初に得られたBi系の酸化物超電導体
は、lN0K近傍の臨界温度を示すBi。However, the Bi-based oxide superconductor obtained at the time of its discovery was Bi, which had a critical temperature near 1N0K.
S rtc arc uso yなる組成の高1相と、
80に近傍の臨界1度を示すBitSr*Ca+Cu堂
Oyなる組成の低温相の混合体であることが判明した。A high 1 phase with a composition of S rtc arc uso y,
It turned out to be a mixture of low-temperature phases with a composition of BitSr*Ca+CudoOy, which exhibits a critical temperature of 1°C near 80°C.
このため高温相のみからなるBi系酸化物超電導体の製
造が種々試みられている。For this reason, various attempts have been made to produce Bi-based oxide superconductors consisting only of high-temperature phases.
「発明が解決しようとする課題」
以上のような背景に鑑みて研究が進められた結果、B
iwo s、P bo 、S r(N Os)* ・4
Hto 、Cu。“Problems to be solved by the invention” As a result of research conducted in view of the above background, B.
iwos, Pbo, Sr(NOs)* ・4
Hto, Cu.
の各粉末を)(N O3で溶解し、攪拌、加熱混合後、
800℃で30分間加熱して仮焼し、更に粉砕して成形
し焼成することにより、高温相のバルクの単相化に成功
したとの発表がなされている。そして、このようなバル
クの単相化が成功したのは、成分元素にPbを添加した
ことと、共沈法により原料を調製したことが要因とされ
ている。) (dissolved in N O3, stirred, heated and mixed,
It has been announced that by heating and calcining at 800° C. for 30 minutes, and then pulverizing, molding, and firing, the bulk of the high-temperature phase was successfully converted into a single phase. The reason why the bulk was successfully made into a single phase is said to be due to the addition of Pb to the component elements and the preparation of the raw material by a coprecipitation method.
そこで前記のようにBi系酸化物超電導体にPbを添加
する方法が種々試みられているが、前述の製造方法を行
った場合、仮焼段階でCax5rs−xCusOyなる
組成の化合物が生成し易い傾向があり、この組成の化合
物が生成するためにCaとSrとCuが消費されること
になり、最終的に得られるBi系酸化物超電導体の組成
が目的の組成からずれる問題があった。また、Pbを添
加した場合であっても、バルク内の一部では臨界温度8
0にの低温相ができることがあり、低温相の生成が高温
相の生成を阻害する問題があった。Therefore, as mentioned above, various methods of adding Pb to Bi-based oxide superconductors have been attempted, but when the above-mentioned manufacturing method is carried out, a compound with the composition Cax5rs-xCusOy tends to be generated in the calcination stage. Since a compound having this composition is generated, Ca, Sr, and Cu are consumed, and there is a problem that the composition of the Bi-based oxide superconductor finally obtained deviates from the desired composition. Furthermore, even when Pb is added, some parts of the bulk have a critical temperature of 8
0, a low temperature phase may be formed, and there is a problem in that the formation of the low temperature phase inhibits the formation of the high temperature phase.
一方、前記のように原料粉末を混合した後に熱処理を行
って酸化物超電導体を製造する粉末焼結法を行う場合、
特定の出発材料の組成比を厳格に守り、厳密な温度管理
条件で熱処理を行わなくては、高い臨界温度を発揮する
酸化物超電導体を製造できない問題があった。また、仮
に、臨界温度の高い酸化物超電導体を製造できたとして
も、粉末焼結法で製造した酸化物超電導体はあくまで焼
結体であるために、結晶粒界やクラブク発生などの問題
により高い臨界電流密度は得られない問題がある。On the other hand, when performing a powder sintering method in which an oxide superconductor is produced by mixing raw material powders and then performing heat treatment as described above,
There has been a problem in that it is not possible to produce an oxide superconductor that exhibits a high critical temperature unless the composition ratio of specific starting materials is strictly adhered to and heat treatment is performed under strict temperature control conditions. Furthermore, even if it were possible to manufacture an oxide superconductor with a high critical temperature, since the oxide superconductor manufactured by the powder sintering method is a sintered body, it may suffer from problems such as grain boundaries and crack formation. There is a problem that a high critical current density cannot be obtained.
