[go: up one dir, main page]

JP2843617B2 - Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation - Google Patents

Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation

Info

Publication number
JP2843617B2
JP2843617B2 JP29467089A JP29467089A JP2843617B2 JP 2843617 B2 JP2843617 B2 JP 2843617B2 JP 29467089 A JP29467089 A JP 29467089A JP 29467089 A JP29467089 A JP 29467089A JP 2843617 B2 JP2843617 B2 JP 2843617B2
Authority
JP
Japan
Prior art keywords
oxygen
fiber
silicon carbide
radiation
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29467089A
Other languages
Japanese (ja)
Other versions
JPH03220318A (en
Inventor
忠男 瀬口
清人 岡村
隆 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GENSHIRYOKU KENKYUSHO
Original Assignee
NIPPON GENSHIRYOKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GENSHIRYOKU KENKYUSHO filed Critical NIPPON GENSHIRYOKU KENKYUSHO
Priority to JP29467089A priority Critical patent/JP2843617B2/en
Publication of JPH03220318A publication Critical patent/JPH03220318A/en
Application granted granted Critical
Publication of JP2843617B2 publication Critical patent/JP2843617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放射線酸化によって、不融化に必要な酸化の
度合を正確に制御できる方法、及び前駆体繊維の不融化
を表面から内部まで選択的に行う方法を提供することに
ある。
The present invention relates to a method for precisely controlling the degree of oxidation required for infusibilization by radiation oxidation, and a method for selectively infusibilizing precursor fibers from the surface to the inside. It is to provide a method to do.

〔従来技術〕(Prior art)

有機ケイ素系高分子化合物を前駆体として製造される
炭化ケイ素繊系繊維の製造工程は紡糸、不融化、焼成に
分けられるが、不融化の工程を空気中などの酸化雰囲気
で熱処理する熱酸化の方法で行っている。
The manufacturing process of silicon carbide fiber based on the production of organosilicon-based polymer compounds is divided into spinning, infusibilization, and calcination.The infusibilization process is performed by heat treatment in an oxidizing atmosphere such as air. Going by the way.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、この従来の方法では、酸化の度合を一定に制
御することが困難であり、また、不融化に用する時間が
長く、全体の製造工程の律速になっていた。
However, in this conventional method, it is difficult to control the degree of oxidation at a constant level, and the time required for infusibilization is long, thus limiting the overall manufacturing process.

〔課題を解決するための手段〕[Means for solving the problem]

有機ケイ素系高分子繊維を不融化するために、酸素を
反応させる方法として、放射線照射を利用するが、この
特徴は酸化を室温で行うことができ、酸化の度合を正確
に制御でき、かつ、酸化に分布を作り出すことができる
点にある。放射線照射によって、高分子繊維には温度に
ほとんどかわりなく、ラジカル、イオン等の反応活性種
が生成され、その濃度は放射線の線量に比例する。酸素
が存在する条件では、酸素はそれら反応活性種と優先的
に反応して酸化される。放射線照射時の温度が室温程度
では、熱酸化速度はきわめて小さいので、酸化反応の量
は放射線の線量にほぼ比例する。したがって、この比例
係数を求めることによって、酸化の度合は照射線量によ
って正確に制御できることになる。
In order to infusibilize the organosilicon-based polymer fiber, radiation is used as a method of reacting oxygen.This feature allows oxidation to be carried out at room temperature, the degree of oxidation can be accurately controlled, and The point is that a distribution can be created in the oxidation. Irradiation generates reactive species, such as radicals and ions, in the polymer fiber almost independently of the temperature, and its concentration is proportional to the radiation dose. In conditions where oxygen is present, oxygen reacts preferentially with these reactive species and is oxidized. When the temperature at the time of irradiation is about room temperature, the rate of thermal oxidation is extremely low, so that the amount of oxidation reaction is almost proportional to the dose of radiation. Therefore, by obtaining this proportional coefficient, the degree of oxidation can be accurately controlled by the irradiation dose.

