JPH03154850A - Specimen inspecting device - Google Patents
Specimen inspecting deviceInfo
- Publication number
- JPH03154850A JPH03154850A JP1294222A JP29422289A JPH03154850A JP H03154850 A JPH03154850 A JP H03154850A JP 1294222 A JP1294222 A JP 1294222A JP 29422289 A JP29422289 A JP 29422289A JP H03154850 A JPH03154850 A JP H03154850A
- Authority
- JP
- Japan
- Prior art keywords
- laser beam
- light
- wavelength
- beams
- inspected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 claims abstract description 35
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- 239000012530 fluid Substances 0.000 claims abstract description 7
- 238000012360 testing method Methods 0.000 claims description 28
- 238000005375 photometry Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 14
- 239000007788 liquid Substances 0.000 abstract description 7
- 210000004027 cell Anatomy 0.000 description 14
- 239000000523 sample Substances 0.000 description 9
- 239000007850 fluorescent dye Substances 0.000 description 7
- 239000000427 antigen Substances 0.000 description 6
- 102000036639 antigens Human genes 0.000 description 6
- 108091007433 antigens Proteins 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012491 analyte Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、例えばフローサイトメータのように、フロー
セル内を通過する被検粒子にレーザービーム等を照射し
、被検粒子からの光学信号を検出して被検粒子の性質、
構造等を解析する検体検査装置に関するものである。Detailed Description of the Invention [Industrial Field of Application] The present invention, for example in a flow cytometer, irradiates test particles passing through a flow cell with a laser beam or the like and collects optical signals from the test particles. The nature of the particles to be detected,
The present invention relates to a sample testing device that analyzes the structure and the like.
[従来の技術]
フローサイトメータとは、高速で流れる細胞浮遊溶液、
即ちサンプル液に光ビームを照射し、その散乱光や蛍光
による光電信号を検出し、細胞の性質・構造を解明する
装置であり、細胞化学、免疫学、血液学、腫瘍学、遺伝
学等の分野で使用されている。微小な細胞による散乱光
や蛍光を精度良く得るためには大出力でノイズが少なく
、かつ集光性の良い光ビームが必要であり、一般にレー
ザービームが用いられる。[Conventional technology] A flow cytometer is a cell suspension solution that flows at high speed.
In other words, it is a device that illuminates a sample liquid with a light beam, detects the scattered light and photoelectric signals generated by fluorescence, and elucidates the properties and structure of cells. used in the field. In order to accurately obtain scattered light and fluorescence from microscopic cells, a light beam with high output, low noise, and good focusing properties is required, and a laser beam is generally used.
このフローサイトメータ等に用いられる従来の粒子解析
装置では、フローセルの中央部の例えば200tcmX
200umの微小な四角形断面を有する流通部内を、シ
ース液に包まれて通過する血球細胞などの被検粒子にレ
ーザービーム等の照射光を照射し、その結果として生ず
る前方及び側方散乱光により、被検粒子の形状・大きさ
・屈折率・細胞の径・体積・核内構造の複雑さ等の粒子
的性質を得ることが可能である。また、蛍光剤により染
色され得る被検粒子に対しては、照射光どほぼ直角方向
の側方散乱光から被検粒子の蛍光を検出することにより
、被検粒子を解析するための重要な情報を求めることが
できる。例えば、染色によってDNA量、RNA量を求
めることが可能であり、また蛍光色素を抗原又は抗体と
反応させれば、抗原抗体反応を起こさせた被検粒子の蛍
光を測定することで抗原又は抗体の定量的な測定が可能
となる。なお、これらの場合に照射する光ビームは、蛍
光色素を励起する波長を用いることが必要である。In a conventional particle analysis device used in this flow cytometer, etc., a particle size of 200 tcm
Irradiation light such as a laser beam is irradiated on test particles such as blood cells wrapped in sheath fluid and passing through a flow section with a small rectangular cross section of 200 um, and the resulting forward and side scattered light is used to It is possible to obtain particle properties such as the shape, size, refractive index, cell diameter, volume, and complexity of the nuclear structure of the sample particles. In addition, for test particles that can be stained with fluorescent agents, important information for analyzing the test particles can be obtained by detecting the fluorescence of the test particles from side scattered light in a direction almost perpendicular to the irradiation light. can be found. For example, it is possible to determine the amount of DNA and RNA by staining, and if a fluorescent dye is reacted with an antigen or antibody, the amount of antigen or antibody can be determined by measuring the fluorescence of the test particle that has caused an antigen-antibody reaction. quantitative measurement becomes possible. Note that the light beam irradiated in these cases needs to have a wavelength that excites the fluorescent dye.
