JPH0292827A - Production of bi oxide superconductor - Google Patents
Production of bi oxide superconductorInfo
- Publication number
- JPH0292827A JPH0292827A JP63246334A JP24633488A JPH0292827A JP H0292827 A JPH0292827 A JP H0292827A JP 63246334 A JP63246334 A JP 63246334A JP 24633488 A JP24633488 A JP 24633488A JP H0292827 A JPH0292827 A JP H0292827A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- composition
- oxide superconductor
- powder
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 150000001875 compounds Chemical class 0.000 claims abstract description 75
- 239000000203 mixture Substances 0.000 claims abstract description 44
- 238000002156 mixing Methods 0.000 claims abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 12
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 9
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052745 lead Inorganic materials 0.000 claims abstract description 7
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 7
- 239000002131 composite material Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 13
- -1 Bi2O3) Chemical class 0.000 abstract description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 abstract description 4
- 230000001747 exhibiting effect Effects 0.000 abstract description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 abstract description 2
- 235000010216 calcium carbonate Nutrition 0.000 abstract description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 abstract 2
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 abstract 1
- 229910000018 strontium carbonate Inorganic materials 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 21
- 239000011812 mixed powder Substances 0.000 description 11
- 238000001354 calcination Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本願発明は臨界温度が高いことで知られているBi系酸
化物超電導体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a method for producing a Bi-based oxide superconductor, which is known to have a high critical temperature.
「従来の技術」
近年、臨界温度が液体窒素温度を超える値を示す酸化物
系の超電導体が次々と発見されいるが、この種の酸化物
超電導体において、高い臨界温度を示し、希土類元素を
含まない酸化物超電導体としてBi系の酸化物超電導体
が注目されている。"Prior Art" In recent years, oxide-based superconductors whose critical temperature exceeds the liquid nitrogen temperature have been discovered one after another. Bi-based oxide superconductors are attracting attention as oxide superconductors that do not contain Bi.
ところが、発見当初に得られたBi系の酸化物超電導体
は、臨界温度が107Kを示すB itS rICat
Cu30 Xなる組成の高温相と、臨界温度が80Kを
示すB izs rtc arc uto xなる組成
の低温相の混合体であることが判明した。そこで、高温
相のみからなるBi系酸化物超電導体の製造が種々試み
られている。However, the Bi-based oxide superconductor obtained at the time of its discovery has a critical temperature of 107K.
It was found to be a mixture of a high-temperature phase with a composition of Cu30 Therefore, various attempts have been made to produce Bi-based oxide superconductors consisting only of high-temperature phases.
「発明が解決しようとする課題」
以上のような背景に鑑みて研究が進められた結果、Bi
t03.PbO,5r(NO3)t−4H,O,CLI
Oの各粉末をHN O3で溶解し、攪拌、加熱混合後、
800℃で30分間加熱して仮焼し、更に粉砕して成形
し焼成することにより、高温相のバルクの単相化に成功
したとの発表がなされている。そして、このようなバル
クの単相化が成功したのは、成分元素にpbを添加した
ことと、共沈法により原料を調製したことが要因とされ
ている。“Problems to be solved by the invention” As a result of research conducted in view of the above background, Bi
t03. PbO,5r(NO3)t-4H,O,CLI
After dissolving each powder of O in HN O3, stirring, and heating and mixing,
It has been announced that by heating and calcining at 800° C. for 30 minutes, and then pulverizing, molding, and firing, the bulk of the high-temperature phase was successfully converted into a single phase. The reason why the bulk was successfully made into a single phase is said to be due to the addition of PB to the component elements and the preparation of the raw material by the coprecipitation method.
そこで前記のようにBi系酸化物超電導体にPbを添加
する方法が種々試みられているが、前述の製造方法を行
った場合、仮焼段階でCaX5ra−xCu、Oyなる
組成の化合物が生成し易い傾向があり、この組成の化合
物が生成するためにCa、Sr。Therefore, as mentioned above, various methods of adding Pb to Bi-based oxide superconductors have been attempted, but when the above-mentioned manufacturing method is carried out, compounds with the composition CaX5ra-xCu, Oy are generated in the calcination stage. Since compounds with this composition tend to be produced, Ca and Sr.