例えば、有機ケイ素系高分子の一つであるポリカルボ
シランについて、放射線酸化による酸素の反応量は照射
線量1kGyに対して、ポリカルボシラン1g当り8×10-6mo
lであるころから、40kGyで1.0%、400kGyで10%の酸素
を反応させることができる。
For example, for polycarbosilane which is one of organosilicon-based polymers, the reaction amount of oxygen due to radiation oxidation is 8 × 10 −6 mo per 1 g of polycarbosilane for an irradiation dose of 1 kGy.
From the time of l, oxygen of 1.0% can be reacted at 40 kGy and 10% at 400 kGy.

次いで、放射線酸化の分布については、放射線照射で
生成する反応活性種は前駆体樹脂の内部に均一であるの
に対して、酸素は繊維の表面から供給されるため、その
供給速度が小さい場合には、繊維の表面層で全て酸化し
てしまい、その内部は全く酸化されないことが起る。こ
の酸化層の厚さは酸素の供給速度すなわち前駆体繊維へ
の透過速度と放射線の線量率によって決められる。放射
線酸化した後、繊維の断面を調べてみると、第1図に示
すように表面層が酸化され、その層の厚さLは次式で与
えられることがわかった。
Next, regarding the distribution of radiation oxidation, the reactive species generated by radiation irradiation are uniform inside the precursor resin, whereas oxygen is supplied from the surface of the fiber. Is completely oxidized in the surface layer of the fiber, and the inside thereof is not oxidized at all. The thickness of the oxide layer is determined by the supply rate of oxygen, that is, the transmission rate to the precursor fiber and the dose rate of radiation. When the cross section of the fiber was examined after radiation oxidation, it was found that the surface layer was oxidized as shown in FIG. 1 and the thickness L of the layer was given by the following equation.

ここで、Lは〔cm〕、Dは酸素の拡散係数〔cm2/S〕、
Sは溶解度係数〔mol/g.atm〕である。酸素の透過係数
はDとSの積である。Φは斜線酸化によって酸化層で反
応する酸素の量の〔mol/g.Gy〕である。また、Po2は放
射線照射下の繊維雰囲気の酸素分圧〔atm〕、Iは線量
率である。
Here, L is [cm], D is oxygen diffusion coefficient [cm 2 / S],
S is a solubility coefficient [mol / g.atm]. The oxygen permeability coefficient is the product of D and S. Φ is the amount [mol / g.Gy] of the amount of oxygen reacted in the oxide layer by oblique oxidation. Po 2 is the oxygen partial pressure [atm] of the fiber atmosphere under irradiation, and I is the dose rate.

例えば、酸素分圧300torrの雰囲気でガンマ線を線量
率10KGy/h(2.78Gy/s)で照射したときの酸化層は5μ
mとなり、同じ酸素分圧で、電子線を250KGy/h(69.4Gy
/s)で照射したときの酸化層は1μmとなる。
For example, when the gamma ray is irradiated at a dose rate of 10 KGy / h (2.78 Gy / s) in an atmosphere having an oxygen partial pressure of 300 torr, the oxide layer has a thickness of 5 μm.
m, and at the same oxygen partial pressure, the electron beam is 250KGy / h (69.4Gy
/ s), the thickness of the oxide layer is 1 μm.

以上のように、本発明は、酸素の分圧及び線量率を選
択することによって、酸化による不融化層を任意に変え
られる方法である。また、(1)式からわかるように、
酸素の拡散係数および溶解度係数は温度によって変るの
で、照射温度を変化させても、酸化層を変えることが可
能である。この方法を種々の条件で組み合せて適用する
ことにより、繊維内の酸化不融化を分布で与えることが
可能になる。
As described above, the present invention is a method in which the infusibilized layer due to oxidation can be arbitrarily changed by selecting the oxygen partial pressure and the dose rate. Also, as can be seen from equation (1),
Since the diffusion coefficient and solubility coefficient of oxygen change with temperature, the oxide layer can be changed even when the irradiation temperature is changed. By applying this method in combination under various conditions, it becomes possible to give oxidative infusibility in the fiber in a distribution.