【発明が解決しようとする課題]
しかしながら上述の従来例においては、流体中の被検粒
子は他種類の波長の光ビームでな(単一波長の光ビーム
のみで照射されるので、散乱光は単一波長の光ビームに
よるものに限定されて、新しい粒子解析データを得るこ
とは困難であり、精度を向上させることができない、ま
た、蛍光測定に使用できる蛍光色素も制限されるーため
、1回の測定で効率良く精度の高い解析を行うことは困
難である。[Problems to be Solved by the Invention] However, in the conventional example described above, the particles to be detected in the fluid are not irradiated with light beams of other wavelengths (they are irradiated with only a light beam of a single wavelength, so the scattered light is Limited to single-wavelength light beams, it is difficult to obtain new particle analysis data and cannot improve accuracy, and the fluorescent dyes that can be used for fluorescence measurements are also limited. It is difficult to perform efficient and accurate analysis of measurements.
本発明の目的は、上述の欠点を解消し、1回の測定で得
られる測定パラメータを増加すると共に、光学系や流体
系のアライメント調整が容易な検体検査装置を提供する
ことにある。SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks, increase the number of measurement parameters that can be obtained in one measurement, and provide an analyte testing device that allows easy alignment adjustment of the optical system and fluid system.
[課題を解決するための手段]
上記の目的を達成するために、本発明に係る検体検査装
置においては、流体中の被検粒子に光ビームを照射し、
測光により得られる光学信号から検体粒子の解析を行う
検体検査装置において、被検粒子が1個ずつ通過するフ
ローセル部と、それぞれ発生する光ビームの波長が異な
る複数個のレーザー光源と、前記複数個の光ビームを同
時に入射させ、前記フローセル部内の被検部を光走査す
るための単一の音響光学素子とを有することを、特徴と
するである。[Means for Solving the Problems] In order to achieve the above object, the specimen testing device according to the present invention irradiates test particles in a fluid with a light beam,
A sample testing device that analyzes sample particles from optical signals obtained by photometry includes: a flow cell section through which sample particles pass one by one; a plurality of laser light sources each generating a light beam with a different wavelength; The present invention is characterized in that it has a single acousto-optic element for simultaneously making the light beams incident thereon and optically scanning the test area within the flow cell section.
[作用]
上記の構成を有する検体検査装置は、波長が異なる複数
個の光を単一の音響光学素子で被検部を光走査し、光学
的測定により被検粒子の解析な行う。[Operation] The specimen testing apparatus having the above configuration optically scans the test area using a single acousto-optic element with a plurality of lights having different wavelengths, and analyzes the test particles by optical measurement.
[実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Example] The present invention will be explained in detail based on illustrated embodiments.