Cuが消費されることになり、最終的に得られるBi系
酸化物超電導体の仕込み組成がずれる問題があった。ま
た、Pbを添加した場合であっても、バルク内の一部で
は臨界温度80にの低温相ができることがあり、低温相
の生成が高温相の生成を阻害する問題があった。There was a problem in that Cu was consumed and the composition of the Bi-based oxide superconductor finally obtained was deviated. Further, even when Pb is added, a low temperature phase with a critical temperature of 80 may be formed in a part of the bulk, and there is a problem in that the formation of the low temperature phase inhibits the formation of the high temperature phase.
今回本願発明者らは、このような背景に鑑み、種々研究
を重ねた結果、臨界温度7><ll0Kを示すBi系酸
化物超電導体のバルクを製造する方法を見出して本発明
に至った。In view of this background, the inventors of the present application have conducted various studies, and as a result, have discovered a method for producing a bulk Bi-based oxide superconductor exhibiting a critical temperature of 7><ll0K, and have arrived at the present invention.
本発明は前記背景に鑑みてなされたもので、臨界温度が
ll0Kを示すBi系酸化物超電導体を製造する方法の
提供を目的とする。The present invention has been made in view of the above background, and an object of the present invention is to provide a method for manufacturing a Bi-based oxide superconductor having a critical temperature of 10K.
「課題を解決するための手段」
請求項1に記載した発明は、BiとSrとCuとOを具
備してなる化合物とCaとPbと0を具備してなる化合
物を混合した後に熱処理してB iys r。"Means for Solving the Problem" The invention described in claim 1 is a method of mixing a compound comprising Bi, Sr, Cu, and O, and a compound comprising Ca, Pb, and O, and then heat-treating the mixture. B iys r.
Cat Cus Oxを生成することを課題解決の手段
とした。The solution to the problem was to generate Cat Cus Ox.
請求項2に記載した発明は、Bi化合物とSr化合物と
Cu化合物を混合して熱処理することにより第1複合化
合物を形成するとともに、Ca化合物とPb化合物を混
合して熱処理することにより第2?i合化合物を形成し
、前記第1複合化合物と第2腹合化合物を混合して熱処
理することにより+3 iys ryCatCuso
×を生成することを課題解決の手段とした。In the invention described in claim 2, a first composite compound is formed by mixing a Bi compound, a Sr compound, and a Cu compound and heat-treating the mixture, and a second composite compound is formed by mixing a Ca compound and a Pb compound and heat-treating the mixture. +3 iys ryCatCuso by forming an iys compound compound, mixing the first compound compound and the second compound compound and heat-treating the mixture.
The method of solving the problem was to generate ×.
請求項3に記載した発明は、B izs rtc us
Oxなる組成の複合化合物とCa、PbO,なる組成の
複合化合物を混合した後に熱処理してRitS rtc
atCusOxを生成させることを課題解決の手段と
した。The invention described in claim 3 is based on Bizs rtc us.
A composite compound having a composition of Ox and a composite compound having a composition of Ca, PbO are mixed and then heat-treated to form RitS rtc.
The solution was to generate atCusOx.
請求項4に記載した発明は、B izs rtCu30
xなる組成の化合物層とCatP bOsなる組成の
化合物層との間の拡散反応により、B L S rt
Cat CusOXを生成させることを課題解決の手段
とした。The invention described in claim 4 is based on Bizs rtCu30.
Due to the diffusion reaction between the compound layer with the composition x and the compound layer with the composition CatP bOs, B L S rt
The solution to this problem was to generate Cat CusOX.