更に、最近に至り、原料粉末を溶融して反応させる溶融
法により緻密な構造の酸化物超電導体を製造する試みが
なされているが、溶融法でBi系酸化物超電導体を製造
すると、臨界温度80に程度の低温相が得られてしまい
、77にの液体窒素で冷却して使用する場合、温度マー
ジンが低いので、高い臨界電流密度を得ることができな
い問題があった。Furthermore, recently, attempts have been made to manufacture oxide superconductors with a dense structure by a melting method in which raw material powders are melted and reacted, but when Bi-based oxide superconductors are manufactured by a melting method, the critical temperature A low temperature phase of about 80° C. is obtained, and when used after cooling with liquid nitrogen at about 77° C., there is a problem that a high critical current density cannot be obtained because the temperature margin is low.
本発明は前記背景に鑑みてなされたもので、臨界温度が
高いBi系酸化物超電導体を溶融法を応用して製造する
方法の擾供を目的とする。The present invention has been made in view of the above background, and an object of the present invention is to provide a method for manufacturing a Bi-based oxide superconductor having a high critical temperature by applying a melting method.
[課題を解決するための手段」
本発明はn記課題を解決するために、Bi化合物とpb
化合物とSr化合物とCa化合物とCu化合物をBi:
Pb:Sr:Ca:Cu=(2−x):x :2 :2
:3なる比率になるように配合して出発材料を調製し
、この出発材料を800〜850℃で熱処理してBiw
−x PbxSr、Ca1CutOyなる組成の前駆体
を形成し、更にこの前駆体を900〜950℃で溶融さ
せ、この後に860〜880℃で熱処理するものである
。[Means for Solving the Problems] In order to solve the problems mentioned above, the present invention uses a Bi compound and a pb
Bi compound, Sr compound, Ca compound, and Cu compound:
Pb:Sr:Ca:Cu=(2-x):x:2:2
: A starting material is prepared by blending it in a ratio of 3. This starting material is heat-treated at 800 to 850°C to obtain Biw.
A precursor having a composition of -x PbxSr and Ca1CutOy is formed, and this precursor is further melted at 900 to 950°C, and then heat treated at 860 to 880°C.
「作用」
所定成分に調製した出発材料を熱処理して所定成分の前
駆体を形成し、この前駆体を溶融反応させることで粉末
焼結法による場合よりも緻密な組織を有する酸化物超電
導体が生成する。更に、溶融処理に続いて所定の温度で
熱処理することで所定の組成の高い臨界温度を示すBi
系酸化物超電導体が得られる。"Operation" A starting material prepared to have a predetermined composition is heat-treated to form a precursor of the predetermined composition, and by melting and reacting this precursor, an oxide superconductor having a denser structure than that obtained by powder sintering can be produced. generate. Furthermore, by heat-treating at a predetermined temperature following the melting process, Bi exhibiting a high critical temperature of a predetermined composition can be obtained.
A system oxide superconductor is obtained.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
本発明を実施してB i−9r−Ca−Cu−0系の酸
化物超電導体を製造するには、まず、出発材料を用意す
る。この出発材料としては、Bi化合物とPb化合物と
S「化合物とCa化合物とCu化合物を用いる。前記化
合物として、各元素の酸化物、塩化物、炭酸塩、硫化物
、フッ化物などのいずれを用いてモ良い。この例で風体
的に用いるのは、Bi。In order to manufacture a Bi-9r-Ca-Cu-0 based oxide superconductor by carrying out the present invention, starting materials are first prepared. As starting materials, a Bi compound, a Pb compound, an S compound, a Ca compound, and a Cu compound are used.As the compound, any of oxides, chlorides, carbonates, sulfides, fluorides, etc. of each element can be used. In this example, Bi is used for style.
0、粉末とPbO粉末と5rCOs粉末とCa COs
粉末とCuO粉末を用いる。なお、用いる化合物は粒状
、粉末状を問わないが、できる限り粒径の小さなものが
好ましい。0, powder, PbO powder, 5rCOs powder, and Ca COs
powder and CuO powder are used. Incidentally, the compound used may be in the form of particles or powder, but it is preferable that the particle size is as small as possible.
