JPH03220318A - Production of high-strength silicon carbide-based ceramic yarn by radiation oxidation - Google Patents
Production of high-strength silicon carbide-based ceramic yarn by radiation oxidationInfo
- Publication number
- JPH03220318A JPH03220318A JP1294670A JP29467089A JPH03220318A JP H03220318 A JPH03220318 A JP H03220318A JP 1294670 A JP1294670 A JP 1294670A JP 29467089 A JP29467089 A JP 29467089A JP H03220318 A JPH03220318 A JP H03220318A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- fiber
- silicon carbide
- oxygen
- infusibility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007254 oxidation reaction Methods 0.000 title claims description 19
- 230000005855 radiation Effects 0.000 title claims description 19
- 230000003647 oxidation Effects 0.000 title claims description 18
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 11
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 11
- 239000000919 ceramic Substances 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000835 fiber Substances 0.000 claims description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 25
- 239000001301 oxygen Substances 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 11
- 239000002344 surface layer Substances 0.000 claims description 9
- 239000002243 precursor Substances 0.000 claims description 8
- 238000010894 electron beam technology Methods 0.000 claims description 5
- 238000010304 firing Methods 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000009987 spinning Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 2
- 239000011261 inert gas Substances 0.000 claims 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 239000001307 helium Substances 0.000 claims 1
- 229910052734 helium Inorganic materials 0.000 claims 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims 1
- 230000005865 ionizing radiation Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 11
- 229920003257 polycarbosilane Polymers 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000005251 gamma ray Effects 0.000 description 3
- 229920001558 organosilicon polymer Polymers 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012210 heat-resistant fiber Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
Landscapes
- Inorganic Fibers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は放射線酸化によって、不融化に必要な酸化の度
合を正確に制御できる方法、及び前駆体繊維の不融化を
表面から内部まで選択的に行う方法を提供することにあ
る。Detailed Description of the Invention [Field of Industrial Application] The present invention provides a method for accurately controlling the degree of oxidation necessary for infusibility by radiation oxidation, and a method for selectively infusibility of precursor fibers from the surface to the inside. The goal is to provide a way to do this.
有機ケイ素系高分子化合物を前駆体として製造される炭
化ケイ素系繊維の製造工程は紡糸、不融化、焼成に分け
られるが、不融化の工程を空気中などの酸素雰囲気で熱
処理する熱酸化の方法で行っている。The manufacturing process of silicon carbide fibers, which are produced using organosilicon polymer compounds as precursors, can be divided into spinning, infusibility, and firing, but the infusibility process is performed using a thermal oxidation method in which heat treatment is performed in an oxygen atmosphere such as air. I'm doing it.
しかし、この従来の方法では、酸化の度合を一定に制御
することが困難であり、また、不融化に用する時間が長
く、全体の製造工程の律速になっていた。However, in this conventional method, it is difficult to control the degree of oxidation at a constant level, and the time required for infusibility is long, which is rate-limiting for the entire manufacturing process.
有機ケイ素系高分子繊維を不融化するために、酸素を反
応させる方法として、放射線照射を利用するが、この特
徴は酸化を室温で行うことができ、酸化の度合を正確に
制御でき、かつ、酸化に分布を作り出すことができる点
にある。放射線照射によって、高分子繊維には温度にほ
とんどかかわりなく、ラジカル、イオン等の反応活性種
が生成され、その濃度は放射線の線量に比例する。酸素
が存在する条件では、酸素はそれら反応活性種と優先的
に反応して酸化される。放射線照射時の温度が室温程度
では、熱酸化速度はきわめて小さいので、酸化反応の量
は放射線の線量にほぼ比例する。In order to make organosilicon polymer fibers infusible, radiation irradiation is used as a method of reacting with oxygen. The point is that it can create a distribution in oxidation. Radiation irradiation generates reactive species such as radicals and ions in polymer fibers almost regardless of temperature, and their concentration is proportional to the radiation dose. Under conditions where oxygen is present, oxygen preferentially reacts with these reactive species and is oxidized. When the temperature during radiation irradiation is around room temperature, the thermal oxidation rate is extremely low, so the amount of oxidation reaction is approximately proportional to the radiation dose.
したがって、この比例係数を求めることによって、酸化
の度合は照射線量によって正確に制御できること記なる
。Therefore, by determining this proportionality coefficient, the degree of oxidation can be accurately controlled by the irradiation dose.