「作用 」
BiとSrとCuとOを含み、CaとPbを含まない化
合物と、Caとpbと0を含む化合物を反応させること
により、B LS ryCarc Ll!IQ Xなる
組成の酸化物超電導体を生成させる。ここで、BiとS
rとCuとOを含む化合物と、CaとPbとOを含む化
合物とを別々に作製するとCaXS r3− X CL
150yなる組成の化合物とB l t S r t
Ca + CLl t OXなる組成の低温相を生成さ
せることなく複合化合物を生成させることができ、これ
らの複合化合物を基に酸化物超電導体を生成させるので
、最終的に得られる酸化物超電導体の組成か仕込み組成
に近いものとなる。また、pbは安定な化合物の状態で
添加されるので得られる酸化物超電導体の内部ではPb
は安定化され、Bi系の高温相を生成さ仕るPbの効果
が十分に発揮される。"Action" By reacting a compound containing Bi, Sr, Cu, and O but not containing Ca and Pb with a compound containing Ca, pb, and 0, B LS ryCarc Ll! An oxide superconductor having a composition of IQX is produced. Here, Bi and S
When a compound containing r, Cu, and O and a compound containing Ca, Pb, and O are prepared separately, CaXS r3-
A compound with a composition of 150y and B l t S r t
A composite compound can be generated without generating a low-temperature phase with the composition Ca + CLlt OX, and since an oxide superconductor is generated based on these composite compounds, the final oxide superconductor The composition will be close to the preparation composition. In addition, since Pb is added in the form of a stable compound, Pb is added inside the resulting oxide superconductor.
is stabilized, and the effect of Pb in producing a Bi-based high-temperature phase is fully exhibited.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
本発明を実施してB i−S r−Ca−Cu−0系の
酸化物超電導体を製造するには、まず、出発物を調製す
る。この出発物としては、Bi化合物とSr化合物とC
u化合物、および、Ca化合物とPb化合物を用いる。To carry out the present invention to produce a B i-S r-Ca-Cu-0 based oxide superconductor, starting materials are first prepared. The starting materials include a Bi compound, a Sr compound, and a C
A u compound, a Ca compound, and a Pb compound are used.
前記化合物としては、各元素の酸化物、塩化物、炭酸塩
、硫化物フッ化物などのいずれでも良い。この例で具体
的に用いるのは、Bi、O。The compound may be any of oxides, chlorides, carbonates, sulfides, fluorides, etc. of each element. Specifically used in this example are Bi and O.
粉末とS r C03粉末とCuO粉末、および、Ca
CO3粉末とPbO粉末などを用いる。なお、用いる化
合物は粒状、粉末状を問わないが、できる限り粒径の小
さなものが好ましい。Powder and S r C03 powder and CuO powder and Ca
CO3 powder, PbO powder, etc. are used. Incidentally, the compound used may be in the form of particles or powder, but it is preferable that the particle size is as small as possible.
ここで前記BLOi粉末と5rCOs粉末とCuO粉末
を用意したならば、B its r:cu= 2 :2
:3の割合になるように秤量して均一に混合し、第1
混合粉末を作製する。次に第1混合粉末を大気中におい
て820℃で12時間加熱して仮焼することにより不要
成分を除去し、B its rtc u+o Xなる組
成、あるいは、この組成の化合物を主成分とする第1複
合化合物を作製する。なお、仮焼処理の温度は750〜
840℃の範囲が好ましい。Here, if the BLOi powder, 5rCOs powder, and CuO powder are prepared, Bits r:cu=2:2
: Weigh and mix evenly so that the ratio is 3.
Prepare mixed powder. Next, unnecessary components are removed by heating and calcining the first mixed powder at 820° C. for 12 hours in the atmosphere, resulting in a composition of Bits rtcu+oX or a first powder whose main component is a compound of this composition. Create a composite compound. In addition, the temperature of the calcination treatment is 750~
A range of 840°C is preferred.
