JPH0320642A - Apparatus and method for inspecting specimen - Google Patents
Apparatus and method for inspecting specimenInfo
- Publication number
- JPH0320642A JPH0320642A JP1156185A JP15618589A JPH0320642A JP H0320642 A JPH0320642 A JP H0320642A JP 1156185 A JP1156185 A JP 1156185A JP 15618589 A JP15618589 A JP 15618589A JP H0320642 A JPH0320642 A JP H0320642A
- Authority
- JP
- Japan
- Prior art keywords
- point
- lens
- specimen
- photodetector
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は例えばフローサイトメータ等の検体検査装置及
び方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sample testing device and method, such as a flow cytometer.
[従来の技術]
従来の検体検査装置、例えばフローサイトメータにおい
ては、一例として、採取した全血液から赤血球を取り除
いたものや、ラテックス試薬に血清を加えて抗原抗体反
応によりラテックスを凝集させもの等のサンプルを用意
し、このサンプル中の血液細胞やラテックス粒子等の微
粒子をシースフロ一方式によって1個ずつ分離して高速
で流し、流れる個々の微粒子に対して光を照射し、これ
により発生する散乱光や蛍光等の光学情報を測定する。[Prior Art] Conventional sample testing devices, such as flow cytometers, include, for example, those that remove red blood cells from collected whole blood, and those that add serum to a latex reagent and agglutinate the latex through an antigen-antibody reaction. A sample of blood cells, latex particles, and other particles in this sample are separated one by one using a sheath flow system and flowed at high speed, and each flowing particle is irradiated with light to detect the scattering that occurs. Measures optical information such as light and fluorescence.
多数の粒子についてそれぞれ得られる測定値を統計的に
処理することによりサンプルの検査を行うことができる
。A sample can be tested by statistically processing the measurements obtained for a large number of particles.
[発明が解決しようとしている課題コ
しかしながら従来のフローサイトメータでは、散乱光や
蛍光を検出するのに、それぞれの項目について専用の光
検出器を用いている。光検出器としては一般に光電子像
倍管が用いられるが、高価であり、さらC個々の感度に
バラツキがあるため、感度のバラツキの補正のため相互
間のイ3号レベルの調整が必要であった。[Problems to be Solved by the Invention] However, conventional flow cytometers use dedicated photodetectors for each item to detect scattered light and fluorescence. A photoelectron image multiplier is generally used as a photodetector, but it is expensive and also has variations in sensitivity of each C, so it is necessary to adjust the A3 level between them to compensate for variations in sensitivity. Ta.
[課題を解決するための手段及び作用]上記課題を解決
する本発明は、サンプル中の個々の検体を分離して1個
ずつ光照射して、それにより得られる光学情報から検体
を検査する装置において、各検体からの異なる光学情報
を兼用の光学センサにて受光することにより、光学セン
サの数を減らすことができる。[Means and effects for solving the problems] The present invention to solve the above problems is an apparatus for separating individual specimens in a sample, irradiating each specimen with light one by one, and inspecting the specimens from the optical information obtained thereby. In this case, the number of optical sensors can be reduced by receiving different optical information from each sample using a dual-purpose optical sensor.
[実施例] 以下、本発明の実施例を図面を用いて詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図は本発明の実施例の構成図である。検体を光照射
する光照射手段として、レーザ光源1から発射されたレ
ーザ光は、光路中に設けられた光偏向器2に入射する。FIG. 1 is a block diagram of an embodiment of the present invention. Laser light emitted from a laser light source 1 serving as a light irradiation means for irradiating a specimen with light is incident on a light deflector 2 provided in an optical path.
光偏向器2としては音響光学偏向素子(AOD)を用い
る。音響光学偏向素子は制御周波数に応じて入射光の偏
光度を変化させることができる。光偏向器2で偏向され
たレーザ光は、フローセル7内の流通部8に照射される
。なお、光偏向器2から出射されるO次光はストツバ2
5にてカットされる。駆動回路3は光偏向器2の偏光度
を制御する制御周波数を発生させてレーザ光の偏光度を
変化させる。本実施例においては、周波数を4段階の所
定値に変化させることにより、流通部の流通方向に沿っ
て4通りの位置にレーザ光を照射することができる。As the optical deflector 2, an acousto-optic deflector (AOD) is used. The acousto-optic deflection element can change the degree of polarization of incident light according to the control frequency. The laser beam deflected by the optical deflector 2 is irradiated onto the flow section 8 in the flow cell 7 . Note that the O-order light emitted from the optical deflector 2 is
It is cut at 5. The drive circuit 3 generates a control frequency that controls the degree of polarization of the optical deflector 2, thereby changing the degree of polarization of the laser beam. In this embodiment, by changing the frequency to four predetermined values, it is possible to irradiate laser light to four different positions along the flow direction of the flow section.