例えば、有機ケイ素系高分子の一つであるポリカルボシ
ランについて、放射線酸化による酸素の反応量は照射線
量1 kGyに対して、ポリカルボシラン1g当り8
Xl0−’molであることから、40kGyで1.0
%、400kGyで10%の酸素を反応させることがで
きる。For example, for polycarbosilane, which is an organosilicon polymer, the amount of oxygen reacted by radiation oxidation is 8 per gram of polycarbosilane for an irradiation dose of 1 kGy.
Since it is Xl0-'mol, it is 1.0 at 40 kGy.
%, 10% oxygen can be reacted at 400 kGy.
次いで、放射線酸化の分布については、放射線照射で生
成する反応活性種は前駆体樹脂の内部に均一であるのに
対して、酸素は繊維の表面から供給されるために、その
供給速度が小さい場合には、繊維の表面層で全て酸化し
てしまい、その内部は全く酸化されないことが起る。こ
の酸化層の厚さは酸素の供給速度すなわち前駆体繊維へ
の透過速度と放射線の線量率によって決められる。放射
線酸化した後、繊維の断面を調べてみると、第1図に示
すように表面層が酸化され、その層の厚さLは次式で与
えられることがわかった。Next, regarding the distribution of radiation oxidation, the reactive species generated by radiation irradiation are uniform inside the precursor resin, whereas oxygen is supplied from the surface of the fiber, so if the supply rate is small, In this case, the surface layer of the fiber is completely oxidized, and the inside layer is not oxidized at all. The thickness of this oxidized layer is determined by the oxygen supply rate, ie, the rate of penetration into the precursor fibers, and the radiation dose rate. When the cross section of the fiber was examined after being oxidized by radiation, it was found that the surface layer was oxidized as shown in FIG. 1, and the thickness L of that layer was given by the following equation.
ここで、Lは(C1ll、Dは酸素の拡散係数Ccd/
S〕、Sは溶解度係数(mol/g、atm)である、
#I素の透過係数はDとSの積である。Φは放射線酸化
によって酸化層で反応する酸素の量1wol/g、Gy
)である、また、Po2は放射線照射下の繊維雰囲気の
酸素分圧(atml、rは線量率である。Here, L is (C1ll, D is the oxygen diffusion coefficient Ccd/
S], S is the solubility coefficient (mol/g, atm),
The transmission coefficient of #I element is the product of D and S. Φ is the amount of oxygen reacting in the oxidized layer by radiation oxidation, 1 wol/g, Gy
), and Po2 is the oxygen partial pressure in the fiber atmosphere under radiation irradiation (atml, r is the dose rate).
例えば、酸素分圧300torrの雰囲気でガンマ線を
線量率10kGy/hで照射したときの酸化層は5−と
なり、同じ酸素分圧で、電子線を250kGy/hで照
射したときの酸化層は1μとなる。For example, when irradiated with gamma rays at a dose rate of 10 kGy/h in an atmosphere with an oxygen partial pressure of 300 torr, the oxide layer becomes 5-, and when irradiated with electron beams at 250 kGy/h at the same oxygen partial pressure, the oxide layer becomes 1μ. Become.
以上のように、本発明は、酸素の分圧及び線量率を選択
することによって、酸化による不融化層を任意に変えら
れる方法である。また、(1)式かられかるように、酸
素の拡散係数および溶解度係数は温度によって変るので
、照射温度を変化させても、酸化層を変えることが可能
である。この方法を種々の条件で組み合せて適用するこ
とにより、繊維内の酸化不融化を任意の分布で与えるこ
とが可能になる。As described above, the present invention is a method in which the infusible layer due to oxidation can be arbitrarily changed by selecting the partial pressure and dose rate of oxygen. Further, as can be seen from equation (1), the diffusion coefficient and solubility coefficient of oxygen change depending on the temperature, so even if the irradiation temperature is changed, it is possible to change the oxidized layer. By applying this method in combination under various conditions, it becomes possible to impart oxidative infusibility within the fibers in an arbitrary distribution.
以上の方法で放射線酸化不融化した繊維を焼成すると、
得られた炭化ケイ素系セラミック繊維の特性は不融化時
の酸素濃度分布に依存することにある。これは不融化の
際に取り込まれた酸素の大部分がセラミック化した繊維
に残存するからである6表面層のみの酸化で不融化され
たものから得られるセラミック繊維は表面層に酸化物が
高濃度に分布することになり、内部とは異った原子組成
となる。セラミック繊維の表面改質などを行う必要のあ
る場合には、このような表面層のみを酸化させて得られ
るセラミック繊維は特徴のある材料となる。When the fibers made infusible by radiation oxidation by the above method are fired,
The properties of the obtained silicon carbide ceramic fiber depend on the oxygen concentration distribution during infusibility. This is because most of the oxygen taken in during infusibility remains in the ceramicized fiber.6 Ceramic fibers obtained from infusibility by oxidation of only the surface layer have a high level of oxides in the surface layer. The concentration will be distributed, and the atomic composition will be different from that inside. When it is necessary to perform surface modification of ceramic fibers, the ceramic fibers obtained by oxidizing only the surface layer become distinctive materials.