一方、前記CaCO5粉末とPbO粉末を用意したなら
ば、Ca:Pb:O= 2 :1 :3の割合になるよ
うに秤量して均一に混合し、第2混合粉末を作製する。On the other hand, once the CaCO5 powder and the PbO powder are prepared, they are weighed and mixed uniformly in a ratio of Ca:Pb:O=2:1:3 to produce a second mixed powder.
次に第2混合粉末を大気中において800℃で12時間
加熱して仮焼することにより不要成分を除去し、Cat
P bo sなる組成、あるいは、この組成の化合物を
主成分とする第2複合化合物を作製する。なお、仮焼処
理の温度は740〜820°Cの範囲が好ましい。また
、前記仮焼処理の雰囲気は真空雰囲気や酸素ガス雰囲気
でも差し支えない。Next, the second mixed powder is calcined by heating at 800°C in the atmosphere for 12 hours to remove unnecessary components and remove Cat.
A second composite compound having a composition of P bos or a compound having this composition as a main component is prepared. Note that the temperature of the calcination treatment is preferably in the range of 740 to 820°C. Further, the atmosphere for the calcination treatment may be a vacuum atmosphere or an oxygen gas atmosphere.
前記のように作製された第!複合化合物と第2複合化合
物を各々十分に粉砕して粒径を揃えた後に混合し、O,
1=10t/co+を程度の圧力を加える圧粉成形処理
を施して所望の形状の圧粉成形体を得る。ここで行う圧
粉成形処理には、機械プレス、静水圧プレスなどを用い
ることが好ましいがこれらの方法に限定されるものでは
なく、混合粉末を圧密できる方法であれば、いかなる方
法を用いても良い。No. 1 prepared as described above! The composite compound and the second composite compound are each sufficiently crushed to have the same particle size, and then mixed.
A compacting process is performed to apply a pressure of 1=10 t/co+ to obtain a compacted compact having a desired shape. It is preferable to use a mechanical press, a hydrostatic press, etc. for the powder compaction treatment performed here, but the method is not limited to these methods. Any method that can compact the mixed powder can be used. good.
圧粉成形体を得たならば、これを大気中において、85
0℃で100時間加熱する熱処理を施して焼結する。こ
の熱処理によりBizs rtc u30 xなる化合
物とCazP bo sなる化合物が反応してB ip
s rtc at(P by )CL130 Xなる組
成の酸化物超電導体が生成する。なお、ここで行う熱処
理は、820〜870℃の範囲で1〜300時間行うこ
とが好ましく、熱処理雰囲気は真空中や酸素ガス雰囲気
などでも差し支えない。Once the powder compact is obtained, it is heated to 85% in the atmosphere.
Sintering is performed by heating at 0°C for 100 hours. Through this heat treatment, the compound Bizs rtc u30 x and the compound CazP bos react to form B ip
An oxide superconductor having the composition s rtc at(P by )CL130X is produced. Note that the heat treatment performed here is preferably performed at a temperature of 820 to 870° C. for 1 to 300 hours, and the heat treatment atmosphere may be a vacuum or an oxygen gas atmosphere.
先に行った仮焼処理においては、第1複合化合物にCa
を含んでいないので、CaX5 rs−X Cu5Oy
なる組成の不純物化合物、あるいは、臨界温度の低いB
its rtc a+ Cuto Xなる組成の低温
相が生成していない。従って、第1と第2の複合化合物
を混合して焼結することによりB ttS rtc a
tCusOxなる組成の酸化物超電導体が効率良く生成
する。しかも、この場合、PbはCas P bo 3
の状態で添加されるのでPbを安定化させることができ
、臨界温度の高い高温相であるB its rtCat
CL130Xを生成させるPbの効果を十分に発揮する
ことができる。In the previous calcination treatment, Ca was added to the first composite compound.
Since it does not contain CaX5 rs-X Cu5Oy
or B with a low critical temperature.