フローセル7内の流通部8には、サンプル中の微小粒子
、例えば血球細胞やラテックス粒子等の検体が、この分
野では良く知られたシースフロー方式.によって一個あ
るいは一塊ずつ分離され、定の通過速度で流通部を順次
流される。検体の流れ方向は図中の上方から下方方向で
ある。Microparticles in the sample, such as blood cells and latex particles, are passed through the flow section 8 in the flow cell 7 using a sheath flow method well known in this field. The particles are separated one by one or one by one, and are sequentially passed through the flow section at a fixed passing speed. The flow direction of the specimen is from the top to the bottom in the figure.
図中のA,B,C,D地点を順番に流れ去る個々の検体
を各位置において光照射して、それぞれ前方散乱光、側
方散乱光、赤色蛍光、緑色蛍光を測光する。光軸上、A
地点の後方には、ストツバ24、レンズ9が配置され、
レンズ9を挟んでA地点と共役位置に光ファイバ10の
端部が置かれている。又、B地点の側方方向には、レン
ズ11、照射レーザ光の光波長を選択的に透過するフィ
ルタ12、ミラー13が順に配されている。Individual specimens flowing sequentially through points A, B, C, and D in the figure are irradiated with light at each position, and forward scattered light, side scattered light, red fluorescence, and green fluorescence are measured, respectively. On the optical axis, A
Behind the point, a stopper 24 and a lens 9 are arranged,
The end of the optical fiber 10 is placed at a position conjugate to point A with the lens 9 in between. Further, in the lateral direction of point B, a lens 11, a filter 12 that selectively transmits the wavelength of the irradiated laser beam, and a mirror 13 are arranged in this order.
C地点の側方方向には、レンズ14、赤色蛍光波長を選
択的に透過するフィルタ15、ハーフミラー16が配さ
れ、同様にD地点の側方には、レンズ17、緑色蛍光波
長を透過するフィルタ18、ハーフミラー19が配置さ
れる。A lens 14, a filter 15 that selectively transmits red fluorescent wavelengths, and a half mirror 16 are disposed on the side of point C, and a lens 17, that transmits green fluorescent wavelengths, is similarly placed on the side of point D. A filter 18 and a half mirror 19 are arranged.
次に、検体の通過に同期して、レーザ光を偏向し順次照
射位を切換えて測定する制御方法について説明する。Next, a control method for measuring by deflecting the laser beam and sequentially switching the irradiation position in synchronization with the passage of the specimen will be described.
まず、光偏向器2を制御して図中Aの場所にレーザ光を
固定照射する.検体がA地点にさしかかると、散乱光及
び蛍光が発生するが、゛A地点では前方散乱光を測定す
る。A地点から発生する散乱先の内、レンズ9で集光さ
れた前方散乱光は、光ファイバ10の一端に入射する。First, the optical deflector 2 is controlled to irradiate a fixed laser beam onto the location A in the figure. When the specimen approaches point A, scattered light and fluorescence are generated, and at point A, forward scattered light is measured. Among the scattering destinations generated from the point A, forward scattered light collected by the lens 9 enters one end of the optical fiber 10.
なお、直接レーザ光をカットするために光軸上にストツ
パ24を設け、強力なレーザ光が光ファイバに入射する
のを防いでいる。光ファイバ10に入射して他端から出
射した光はレンズ20,ハーフミラー21 レンズ22
を経て光検出器6にて強度検出される。Note that a stopper 24 is provided on the optical axis to directly cut the laser beam, thereby preventing the powerful laser beam from entering the optical fiber. The light that entered the optical fiber 10 and exited from the other end passes through a lens 20, a half mirror 21, and a lens 22.
After that, the intensity is detected by a photodetector 6.
信号処理回路5では、光検出器6の出力パルス強度が0
、又は所定閾値以下になったら、A.地点を粒子が通過
し終ったと判断して制御回路4に信号を送り、レーザ光
の照射位置がB地点となるよう、光偏向器2を駆動回路
3により駆動する。光偏向器2の制御周波数を瞬時に切
換えることにより、照射位置も瞬時に切換わり、検体の
通過に先回りしてB地点にレーザ光を照射することがで
きる。In the signal processing circuit 5, the output pulse intensity of the photodetector 6 is 0.
, or below a predetermined threshold, A. When it is determined that the particles have finished passing through the point, a signal is sent to the control circuit 4, and the optical deflector 2 is driven by the drive circuit 3 so that the laser beam irradiation position becomes point B. By instantaneously switching the control frequency of the optical deflector 2, the irradiation position can also be instantaneously switched, and the laser beam can be irradiated to point B in advance of the passage of the specimen.