前記各粉末を用意したならばBi:Pb:Sr:Ca:
Cu=(2−x):x:2 :2 :3の割合(ただし
、0≦Xく2)になるように秤量して自動乳鉢などで所
要時間かけて均一に混合し、混合粉末を作製する。Once each of the above powders is prepared, Bi:Pb:Sr:Ca:
Weigh it so that the ratio of Cu=(2-x):x:2:2:3 (however, 0≦X×2) and mix it uniformly in an automatic mortar etc. over the required time to create a mixed powder. do.
次に混合粉末を大気中において800〜850℃で24
時間以上加熱して仮焼することにより不要成分を除去し
、B 1s−x P bx S r*ca+cut01
1なる組成の前駆体を作製する。なお、仮焼処理の時間
は数時間〜数百時間程度の範囲で、X線回折により、完
全なり1t−x Pbx SrmCa+Cum0y相の
単相状態となることを確認できるまで行うことが好まし
く、仮焼処理の雰囲気は酸素ガス雰囲気でも差し支えな
い。Next, the mixed powder was placed in the atmosphere at 800-850℃ for 24 hours.
Unnecessary components are removed by heating and calcining for more than an hour, and B 1s-x P bx S r*ca+cut01
A precursor having a composition of 1 is prepared. The calcination treatment time ranges from several hours to several hundred hours, and it is preferable to perform the calcination treatment until it can be confirmed by X-ray diffraction that a complete single-phase state of 1t-x Pbx SrmCa + CumOy phase is obtained. The processing atmosphere may be an oxygen gas atmosphere.
次に、前記のように製造した前駆体の粉末を白金などの
金属からなる耐熱容器につめて赤外線イメージ炉などの
加熱炉中において900〜950℃の温度で30分程度
溶融する。所定時間の溶融後、好ましくは、急冷する。Next, the precursor powder produced as described above is packed into a heat-resistant container made of metal such as platinum and melted in a heating furnace such as an infrared image furnace at a temperature of 900 to 950° C. for about 30 minutes. After melting for a predetermined period of time, it is preferably rapidly cooled.
この急冷処理により、生成する結晶粒を小さくすること
ができ、後に行う熱処理の反応が単時間で進行する。な
お、加熱溶融する際に、950℃より高い温度で溶融す
ると、Bit−xPbxSr*Ca+CutOy相の分
解が起こってしまうために好ましくない。By this rapid cooling treatment, it is possible to reduce the size of crystal grains produced, and the reaction of the heat treatment to be performed later proceeds in a single hour. In addition, when melting by heating, it is not preferable to melt at a temperature higher than 950°C because decomposition of the Bit-xPbxSr*Ca+CutOy phase will occur.
次に、溶融体の入っている耐熱容器を大気中において電
気炉に挿入して860〜880℃の温度で100〜30
0時間加熱する。ここで、860℃より低い温度で熱処
理すると臨界温度110Kを示す高温相の生成反応が起
こらないために好ましくなく、880℃以上では溶融体
が再び溶融するだけで臨界温度110Kを示す相の生成
反応が起こらないために好ましくない。なお、前記熱処
理は、溶融体を凝固させる前に直接電気炉に挿入して行
っても良く、凝固させた後に加熱処理しても良い。Next, the heat-resistant container containing the molten material is inserted into an electric furnace in the atmosphere and heated to a temperature of 860-880°C for 100-300°C.
Heat for 0 hours. Here, heat treatment at a temperature lower than 860°C is not preferable because the formation reaction of a high-temperature phase with a critical temperature of 110K does not occur, and at 880°C or higher, the melt simply melts again, resulting in a reaction of formation of a phase with a critical temperature of 110K. This is not desirable because it does not occur. Note that the heat treatment may be performed by directly inserting the melt into an electric furnace before solidifying the melt, or heat treatment may be performed after solidifying the melt.
以上の加熱処理で前駆体に含まれている低い臨界温度の
相が高い臨界温度の相に変化する。即ち、この熱処理に
よって、B it−x P bxS rtc atc
usOyなる組成であって、100〜ll0Kの臨界温
度を示すBi系の酸化物超電導体が生成する。Through the above heat treatment, a phase with a low critical temperature contained in the precursor changes to a phase with a high critical temperature. That is, by this heat treatment, B it-x P bxS rtc atc
A Bi-based oxide superconductor having a composition usOy and a critical temperature of 100 to 10K is produced.