A low-temperature phase with a composition of its rtc a+ Cuto X is not generated. Therefore, by mixing and sintering the first and second composite compounds, B ttS rtca
An oxide superconductor having a composition of tCusOx is efficiently produced. Moreover, in this case, Pb is Cas P bo 3
Pb can be stabilized because it is added in a high temperature phase with a high critical temperature.
The effect of Pb to generate CL130X can be fully exhibited.
以上のような方法を実施することにより、臨界温度がl
l0Kを示すBi系酸化物超電導体を製造することがで
きる。By implementing the above method, the critical temperature can be reduced to l.
A Bi-based oxide superconductor exhibiting 10K can be manufactured.
ところで、本発明方法を用いて薄膜状あるいは厚膜状の
Bi系超電導体を製造することができる。By the way, a thin film or thick film Bi-based superconductor can be manufactured using the method of the present invention.
この場合、MgOあるいは5rTiOsなどからなる基
板上に化学気相蒸着法、スパッタリング法またはレーザ
PVD法などの薄膜形成法、あるいはドクターブレード
法などの厚膜形成法を実施してBits rtc u3
0 Xなる組成の第1化合物層を形成し、更にこの上に
CatP bo 3なる組成の第2化合物層を形成する
手順を必要回数行って積層膜を形成し、この積層膜を前
記と同等の条件で熱処理すれば、元素の相互拡散を進行
させてB its rtc azCusOxなる組成の
酸化物超電導層を生成させろことができる。In this case, a thin film formation method such as chemical vapor deposition, sputtering, or laser PVD method, or a thick film formation method such as a doctor blade method is performed on a substrate made of MgO or 5rTiOs, etc. to form Bits rtc u3.
The procedure of forming a first compound layer with a composition of 0 If the heat treatment is performed under certain conditions, interdiffusion of elements can be promoted to produce an oxide superconducting layer having a composition of Bits rtc azCusOx.
このような方法を行うことにより臨界温度の高い膜状の
Bi系酸化物超電導体を形成することができる。By performing such a method, a film-like Bi-based oxide superconductor having a high critical temperature can be formed.
「実施例」
B its r:cu= 2 :2 :3となるように
Bito3粉末とS r COs粉末とCuO粉末を混
合して混合粉末を作製し、この混合粉末を大気中におい
て820℃で12時間仮焼してB izs rzc u
ao xなる組成の第1複合化合物を作製した。次いで
Ca:P b:0=2:1:3となるようにCaCO3
粉末とpb。"Example" A mixed powder was prepared by mixing Bito3 powder, S r COs powder, and CuO powder so that B its r: cu = 2:2:3, and this mixed powder was heated at 820 °C in the atmosphere for 12 Temporarily bake for a while
A first composite compound having a composition aox was prepared. Then CaCO3 so that Ca:P b:0=2:1:3
powder and pb.
粉末を混合して混合粉末を作製し、この混合粉末を大気
中において、800℃で12時間仮焼してCa、PbO
3なる組成の第2複合化合物を作製した。A mixed powder is prepared by mixing the powders, and this mixed powder is calcined in the atmosphere at 800°C for 12 hours to obtain Ca, PbO.
A second composite compound having a composition of 3 was prepared.
続いて第1複合化合物と第2複合化合物を各々粉砕して
粒径を揃え、両者を混合して混合粉末を得た。Subsequently, the first composite compound and the second composite compound were each pulverized to have uniform particle sizes, and the two were mixed to obtain a mixed powder.
次いでこの混合粉末を機械プレスでIt/am”の圧力
をかけて圧粉成形し、厚さ1.5IIv、直径13ff
llWのペレット状成形体を得た。Next, this mixed powder was compacted using a mechanical press under a pressure of "It/am" to form a powder with a thickness of 1.5IIv and a diameter of 13ff.
A pellet-shaped molded product of 11W was obtained.
次いで前記成形体を大気中において850℃で100時
間加熱する熱処理を施してB i!s rtc atC
u30xなる組成の酸化物超電導体を作製した。Next, the molded body was heat-treated at 850° C. for 100 hours in the atmosphere to obtain Bi! s rtc atC
An oxide superconductor having a composition of u30x was produced.