B地点社おいては側方散乱光を測定する。B地点から発
散する散乱光の内、レーザ光軸に対して側方方向に散乱
する側方散乱光はレンズ11に人射し、フィルタ12で
レーザ光の波長のみを選択して、ミラーl3、レンズ2
2を介して光検出器6で強度検出する。At point B, side scattered light is measured. Of the scattered light diverging from point B, the side scattered light scattered in the lateral direction with respect to the laser optical axis is incident on the lens 11, and only the wavelength of the laser light is selected by the filter 12, and the side scattered light is transmitted to the mirror l3, lens 2
2, the intensity is detected by a photodetector 6.
先と同様に信号処理回路5にて光検出器6のパルス出力
がO、又は所定閾値以下になったら、レーザ照射地点を
8地点からC地点に切換える。As before, when the pulse output of the photodetector 6 becomes O or below a predetermined threshold in the signal processing circuit 5, the laser irradiation point is switched from point 8 to point C.
以下、同様にC地点、D地点での測定を行う。Thereafter, measurements at point C and point D are performed in the same manner.
C地点では赤色蛍光、D地点では緑色蛍光の測定を行う
。D地点での測定が終了したら、レーザ照射位置をA地
点に戻して固定し、次の粒子の通過を待つ。Red fluorescence is measured at point C, and green fluorescence is measured at point D. After the measurement at point D is completed, the laser irradiation position is returned to point A and fixed, waiting for the next particle to pass.
流通部を次々と通過する多数の検体につき、同様に測定
を繰返し、得られた測定データを記憶演算回路23にて
統計処理等を施して解析する.具体的な解析方法につい
ては、この分野で様々な方怯が開発され知られているた
め、ここでは省略する。Measurements are repeated in the same manner for a large number of samples passing through the circulation section one after another, and the obtained measurement data is analyzed by performing statistical processing etc. in the storage/arithmetic circuit 23. A detailed analysis method is omitted here because various methods have been developed and are known in this field.
なお、本発明は上記実施例には限定されるものでは無く
、必ずしも全ての光の検出を単一の光検出器で行なわな
くても、複数の種類の光の検出を兼用して検出するよう
にすれば良い。一般に前方散乱光の強度は大きく、その
他の光、特に蛍光の強度は微弱である。よって単一の光
検出器で前方散乱光と蛍光の両方を測光するにはダイナ
くツクレンジの広い光検出器が必要となる。そこで、例
えば前方散乱光や側方散乱光の検出には別の光検出器を
用い、赤色・緑色蛍光の検出には感度の高い単一の光検
出器で時間をずらして順次測定するようにすれば、一般
的なフオトマル等の光検出器が使用できる。この場合、
前方散乱光と蛍光は同じ地点で同時に検出することがで
きるため、1粒子当たりの測定回数が少なくなり、総測
定時間を短縮化することができる効果もある。Note that the present invention is not limited to the above-mentioned embodiments, and it is not necessary to use a single photodetector to detect all the light, but to detect multiple types of light. You should do it. Generally, the intensity of forward scattered light is high, and the intensity of other light, especially fluorescence, is weak. Therefore, in order to measure both forward scattered light and fluorescence with a single photodetector, a photodetector with a wide dynamic range is required. Therefore, for example, a separate photodetector is used to detect forward scattered light and side scattered light, and a single highly sensitive photodetector is used to detect red and green fluorescence, and measurements are performed sequentially at different times. Then, a photodetector such as a general photodetector can be used. in this case,
Since forward scattered light and fluorescence can be detected simultaneously at the same point, the number of measurements per particle is reduced, which also has the effect of shortening the total measurement time.
[発明の効果]
以上本発明によれば、従来、検出する光の種類毎に専用
の光検出器が必要であったが、複数の種類の光を兼用の
光検出器で検出することできる。[Effects of the Invention] According to the present invention, a dedicated photodetector was conventionally required for each type of light to be detected, but multiple types of light can be detected with a dual-purpose photodetector.
その結果、光検出器の数が少なくて済み、装置のコンパ
クト化、低コストが可能となる。更に光検出器の個々の
感度のバラツキによる誤差を生じることが無い。As a result, the number of photodetectors can be reduced, and the device can be made more compact and lower in cost. Furthermore, errors due to variations in the sensitivity of individual photodetectors do not occur.
第1図は本発明の実施例の構成図、
であり、図中の主な符号は、
1・・・・レーザ光源、2・・・・光偏向器、3・・・
・駆動回路、4・・・・制御回路、5・・・・信号処理
回路、6・・・・光検出器、7・・・・フローセル、8
・・・・流通部、10・・・・光ファイバ、
12、15、15・・・・光波長選択フィルタ、24、
25・・・・ストツバ、FIG. 1 is a block diagram of an embodiment of the present invention, and the main symbols in the figure are: 1...laser light source, 2...optical deflector, 3...