上述の発明により、不融化の工程が短縮され、かつ均一
の不融化が可能となり、最終製品の均一性が著るしく向
上することになる。また、繊維の表面層を部分的に不融
化することによって、特殊な特性を有するセラミック繊
維の製造が期待できる。また、表面層のみを不融化させ
、高温での焼成によって、内部の酸化されないkころが
、高耐熱性繊維として製造できる。The invention described above shortens the infusibility process and enables uniform infusibility, thereby significantly improving the uniformity of the final product. Moreover, by partially making the surface layer of the fiber infusible, it is expected that ceramic fibers with special properties can be produced. Further, by making only the surface layer infusible and firing at high temperature, the inner K roller, which is not oxidized, can be produced as a highly heat-resistant fiber.
〔実施例] 以下、本発明を実施例に基いて説明する。〔Example] The present invention will be explained below based on examples.
実施例1
炭化ケイ素繊維の前駆体ポリマーとして、ポリカルボシ
ランの繊維を酸素圧600torrの雰囲気下で室温に
おいてCo−60ガンマ線で、線量率10kGy/hで
30.40.50h照射した後、アルゴン気流中、12
00℃で焼成した。いずれの場合も、炭化ケイ素繊維が
得られ、その強度は3〜4 GPaであった。Example 1 Polycarbosilane fibers as a precursor polymer for silicon carbide fibers were irradiated with Co-60 gamma rays at room temperature under an oxygen pressure of 600 torr for 30,40,50 hours at a dose rate of 10 kGy/h, and then irradiated with an argon stream. Middle, 12
It was fired at 00°C. In both cases, silicon carbide fibers were obtained, the strength of which was 3-4 GPa.
なお、このガンマ線照射後のポリカルボシラン繊維の酸
素の濃度は線量に比例して増大し、400kGyのとき
に未照射試料1gに対して酸素重量0.1gであった。The oxygen concentration in the polycarbosilane fibers after this gamma ray irradiation increased in proportion to the dose, and at 400 kGy, the oxygen weight was 0.1 g per 1 g of the unirradiated sample.
実施例2
同上のポリカルボシラン繊維を酸素圧300torrの
雰囲気下で室温において、ガンマ線の線量率1OkGy
/hで30.40.50h照射した後、アルゴン気流中
で1200“Cで焼成した。いずれの場合も炭化ケイ素
繊維が得られ、その強度は、4〜5 GPa (300
kGy照射で不融化したとき最大値5 GPa)であっ
た。Example 2 The same polycarbosilane fibers as above were heated at room temperature in an atmosphere with an oxygen pressure of 300 torr at a gamma ray dose rate of 1 OkGy.
/h for 30.40.50 h and then calcined at 1200"C in an argon stream. In both cases silicon carbide fibers were obtained, the strength of which was 4-5 GPa (300
The maximum value was 5 GPa) when it was made infusible by kGy irradiation.
この条件で不融化したとき、酸化層は表面から約4,8
−と推定され、径15aの繊維の中心部は酸化されてい
ないことがわかった。When infusible under these conditions, the oxide layer is about 4.8
-, and it was found that the center of the fiber with a diameter of 15a was not oxidized.
実施例3
同上のポリカルボシラン繊維を酸素圧600torrの
雰囲気で電子線照射した。電子線の加速電圧2TIev
、線量率り、25MGy/h(350Gy/s)で10
00.2000゜3000秒照射した後、アルゴン気流
中、1200℃で焼成した。得られた炭化ケイ素繊維の
強度は3〜4GPaであった。なお、この条件で照射し
たとき、試料温度は50〜60℃に上昇していた。しか
し、全体の酸化量は実施例1に比べて、1八となってお
り、酸化層の厚みは1.2−と推定された。電子線照射
で、ポリカルボシランの温度が上昇したために酸素の拡
散係数がガンマ線照射に比べて約3倍高くなり、(1)
式から計算される値よりも、その分大きくなっている。Example 3 The same polycarbosilane fiber as above was irradiated with an electron beam in an atmosphere with an oxygen pressure of 600 torr. Acceleration voltage of electron beam 2TIev
, dose rate, 10 at 25 MGy/h (350 Gy/s)
After irradiating at 0.2000° for 3000 seconds, it was fired at 1200°C in an argon stream. The strength of the obtained silicon carbide fiber was 3 to 4 GPa. Note that when irradiated under these conditions, the sample temperature rose to 50 to 60°C. However, the total amount of oxidation was 18 compared to Example 1, and the thickness of the oxidized layer was estimated to be 1.2-. Due to electron beam irradiation, the temperature of polycarbosilane increased, so the oxygen diffusion coefficient became approximately three times higher than that with gamma ray irradiation, (1)
It is larger by that amount than the value calculated from the formula.