このように得られた酸化物超電導体の抵抗温度特性を第
1図に示す。The resistance temperature characteristics of the oxide superconductor thus obtained are shown in FIG.
第1図から明らかなように本発明方法を実施して得られ
たBi系酸化物超電導体は臨界温度(Tc)がll0K
の優秀な値を示した。また、抵抗が減少し始める温度は
115にであった。As is clear from FIG. 1, the Bi-based oxide superconductor obtained by carrying out the method of the present invention has a critical temperature (Tc) of 10K.
showed excellent value. The temperature at which the resistance began to decrease was 115.
「発明の効果」
以上説明したように本発明は、BiとSrとCuと0を
含む化合物と、CaとPbと0を含む化合物とを別々に
作製して混合するので、Cax5rs−xCusOyな
る組成の化合物とBitSr、Ca+Cu、OXなる組
成の低温相を生成させることなく複合化合物を生成させ
ることができ、更に、これらの複合化合物を基に酸化物
超電導体を生成させるので、最終的に得られる酸化物超
電導体の組成が仕込み組成に近いものとなる。従って臨
界温度!10Kを示す優れた特性のBi系酸化物超電導
体を製造できる効果がある。また、pbは安定な化合物
の状態で添加されるので得られる酸化物超電導体の内部
でpbは安定化され、Bi系の高温相を生成さ仕るpb
の効果が十分に発揮されて臨界温度の高いBi系酸化物
超電導体が生成する。"Effects of the Invention" As explained above, in the present invention, a compound containing Bi, Sr, Cu, and 0 and a compound containing Ca, Pb, and 0 are prepared separately and mixed, so that the composition becomes Cax5rs-xCusOy. It is possible to generate a composite compound without forming a low-temperature phase with a composition of BitSr, Ca+Cu, and OX, and furthermore, an oxide superconductor is generated based on these composite compounds, so the final result is The composition of the oxide superconductor becomes close to the charged composition. Hence the critical temperature! There is an effect that a Bi-based oxide superconductor with excellent characteristics exhibiting 10K can be manufactured. In addition, since Pb is added in the form of a stable compound, Pb is stabilized inside the resulting oxide superconductor and produces a Bi-based high-temperature phase.
This effect is fully exhibited and a Bi-based oxide superconductor with a high critical temperature is produced.
第1図は本発明方法を実施して得られたBi系酸化物超
電導体の抵抗温度特性を示す図である。FIG. 1 is a diagram showing the resistance temperature characteristics of a Bi-based oxide superconductor obtained by carrying out the method of the present invention.
Claims (4)
CaとPbとOを具備してなる化合物を混合した後に熱
処理してBi_2Sr_2Ca_2Cu_3O_xを生
成させることを特徴とするBi系酸化物超電導体の製造
方法。(1) A compound comprising Bi, Sr, Cu, and O;
A method for producing a Bi-based oxide superconductor, characterized in that a compound comprising Ca, Pb, and O is mixed and then heat-treated to produce Bi_2Sr_2Ca_2Cu_3O_x.
熱処理することにより第1複合化合物を形成するととも
に、Ca化合物とPb化合物を混合して熱処理すること
により第2複合化合物を形成し、前記第1複合化合物と
第2複合化合物を混合して熱処理することによりBi_
2Sr_2Ca_2Cu_3O_xを生成させることを
特徴とするBi系酸化物超電導体の製造方法。(2) forming a first composite compound by mixing and heat-treating a Bi compound, a Sr compound, and a Cu compound; and forming a second composite compound by mixing and heat-treating a Ca compound and a Pb compound; By mixing the first composite compound and the second composite compound and heat treating the mixture, Bi_
A method for producing a Bi-based oxide superconductor, the method comprising producing 2Sr_2Ca_2Cu_3O_x.