なお、この相変化の際に、前記のように急冷処理を施し
て結晶粒を微細化しておくことにより、微細な結晶粒の
ものが生成する。Incidentally, during this phase change, fine crystal grains are generated by performing a rapid cooling treatment as described above to make the crystal grains fine.
以上の方法で製造されたBi系の酸化物超電導体は、臨
界温度が液体窒素温度(77K)よりも十分に高いので
液体窒素で冷却して使用する際に、温度マーノンが十分
にとれるとともに、焼結法で製造した酸化物超電導体に
比較して更に緻密な結晶組織であるので、高い臨界電流
密度を発揮する。The Bi-based oxide superconductor produced by the above method has a critical temperature that is sufficiently higher than the liquid nitrogen temperature (77K), so when used after being cooled with liquid nitrogen, a sufficient temperature manon can be obtained, and Since it has a more dense crystal structure than oxide superconductors manufactured by sintering, it exhibits a high critical current density.
「実施例」
B j t 03粉末とPbO扮末とS r COs粉
末とCaC0,粉末とCuO粉末をBi:Pb:Sr:
Ca:Cu=1.75:0.25:2:2:3のモル比
になるように配合し、自動乳鉢で1時間混合する。"Example" B j t 03 powder, PbO powder, S r COs powder and CaC0, powder and CuO powder, Bi:Pb:Sr:
They were blended at a molar ratio of Ca:Cu=1.75:0.25:2:2:3 and mixed in an automatic mortar for 1 hour.
この混合粉末を大気中において800〜B50℃で24
時間以上熱処理する。なお、熱処理した混合粉末のX線
回折を行って完全なりi、−xpbxSr*Ca+Cu
*Oy相の単相となることを確認できるまで必要時間熱
処理して前駆体を製造する。This mixed powder was heated to 800 to 50℃ in the atmosphere for 24 hours.
Heat treatment for more than an hour. In addition, X-ray diffraction of the heat-treated mixed powder was carried out to show complete i, -xpbxSr*Ca+Cu
*The precursor is produced by heat treatment for the necessary time until it is confirmed that it becomes a single Oy phase.
次にこの前駆体の粉末を白金テープで作製した容器内に
充填して赤外線イメージ炉内で900〜950℃の温度
で加熱して30分程度溶融する。Next, this precursor powder is filled into a container made of platinum tape and heated in an infrared image furnace at a temperature of 900 to 950°C to melt it for about 30 minutes.
なお、この段階で溶融物を凝固させた場合、凝固体は8
0にの臨界温度を示す。Note that if the melt is solidified at this stage, the solidified material will be 8
Indicates the critical temperature at 0.
前記の溶融物が入っている白金容器を溶融物を収納した
まま大気中で電気炉に挿入し、860〜880℃の温度
において100〜300時間熱処理してBi系の酸化物
超電導体を得た。The platinum container containing the melt was inserted into an electric furnace in the air while containing the melt, and heat treated at a temperature of 860 to 880°C for 100 to 300 hours to obtain a Bi-based oxide superconductor. .
熱処理後に得られた酸化物超電導体の臨界温度を測定し
たところ、100〜ll0Kの温度で電気抵抗が零にな
ることを確認できた。なお、臨界温度を測定したところ
、100 A/am”なる値が得られた。When the critical temperature of the oxide superconductor obtained after the heat treatment was measured, it was confirmed that the electrical resistance became zero at a temperature of 100 to 110K. In addition, when the critical temperature was measured, a value of 100 A/am'' was obtained.
以上の結果から本発明方法を実施することで臨界温度と
臨界電流密度の高い優れたBi系酸化物超電導体を製造
できることが判明した。From the above results, it was found that by carrying out the method of the present invention, an excellent Bi-based oxide superconductor having a high critical temperature and high critical current density can be manufactured.