・Drive circuit, 4...Control circuit, 5...Signal processing circuit, 6...Photodetector, 7...Flow cell, 8
... Distribution section, 10 ... Optical fiber, 12, 15, 15 ... Optical wavelength selection filter, 24,
25...Stotsuba,
Claims (3)
学センサにて、各検体の異なる光学情報を順次測定する
手段と、 を有することを特徴とする検体検査方法。(1) A means for separating individual analytes in a sample, a means for irradiating each separated analyte with light one by one, and a means for sequentially measuring different optical information of each analyte using a dual-purpose optical sensor. A sample testing method characterized by having:
過方向に沿って照射光を偏向させる光偏向手段と、 該光偏向手段の偏向角度を制御する制御手段と、 前記各被検部からの異なる光学情報を検出する兼用の検
出手段と、 を有することを特徴とする検体検査装置。(2) A light deflection means for deflecting the irradiated light along the passing direction of the specimen in the test portion through which each specimen passes; a control means for controlling the deflection angle of the light deflection means; and each of the test portions. A specimen testing device comprising: a dual-purpose detection means for detecting different optical information from the specimen.
射する行程と、 兼用の光学センサにて、各検体の異なる光学情報を非同
時に測定する行程と、 を有することを特徴とする検体検査方法。(3) It is characterized by having the following steps: separating the individual specimens in the sample and irradiating them with light one by one; and measuring different optical information of each specimen non-simultaneously using a dual-purpose optical sensor. Specimen testing method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1156185A JPH0320642A (en) | 1989-06-19 | 1989-06-19 | Apparatus and method for inspecting specimen |
US08/008,993 US5760900A (en) | 1989-03-18 | 1993-01-26 | Method and apparatus for optically measuring specimen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1156185A JPH0320642A (en) | 1989-06-19 | 1989-06-19 | Apparatus and method for inspecting specimen |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0320642A true JPH0320642A (en) | 1991-01-29 |
Family
ID=15622223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1156185A Pending JPH0320642A (en) | 1989-03-18 | 1989-06-19 | Apparatus and method for inspecting specimen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0320642A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008185585A (en) * | 2007-01-26 | 2008-08-14 | Palo Alto Research Center Inc | Particle characterization method and apparatus |
JP2019501365A (en) * | 2015-10-01 | 2019-01-17 | ナノテンパー・テクノロジーズ・ゲーエムベーハー | System and method for optically measuring particle stability and aggregation |
-
1989
- 1989-06-19 JP JP1156185A patent/JPH0320642A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008185585A (en) * | 2007-01-26 | 2008-08-14 | Palo Alto Research Center Inc | Particle characterization method and apparatus |
US9638637B2 (en) | 2007-01-26 | 2017-05-02 | Palo Alto Research Center Incorporated | Method and system implementing spatially modulated excitation or emission for particle characterization with enhanced sensitivity |
JP2019501365A (en) * | 2015-10-01 | 2019-01-17 | ナノテンパー・テクノロジーズ・ゲーエムベーハー | System and method for optically measuring particle stability and aggregation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4676640A (en) | Fluctuation analysis for enhanced particle detection | |
US3740143A (en) | Automatic apparatus for determining the percentage population of particulates in a medium | |
EP0160568B1 (en) | Methods and apparatus for analysis of particles and cells | |
JPH04337446A (en) | Method and device for measuring fine grain and constant quantity method | |
JPH0447265B2 (en) | ||
JPH06186155A (en) | Particle analyzer | |
JPH06186156A (en) | Particle analyzer | |
JP2749928B2 (en) | Sample measuring method and sample measuring device | |
JPH0465654A (en) | cell analyzer | |
JPS6151569A (en) | Cell identifying device | |
JPH0320642A (en) | Apparatus and method for inspecting specimen | |
JPH03154850A (en) | Specimen inspecting device | |
JP2675895B2 (en) | Sample processing method, sample measuring method, and sample measuring device | |
JPH0792076A (en) | Grain analyzing device | |
JP2720069B2 (en) | Flow cell analyzer | |
JPH02245638A (en) | Specimen testing apparatus | |
JP2749912B2 (en) | Sample measuring device and sample measuring method | |
JPH0486546A (en) | Specimen inspection device | |
JPS6349178B2 (en) | ||
JPH03150444A (en) | Sample inspecting device | |
JPH02138851A (en) | Particle measuring apparatus | |
JPH03221838A (en) | Method and device for measuring body to be tested | |
JPH03146848A (en) | Inspection sample measuring instrument with alignment mechanism | |
JPH0718879B2 (en) | Specimen test method | |
JPH0353147A (en) | Specimen measuring instrument |