比較例1
実施例1と同しポリカルボシラン樹脂を1+30℃で熱
酸化し、酸化含有量が10%の不融化繊維にした後、実
施例1と同し焼成を行ったときに得られた炭化ケイ素繊
維の強度は2.5〜3.5GPaであった。Comparative Example 1 The same polycarbosilane resin as in Example 1 was thermally oxidized at 1+30°C to make an infusible fiber with an oxidation content of 10%, and then fired in the same manner as in Example 1. The strength of the silicon carbide fibers was 2.5 to 3.5 GPa.
第11Fは、放射線酸化された後の繊維の酸化断面を示
す図である。
1−前駆体繊維、 2−断面。
L−一酸化層の厚さ11F is a diagram showing an oxidized cross section of the fiber after being subjected to radiation oxidation. 1-precursor fiber, 2-cross section. L - Thickness of monoxide layer
Claims (1)
得られる前駆体繊維を純酸素又は空気中あるいはへリウ
ムガス、水素ガス等の不活性ガスに酸素を混合したガス
雰囲気で、電離性放射線照射で不融化させ、その後窒素
ガス等の不活性ガス雰囲気で焼成することを特徴とする
高強度炭化ケイ素系セラミック繊維の製造方法。 2、不融化の際の放射線はガンマ線あるいは電子線を用
い、線量率0.1〜100Gy/S、照射線量は10^
4〜10^7Gyである請求項1に記載の高強度炭化ケ
イ素系セラミック繊維の製造方法。 3、焼成温度は800〜1500℃の範囲である請求項
1又は2に記載の高強度炭化ケイ素系セラミック繊維の
製造方法。 4、前駆体繊維の放射線酸化による不融化を、繊維内部
まで均一に行うこと、及び繊維の表面層のみを選択的に
行い、かつ、その表面層の厚さをおおむね0.1μmか
ら繊維径の中心まで、任意に調整できることを特徴とす
る不融化処理の方法。 5、有機ケイ素系高分子化合物及びその繊維を放射線で
酸化させ、酸化される酸素の濃度あるいは量を0.05
〜30重量%まで任意に選択できる不融化処理の方法。[Claims] 1. Precursor fibers obtained by spinning an organosilicon-based polymer compound in pure oxygen, air, or a gas atmosphere in which oxygen is mixed with an inert gas such as helium gas or hydrogen gas, A method for producing high-strength silicon carbide ceramic fibers, which comprises making the fibers infusible by irradiating them with ionizing radiation, and then firing them in an inert gas atmosphere such as nitrogen gas. 2. Gamma rays or electron beams are used for radiation during infusibility, dose rate is 0.1 to 100 Gy/S, and irradiation dose is 10^
The method for producing high-strength silicon carbide ceramic fibers according to claim 1, wherein the strength is 4 to 10^7 Gy. 3. The method for producing high-strength silicon carbide ceramic fibers according to claim 1 or 2, wherein the firing temperature is in the range of 800 to 1500°C. 4. The infusibility of the precursor fiber by radiation oxidation must be uniformly applied to the inside of the fiber, selectively performed only on the surface layer of the fiber, and the thickness of the surface layer must be from approximately 0.1 μm to the diameter of the fiber. A method of infusibility treatment characterized by being able to be arbitrarily adjusted up to the center. 5. Oxidize the organosilicon-based polymer compound and its fibers with radiation, and reduce the concentration or amount of oxidized oxygen to 0.05.