第1図は前方散乱−光測光用の光学系の構成・図を示し
、lは被検粒子なシース液と共に高速で流す流通部1a
を有するフローセルである・、フローセル1に向けて、
He−Neレーザービーム光源2、Ar″″レーザービ
ーム光源3が設けられ、Arゝレーザービーム光源3か
も出射されるAr”レーザービームL2の光路上にグイ
クロイックミラー4、音響光学素子5が順次に設けられ
、グイクロイックミラー4にはHe−Neレーザー光源
2から出射されるレーザービームLlがミラー6を介し
て入射し、グイクロイックミラ−4により音響光学素子
5の方向に反射されるようになっている。また、流通部
la内の被検粒子によるレーザービームL1. L2の
前方散乱光を測定するために、フローセル1を挟んでス
トッパ7、集光レンズ8.バンドパスフィルタ9a、9
b%光検出器10a% 10bが設けられている。とこ
で、バンドパスフィルタ9aと光検出器10 a sバ
ンドパスフィルタ9bと光検出器10bは対となって、
並列的に配置されている。また、グイクロイックミラー
4は633nm付近の波長のHe −Neレーザービー
ムLlを反射し、48Bnm付近の波長のAr”レーザ
ービームL2を反・射する波長選択性を−有し、またバ
ンドパスフィルタ9aはHe−NeレーザービームL1
のみを透過し、バンドパスフィルタ9bはAr”レーザ
ービームL2のみを透過する波長選択性を有している。Figure 1 shows the configuration and diagram of the optical system for forward scattering and photometry, where l is a flow section 1a in which the particles to be detected and the sheath liquid flow together at high speed.
Toward flow cell 1, which is a flow cell having
A He-Ne laser beam source 2 and an Ar'' laser beam source 3 are provided, and a gicchroic mirror 4 and an acousto-optic element 5 are sequentially placed on the optical path of the Ar'' laser beam L2 emitted from the Ar'' laser beam source 3. The laser beam Ll emitted from the He-Ne laser light source 2 enters the guichroic mirror 4 via the mirror 6, and is reflected by the guichroic mirror 4 in the direction of the acousto-optic element 5. In addition, in order to measure the forward scattered light of the laser beams L1 and L2 caused by the test particles in the flow section la, a stopper 7, a condensing lens 8, a bandpass filter 9a, and a condenser lens 8 are placed across the flow cell 1. 9
A photodetector 10a% 10b is provided. By the way, the bandpass filter 9a and the photodetector 10a, the bandpass filter 9b and the photodetector 10b are paired,
are arranged in parallel. Furthermore, the guichroic mirror 4 has wavelength selectivity to reflect the He-Ne laser beam Ll with a wavelength of around 633 nm and reflect/reflect the Ar'' laser beam L2 with a wavelength around 48 Bnm, and also has a bandpass filter. 9a is He-Ne laser beam L1
The bandpass filter 9b has wavelength selectivity to transmit only the Ar'' laser beam L2.
第2“図は側方散乱光用の測光光、学系の構成図を示し
、この光学系はHe −NeレーザービームLl用及び
Ar”レーザービーム上2用に上下2段に設けられてい
る。フローセルlの側方には、フローセル1側から集光
レンズ11、レンズ12、絞り13、レンズ14、波長
選択性を有するグイクロイックミラー15.16、ミラ
ー17が順次に配列されている。また、グイクロイック
ミラー15の反射方向には、波長選択性を有するフィル
タ18、しンズ19、光検出器20が設けられ、ダイク
ロイックミラー16の反射方向には波長選択性を有する
フィルタ21.レンズ22、光検出器23が設けられ、
更にミラー17の反射方向には波長選択性を有するフィ
ルタ24、レンズ25、光検出器26が順次に配列され
ている。また、フィルタ18又はフィルタ21は、ダイ
クロイックミラー15又はダイクロイックミラー16で
反射される波長光束のみを選択透過する波長選択性を有
している。Figure 2 shows the configuration of the photometric optical system for side scattered light, and this optical system is provided in two stages, upper and lower, for the He-Ne laser beam Ll and the upper 2 Ar laser beams. . On the side of the flow cell 1, a condenser lens 11, a lens 12, an aperture 13, a lens 14, a guichroic mirror 15, 16 having wavelength selectivity, and a mirror 17 are sequentially arranged from the flow cell 1 side. Further, in the reflection direction of the dichroic mirror 15, a wavelength selective filter 18, a lens 19, and a photodetector 20 are provided, and in the reflection direction of the dichroic mirror 16, a wavelength selective filter 21. A lens 22 and a photodetector 23 are provided,
Further, in the reflection direction of the mirror 17, a wavelength selective filter 24, a lens 25, and a photodetector 26 are sequentially arranged. Further, the filter 18 or the filter 21 has wavelength selectivity to selectively transmit only the wavelength light beam reflected by the dichroic mirror 15 or the dichroic mirror 16.