以上の方法で放射線酸化不融化した繊維を焼成する
と、得られた炭化ケイ素系セラミック繊維の特性は不融
化時の酸素濃度分布に依存することにある。これは不融
化の際に取り込まれた酸素の大部分がセラミック変した
繊維に残存するからである。表面層のみの酸化で不融化
させたものから得られるセラミック繊維は表面層に酸化
物が高濃度に分布することになり、内部とは異った原子
組成となる。セラミック繊維の表面改質などを行う必要
のある場合には、このような表面層のみを酸化させて得
られるセラミック繊維は特徴のある材料となる。
When the fiber oxidized and made infusible by the above method is fired, the characteristics of the obtained silicon carbide-based ceramic fiber depend on the oxygen concentration distribution at the time of making it infusible. This is because most of the oxygen taken in during the infusibilization remains in the ceramic-modified fiber. The ceramic fiber obtained from the infusible one by oxidation of the surface layer alone has a high concentration of oxide distributed in the surface layer, and has an atomic composition different from that of the inside. When it is necessary to modify the surface of the ceramic fiber or the like, the ceramic fiber obtained by oxidizing only such a surface layer is a characteristic material.

〔発明の効果〕〔The invention's effect〕

上述の発明により、不融化の工程が短縮され、かつ均
一の不融化が可能となり、最終製品の均一性が著るしく
向上することになる。また、繊維の表面層を部分的に不
融化することによって、特殊な特性を有するセラミック
繊維の製造が期待できる。また、表面層のみを不融化さ
せ、高温での焼成によって、内部の酸化されないところ
が、高耐熱性繊維として製造できる。
According to the above-mentioned invention, the step of infusibilization is shortened and uniform infusibilization is possible, and the uniformity of the final product is significantly improved. In addition, by partially infusifying the surface layer of the fiber, the production of ceramic fibers having special characteristics can be expected. Further, only the surface layer is made infusible, and by baking at a high temperature, a portion that is not oxidized inside can be manufactured as a high heat resistant fiber.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.

実施例1 炭化ケイ素繊維の前駆体ポリマーとして、ポリカルボ
シランの繊維を酸素圧600torrの雰囲気下で室温におい
てCo−60ガンマ線で、線量率10KGy/h(2.78Gy/s)で30,
40,50h照射した後、アルゴン気流中、1200℃で焼成し
た。いずれの場合も、炭化ケイ素繊維が得られ、その強
度は3〜4GPaであった。
Example 1 As a precursor polymer of a silicon carbide fiber, a fiber of polycarbosilane was irradiated with Co-60 gamma ray at room temperature under an atmosphere of an oxygen pressure of 600 torr at a dose rate of 10 KGy / h (2.78 Gy / s).
After irradiating for 40 and 50 hours, it was baked at 1200 ° C. in an argon stream. In each case, a silicon carbide fiber was obtained and had a strength of 3 to 4 GPa.

なお、このガンマ線照射後のポリカルボシラン繊維の
酸素の濃度は線量に比例して増大し、400kGyのときに未
照射試料1gに対して酸素重量0.1gであった。
The concentration of oxygen in the polycarbosilane fiber after the gamma ray irradiation increased in proportion to the dose, and the weight of oxygen was 0.1 g with respect to 1 g of the unirradiated sample at 400 kGy.

実施例2 同上のポリカルボシラン繊維を酸素圧300torrの雰囲
気下で室温において、ガンマ線の線量率10KGy/h(2.78G
y/s)で30,40,50h照射した後、アルゴン気流中で1200℃
で焼成した。いずれの場合も炭化ケイ素繊維が得られ、
その強度は、4〜5GPa(300kGy照射で不融化したとき最
大値5GPa)であった。
Example 2 Gamma ray dose rate of 10KGy / h (2.78G) was applied to the same polycarbosilane fiber at room temperature under an atmosphere of oxygen pressure of 300 torr.
y / s) for 30,40,50h, then 1200 ℃ in argon stream
Was fired. In each case, a silicon carbide fiber is obtained,
Its intensity was 4 to 5 GPa (maximum value of 5 GPa when infused by 300 kGy irradiation).