なお、比較のために、前述と同様の方法で製造した前駆
体を溶融後、850℃で100時間熱処理した試料は、
臨界温度75Kを示すとともに、890℃で100時間
熱処理した試料は、臨界温度70Kを示し、満足な値は
得られなかった。For comparison, a sample was prepared by melting a precursor produced in the same manner as described above and then heat-treating it at 850°C for 100 hours.
A sample heat-treated at 890° C. for 100 hours showed a critical temperature of 75 K, and a critical temperature of 70 K was not obtained.
「発明の効果」
以上説明したように本発明は、溶融法を適用するので、
焼結法で製造する場合に比較し、より緻密な組織の酸化
物超電導体を得ることができるとともに、溶融後に更に
860〜880℃で熱処理することで好適な組成に調節
するので、100〜110にの高い臨界1度を示す酸化
物超電導体を得ることができる。"Effects of the Invention" As explained above, the present invention applies the melting method, so
Compared to manufacturing by sintering method, it is possible to obtain an oxide superconductor with a more dense structure, and the composition can be adjusted to a suitable temperature by further heat treatment at 860 to 880 °C after melting, so An oxide superconductor exhibiting a high criticality of 1 degree can be obtained.
Claims (1)
Cu化合物をBi:Pb:Sr:Ca:Cu=(2−x
):x:2:2:3なる比率になるように配合して出発
材料を調製し、この出発材料を800〜850℃で熱処
理してBi_2_−_xPb_xSr_2Ca_1Cu
_2O_yなる組成の前駆体を形成し、更にこの前駆体
を900〜950℃で溶融させ、この後に860〜88
0℃で熱処理することを特徴とするBi系酸化物超電導
体の製造方法。Bi compound, Pb compound, Sr compound, Ca compound, and Cu compound are Bi:Pb:Sr:Ca:Cu=(2-x
):
A precursor having a composition of _2O_y is formed, and this precursor is further melted at 900 to 950°C, and then a precursor of 860 to 88°C is melted.
A method for producing a Bi-based oxide superconductor, the method comprising heat-treating at 0°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017447A JPH03223117A (en) | 1990-01-26 | 1990-01-26 | Production of bi-based oxide superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017447A JPH03223117A (en) | 1990-01-26 | 1990-01-26 | Production of bi-based oxide superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03223117A true JPH03223117A (en) | 1991-10-02 |
Family
ID=11944280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017447A Pending JPH03223117A (en) | 1990-01-26 | 1990-01-26 | Production of bi-based oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03223117A (en) |
-
1990
- 1990-01-26 JP JP2017447A patent/JPH03223117A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5047391A (en) | Process for producing a high-temperature superconductor and also shaped bodies composed thereof | |
JPH01226737A (en) | Superconductor and its production | |
JPH03223117A (en) | Production of bi-based oxide superconductor | |
JPH0255298A (en) | Method for growing oxide superconductor single crystal | |
JPH0421521A (en) | Production of bi-based superconductor having ni base material | |
JPH0238359A (en) | Production of superconductor | |
JPH02275799A (en) | Oxide superconductor and its manufacturing method | |
JP2635704B2 (en) | Method for producing Bi-based oxide high-temperature superconductor | |
Naumov et al. | The synthesis and properties of the new cuprate Bi2Ba2NdCu2O8+ δ | |
JPH0745357B2 (en) | Superconducting fibrous single crystal and method for producing the same | |
JP2859283B2 (en) | Oxide superconductor | |
JPH02217316A (en) | High-temperature superconductive material and its manufacture | |
JPH01275493A (en) | Method for growing oxide superconductor single crystal | |
JP2838312B2 (en) | Oxide superconducting material | |
JPH0292827A (en) | Production of bi oxide superconductor | |
JPH02252621A (en) | Superconducting fibrous crystal and production thereof | |
JPH01203257A (en) | Production of superconductor | |
JPH02120234A (en) | Production of oxide superconductor | |
JPS63291815A (en) | Production of superconductor | |
JPH01201060A (en) | Production of superconductor | |
JPH0437605A (en) | Oxide superconducting material and its production | |
JPH05193950A (en) | Production of oxide superconducting material | |
JPH02153821A (en) | Production of thallium-based superconductor | |
JPH03131521A (en) | Oxide superconductor and production thereof | |
JPH0745358B2 (en) | Method for producing superconducting single crystal |