A method of infusibility treatment that can be arbitrarily selected up to 30% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29467089A JP2843617B2 (en) | 1989-11-13 | 1989-11-13 | Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29467089A JP2843617B2 (en) | 1989-11-13 | 1989-11-13 | Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03220318A true JPH03220318A (en) | 1991-09-27 |
JP2843617B2 JP2843617B2 (en) | 1999-01-06 |
Family
ID=17810787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29467089A Expired - Lifetime JP2843617B2 (en) | 1989-11-13 | 1989-11-13 | Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2843617B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5283044A (en) * | 1990-11-26 | 1994-02-01 | Japan Atomic Energy Research Institute | Super heat-resistant silicon carbide fibers from poly-carbosilane |
JPH11139987A (en) * | 1997-09-04 | 1999-05-25 | Becton Dickinson & Co | Additive formulation and its use |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53103025A (en) * | 1977-02-16 | 1978-09-07 | Tokushiyu Muki Zairiyou Kenkiy | Method of producing siltcon carbide fiber |
JPS5482435A (en) * | 1977-12-10 | 1979-06-30 | Tokushiyu Muki Zairiyou Kenkiy | Continuous silicon carbide fiber and producing same |
JPS57106719A (en) * | 1980-12-25 | 1982-07-02 | Tokushu Muki Zairyo Kenkyusho | Production of continuous inorganic fiber |
-
1989
- 1989-11-13 JP JP29467089A patent/JP2843617B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53103025A (en) * | 1977-02-16 | 1978-09-07 | Tokushiyu Muki Zairiyou Kenkiy | Method of producing siltcon carbide fiber |
JPS5482435A (en) * | 1977-12-10 | 1979-06-30 | Tokushiyu Muki Zairiyou Kenkiy | Continuous silicon carbide fiber and producing same |
JPS57106719A (en) * | 1980-12-25 | 1982-07-02 | Tokushu Muki Zairyo Kenkyusho | Production of continuous inorganic fiber |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5283044A (en) * | 1990-11-26 | 1994-02-01 | Japan Atomic Energy Research Institute | Super heat-resistant silicon carbide fibers from poly-carbosilane |
JPH11139987A (en) * | 1997-09-04 | 1999-05-25 | Becton Dickinson & Co | Additive formulation and its use |
JP4575529B2 (en) * | 1997-09-04 | 2010-11-04 | ベクトン・ディキンソン・アンド・カンパニー | Additive formulation and method of use |
Also Published As
Publication number | Publication date |
---|---|
JP2843617B2 (en) | 1999-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Okamura et al. | Application of radiation curing in the preparation of polycarbosilane-derived SiC fibers | |
US9045347B2 (en) | Stiochiometric silicon carbide fibers from thermo-chemically cured polysilazanes | |
US8987402B2 (en) | Stoichiometric silicon carbide fibers from thermo-chemically cured polysilazanes | |
Shimoo et al. | Oxidation kinetics of low-oxygen silicon carbide fiber | |
Sugimoto et al. | Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation: II, free radical reaction | |
US5283044A (en) | Super heat-resistant silicon carbide fibers from poly-carbosilane | |
JP2663819B2 (en) | Manufacturing method of silicon carbide fiber | |
JPH03220318A (en) | Production of high-strength silicon carbide-based ceramic yarn by radiation oxidation | |
US6129887A (en) | Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor | |
US5322822A (en) | Ultra-high-strength refractory silicon carbide fiber and process for producing same | |
Shimoo et al. | Oxidation behavior of Si‐C‐O fibers (Nicalon) under oxygen partial pressures from 102 to 105 Pa at 1773 K | |
US6069102A (en) | Creep-resistant, high-strength silicon carbide fibers | |
Pivin et al. | Ion irradiation of preceramic polymer thin films | |
JPH06101117A (en) | Preparation of polycrystalline silicon carbide fiber from polyorganosiloxane | |
US5824281A (en) | Process for producing silicon carbide fibers | |
Ouyang et al. | TG-MS analysis on the degradation behavior and mechanism of amorphous SiCxOy phase in polyaluminocarbosilane-derived Si-Al-CO fiber | |
Shimoo et al. | Oxidation behavior and mechanical properties of low-oxygen SiC fibers prepared by vacuum heat-treatment of electron-beam-cured poly (carbosilane) precursor | |
JPH07189039A (en) | Production of silicon carbide fiber | |
JPS61209975A (en) | Method for strengthening silicon carbide ceramic bodies | |
Idesaki et al. | Fine silicon carbide fibers synthesized from polycarbosilane-polyvinylsilane polymer blend using electron beam curing | |
JP2938389B2 (en) | Method for producing silicon carbide fiber | |
US5296171A (en) | Method for fabricating a ceramic fiber reinforced composite material | |
JP2877424B2 (en) | Method for producing ceramic fiber and coating material by radiation oxidation infusibilization of precursor polymer | |
JPH0949125A (en) | Method for producing silicon nitride fiber | |
US5091271A (en) | Shaped silion carbide-eased ceramic article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091023 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091023 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101023 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101023 Year of fee payment: 12 |