この条件で不融化したとき、酸化層は表面から約4.8
μmと推定され、約15μmの繊維の中心部は酸化されて
いないことがわかった。
When infusibilized under these conditions, the oxide layer is about 4.8 from the surface.
μm, and it was found that the center of the fiber of about 15 μm was not oxidized.

実施例3 同上のポリカルボシラン繊維を酸素圧600torrの雰囲
気で電子線照射した。電子線の加速電圧2MeV、線量率1.
25MGy/h(350Gy/s)で1000,2000,3000秒照射した後、ア
ルゴン気流中、1200℃で焼成した。得られた炭化ケイ素
繊維の強度は3〜4GPaであった。なお、この条件で照射
したとき、試料温度は50〜60℃に上昇していた。しか
し、全体の酸化量は実施例1に比べて、1/3となってお
り、酸化層の厚みは1.2μmと推定された。電子線照射
で、ポリカルボシランの温度が上昇したために酸素の拡
散係数がガンマ線照射に比べて約3倍高くなり、(1)
式から計算される値よりも、その分大きくなっている。
Example 3 The same polycarbosilane fiber was irradiated with an electron beam in an atmosphere at an oxygen pressure of 600 torr. Electron beam acceleration voltage 2MeV, dose rate 1.
After irradiation at 25 MGy / h (350 Gy / s) for 1,000, 2,000 and 3,000 seconds, firing was performed at 1200 ° C. in an argon stream. The strength of the obtained silicon carbide fiber was 3 to 4 GPa. In addition, when irradiation was performed under these conditions, the sample temperature had risen to 50 to 60 ° C. However, the total amount of oxidation was 1/3 of that in Example 1, and the thickness of the oxide layer was estimated to be 1.2 μm. (1) The diffusion coefficient of oxygen is about three times higher than that of gamma-ray irradiation because the temperature of polycarbosilane is increased by electron beam irradiation.
It is larger than the value calculated from the formula.

比較例1 実施例1と同じポリカルボシラン樹脂を180℃で熱酸
化し、酸化含有量が10%の不融化繊維にした後、実施例
1と同じ焼成を行ったときに得られた炭化ケイ素繊維の
強度は2.5〜3.5GPaであった。
Comparative Example 1 The same polycarbosilane resin as in Example 1 was thermally oxidized at 180 ° C. to obtain an infusible fiber having an oxidation content of 10%, and then silicon carbide obtained when the same firing as in Example 1 was performed. The fiber strength was 2.5-3.5 GPa.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、放射線酸化された後の繊維の酸化断面を示す
図である。 1……前駆体繊維,2……断面, L……酸化層の厚さ
FIG. 1 is a diagram showing an oxidized cross section of a fiber after radiation oxidation. 1 ... precursor fiber, 2 ... cross section, L ... thickness of oxide layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−106719(JP,A) 特開 昭54−82435(JP,A) 特開 昭53−103025(JP,A) (58)調査した分野(Int.Cl.6,DB名) D01F 9/10──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-106719 (JP, A) JP-A-54-82435 (JP, A) JP-A-53-103025 (JP, A) (58) Field (Int.Cl. 6 , DB name) D01F 9/10