化合物と、Ca_2PbO_3なる組成の複合化合物を
混合した後に熱処理してBi_2Sr_2Ca_2Cu
_3O_xを生成させることを特徴とするBi系酸化物
超電導体の製造方法。(3) A composite compound with a composition of Bi_2Sr_2Cu_3O_x and a composite compound with a composition of Ca_2PbO_3 are mixed and then heat-treated to form Bi_2Sr_2Ca_2Cu.
A method for producing a Bi-based oxide superconductor, the method comprising producing _3O_x.
物層とCa_2PbO_3なる組成の化合物層との間の
拡散反応によりBi_2Sr_2Ca_2Cu_3O_
xを生成させることを特徴とするBi系酸化物超電導体
の製造方法。(4) Due to the diffusion reaction between the compound layer with the composition Bi_2Sr_2Cu_3O_x and the compound layer with the composition Ca_2PbO_3, Bi_2Sr_2Ca_2Cu_3O_
1. A method for producing a Bi-based oxide superconductor, the method comprising producing x.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63246334A JPH0292827A (en) | 1988-09-30 | 1988-09-30 | Production of bi oxide superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63246334A JPH0292827A (en) | 1988-09-30 | 1988-09-30 | Production of bi oxide superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0292827A true JPH0292827A (en) | 1990-04-03 |
Family
ID=17147020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63246334A Pending JPH0292827A (en) | 1988-09-30 | 1988-09-30 | Production of bi oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0292827A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5300486A (en) * | 1993-05-27 | 1994-04-05 | The United States Of America As Represented By The United States Department Of Energy | Synthesis of BiPbSrCaCuO superconductor |
US5324712A (en) * | 1991-08-16 | 1994-06-28 | Gte Laboratories Incorporated | Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding |
-
1988
- 1988-09-30 JP JP63246334A patent/JPH0292827A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5324712A (en) * | 1991-08-16 | 1994-06-28 | Gte Laboratories Incorporated | Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding |
US5300486A (en) * | 1993-05-27 | 1994-04-05 | The United States Of America As Represented By The United States Department Of Energy | Synthesis of BiPbSrCaCuO superconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5047391A (en) | Process for producing a high-temperature superconductor and also shaped bodies composed thereof | |
JPH0292827A (en) | Production of bi oxide superconductor | |
JPH02120227A (en) | Production of bi-based oxide superconductor | |
JP3165770B2 (en) | Manufacturing method of oxide superconductor | |
JP2803823B2 (en) | Method for producing T1-based oxide superconductor | |
JPH02120228A (en) | Production of bi-based oxide superconductor | |
JPH01203258A (en) | Method for manufacturing oxide superconducting sintered body | |
JPH02172823A (en) | Production of bi-based oxide superconductor | |
JPH0574531B2 (en) | ||
JPH02172822A (en) | Production of bi-based oxide superconducting layer | |
JPH04139026A (en) | Oxide superconducting material and its production | |
JPH01126258A (en) | Production of oxide high-temperature superconductive material | |
JPH06345425A (en) | Oxide superconductor and production thereof | |
JPH01270517A (en) | Production of bi-based oxide superconducting material | |
JP2969221B2 (en) | Manufacturing method of oxide superconductor | |
JPH02120234A (en) | Production of oxide superconductor | |
JPH1036119A (en) | Manufacturing method of oxide superconductor film | |
JPH03103321A (en) | Raw material for superconductor, production thereof and production of superconductor using same raw material | |
JPH01290530A (en) | Multiple oxides superconducting material and production thereof | |
JPH0632612A (en) | Oxide superconductor and its production | |
JPH03223117A (en) | Production of bi-based oxide superconductor | |
JPH01270561A (en) | Production of oxide superconductor | |
JPH0778530A (en) | Oxide superconductor and preparation thereof | |
JPH09255332A (en) | Production of oxide superconductor | |
JPH01313326A (en) | Superconductor and production thereof |