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機ケイ素系高分子化合物を紡糸すること
によって得られる前駆体繊維に、純酸素、空気、又はヘ
ルウムガス若しくは水素ガス等の不活性ガスに酸素を混
合したガス雰囲気中で、電離性放射線を照射して酸化に
よる不融化層を生成させ、その後窒素ガス等の不活性ガ
ス雰囲気中で焼成して高耐熱性炭化ケイ素系セラミック
繊維を製造する方法において、 前記前駆体繊維に電離性放射線を照射する際に、下記の
式に基づいて前記雰囲気中の酸素分圧及び電離性放射線
の線量率を選択することにより、前駆体繊維の酸化不融
化層の厚さを適宜変更して内部に酸化されない部分を存
在させ、焼成後のセラミック繊維の内部に酸素濃度に基
づく異なった原子組成を形成させることを特徴とする高
耐熱性炭化ケイ素系セラミック繊維を得る方法。 上記式中において、Lは酸化不融化層の厚さ(cm)、D
は酸素の拡散係数(cm2/s)、Sは酸素の溶解度係数(m
ol/g・atm)、D・Sは酸素の透過係数、Φは放射線酸
化によって酸化不融化層で反応する酸素の量(mol/g・G
y)、PO2は放射線照射下の繊維雰囲気の酸素分圧(at
m)、Iは線量率(Gy/s)を示す。
A precursor fiber obtained by spinning an organosilicon polymer compound is ionized in a gas atmosphere in which oxygen is mixed with pure oxygen, air, or an inert gas such as helium gas or hydrogen gas. Irradiating a radiation to form an infusibilized layer by oxidation, and then sintering the same in an inert gas atmosphere such as nitrogen gas to produce a high heat-resistant silicon carbide ceramic fiber; When irradiating, by selecting the oxygen partial pressure in the atmosphere and the dose rate of ionizing radiation based on the following formula, the thickness of the oxidized and infusible layer of the precursor fiber is appropriately changed and internally. A highly heat-resistant silicon carbide-based ceramic fiber characterized by having a non-oxidized portion and forming a different atomic composition based on the oxygen concentration inside the fired ceramic fiber. Method. In the above formula, L is the thickness (cm) of the oxidized and infusible layer, D
Is the oxygen diffusion coefficient (cm 2 / s), and S is the oxygen solubility coefficient (m
ol / g · atm), DS is the permeability coefficient of oxygen, Φ is the amount of oxygen (mol / g · G) reacting in the oxidized and infusible layer by radiation oxidation.
y), P O2 is the oxygen partial pressure of the fiber atmosphere under irradiation (at
m) and I indicate the dose rate (Gy / s).
【請求項2】不融化の際の放射線はガンマ線又は電子線
を用い、線量率0.1−100Gy/s、照射線量は104−107Gyで
ある請求項1に記載の高耐熱性炭化ケイ素系セラミック
繊維を製造する方法。
2. The heat-resistant silicon carbide-based material according to claim 1, wherein the radiation for infusibilization is gamma ray or electron beam, and the dose rate is 0.1-100 Gy / s and the irradiation dose is 10 4 -10 7 Gy. A method for producing ceramic fibers.
【請求項3】焼成温度は800−1500℃の範囲である請求
項1又は請求項2の記載の高耐熱性炭化ケイ素系セラミ
ック繊維を製造する方法。
3. The method according to claim 1, wherein the firing temperature is in the range of 800-1500 ° C.
【請求項4】前駆体繊維の放射線酸化による不融化を、
繊維内部において選択的に行い、且つその酸化層の厚さ
を表面層から0.1μmから繊維径の中心まで、任意に調
整できる請求項1乃至請求項3のいずれかに記載の高耐
熱性炭化ケイ素セラミック繊維を製造する方法。
4. The method of making a precursor fiber infusible by radiation oxidation,
The highly heat-resistant silicon carbide according to any one of claims 1 to 3, wherein the heat treatment is selectively performed inside the fiber, and the thickness of the oxide layer can be arbitrarily adjusted from 0.1 µm to the center of the fiber diameter from the surface layer. A method for producing ceramic fibers.
【請求項5】前駆体繊維を放射線で酸化された際の酸素
の濃度又は量を0.05−30重量%まで任意に選択できる請
求項1乃至請求項4のいずれかに記載の高耐熱性炭化ケ
イ素系セラミック繊維を製造する方法。
5. The high heat-resistant silicon carbide according to claim 1, wherein the concentration or amount of oxygen when the precursor fiber is oxidized by radiation can be arbitrarily selected from 0.05 to 30% by weight. A method for producing a ceramic fiber.
JP29467089A 1989-11-13 1989-11-13 Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation Expired - Lifetime JP2843617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29467089A JP2843617B2 (en) 1989-11-13 1989-11-13 Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29467089A JP2843617B2 (en) 1989-11-13 1989-11-13 Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation

Publications (2)

Publication Number Publication Date
JPH03220318A JPH03220318A (en) 1991-09-27
JP2843617B2 true JP2843617B2 (en) 1999-01-06

Family

ID=17810787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29467089A Expired - Lifetime JP2843617B2 (en) 1989-11-13 1989-11-13 Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation

Country Status (1)

Country Link
JP (1) JP2843617B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525286B2 (en) * 1990-11-26 1996-08-14 日本原子力研究所 Method for producing super heat resistant silicon carbide fiber
CA2242693C (en) * 1997-09-04 2002-09-17 Becton, Dickinson And Company Additive formulation and method of use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103025A (en) * 1977-02-16 1978-09-07 Tokushiyu Muki Zairiyou Kenkiy Method of producing siltcon carbide fiber
JPS5822570B2 (en) * 1977-12-10 1983-05-10 財団法人特殊無機材料研究所 Silicon carbide continuous fiber and its manufacturing method
JPS5944403B2 (en) * 1980-12-25 1984-10-29 財団法人特殊無機材料研究所 Manufacturing method of continuous inorganic fiber

Also Published As

Publication number Publication date
JPH03220318A (en) 1991-09-27

Similar Documents

Publication Publication Date Title
Okamura et al. Application of radiation curing in the preparation of polycarbosilane-derived SiC fibers
US9045347B2 (en) Stiochiometric silicon carbide fibers from thermo-chemically cured polysilazanes
CA1095672A (en) Silicon carbide fibers having a high strength and a method for producing said fibers
EP0438117B1 (en) Preparation of substantially crystalline silicon carbide fibers from polycarbosilane
US4122139A (en) Method for producing silicon carbide sintered moldings consisting mainly of SiC
US8987402B2 (en) Stoichiometric silicon carbide fibers from thermo-chemically cured polysilazanes
JP2002097074A (en) Method for producing silicon carbide composite material by irradiation of silicon-based polymer with radiation
Shimoo et al. Oxidation kinetics of low-oxygen silicon carbide fiber
Sugimoto et al. Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation: II, free radical reaction
US5283044A (en) Super heat-resistant silicon carbide fibers from poly-carbosilane
JP2843617B2 (en) Method for producing high-strength silicon carbide ceramic fiber by radiation oxidation
US5082872A (en) Infusible preceramic polymers via ultraviolet treatment in the presence of a reactive gas
Shimoo et al. Carbon elimination by heat-treatment in hydrogen and its effect on thermal stability of polycarbosilane-derived silicon carbide fibers
EP0435065B1 (en) Preparation of substantially polycrystalline silicon carbide fibers from polyorganosiloxanes
US6187705B1 (en) Creep-resistant, high-strength silicon carbide fibers
JP2963021B2 (en) Method for producing silicon carbide fiber
JP2877424B2 (en) Method for producing ceramic fiber and coating material by radiation oxidation infusibilization of precursor polymer
JP2938389B2 (en) Method for producing silicon carbide fiber
Shimoo et al. Oxidation behavior and mechanical properties of low-oxygen SiC fibers prepared by vacuum heat-treatment of electron-beam-cured poly (carbosilane) precursor
US5824281A (en) Process for producing silicon carbide fibers
Kita et al. Synthesis and properties of ceramic fibers from polycarbosilane/polymethylphenylsiloxane polymer blends
US5296171A (en) Method for fabricating a ceramic fiber reinforced composite material
US5091271A (en) Shaped silion carbide-eased ceramic article
JPH0299615A (en) Highly graphitized carbon fiber and its production
US4897229A (en) Process for producing a shaped silicon carbide-based ceramic article

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091023

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091023

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101023

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101023