フローセル1内の流通部1aを高速層流のシース液に包
まれたサンプル液を通過させた状態で、)1e−Neレ
ーザービーム光源2からHe−NeレーザービームL1
. Ar″″レーザービーム光源3からAr”レーザー
ビームL2を出射する。He−NeレーザービームL2
はミラー6とダイクロイックミラー4で反射され、音響
光学素子5を経て偏向されフローセル1の流通部1aを
照射し、一方でAr”レーザービームL2はダイクロイ
ックミラー4を透過し、音響光学素子5を経て同様に偏
向され流通部1aを照射し、両者の被検粒子による前方
散乱光或いは側方散乱光、蛍光を測定して被検粒子の解
析を行う。With the sample liquid wrapped in the high-speed laminar flow sheath liquid passing through the flow section 1a in the flow cell 1, a He-Ne laser beam L1 is emitted from the 1e-Ne laser beam light source 2.
.. An Ar″ laser beam L2 is emitted from the Ar″″ laser beam light source 3.He-Ne laser beam L2
is reflected by the mirror 6 and the dichroic mirror 4, is deflected through the acousto-optic element 5, and irradiates the flow section 1a of the flow cell 1, while the Ar'' laser beam L2 is transmitted through the dichroic mirror 4, passes through the acousto-optic element 5, and irradiates the flow section 1a of the flow cell 1. Similarly, it is deflected and irradiates the flow section 1a, and the forward scattered light, side scattered light, and fluorescence from both test particles are measured to analyze the test particles.
図示しない制御回路からの制御信号により音響光学素子
5の偏向角を変化させ、He−NeレーザービームLl
とAr” レーザービームL2とを被検粒子の流れと直
交する方向に走査する。この音響光学素子5による偏向
は光の回折を利用しているので、偏向角は音響光学素子
5に入射するレーザービームL1、L2の波長にも依存
する。He−NeレーザービームLlはAr” レーザ
ービームL2よりも波長が長いので、第3図に示すよう
にHe−NeレーザービームLlはAr”レーザービー
ムL2よりも広角範囲を走査する。The deflection angle of the acousto-optic element 5 is changed by a control signal from a control circuit (not shown), and the He-Ne laser beam Ll is
and Ar'' laser beam L2 are scanned in a direction perpendicular to the flow of the particles to be examined.Since this deflection by the acousto-optic element 5 utilizes light diffraction, the deflection angle is equal to the laser beam incident on the acousto-optic element 5. It also depends on the wavelengths of the beams L1 and L2.Since the wavelength of the He-Ne laser beam Ll is longer than that of the Ar'' laser beam L2, as shown in Fig. 3, the He-Ne laser beam Ll is longer than the Ar'' laser beam L2. It also scans a wide angle range.
流通部1aでの前方散乱光はストッパ7を介して集光レ
ンズ8で集光され、He −NeレーザービームLlの
散乱光はバンドパスフィルタ9bを透過して光検出器1
0.bで受光され、Ar”レーザービームL2の反射光
はバンドパスフィルタ9aを透過して光検出器10aで
受光され、それぞれの受光量から被検粒子に関する情報
が得られる。なお、ストッパ7が設けられていることに
より、散乱されないレーザービームL1、L2が直接に
光検出器10a、10bで受光されることはない。The forward scattered light in the flow section 1a is collected by the condensing lens 8 via the stopper 7, and the scattered light of the He-Ne laser beam Ll is transmitted through the bandpass filter 9b and is collected by the photodetector 1.
0. The reflected light of the Ar'' laser beam L2 passes through the band-pass filter 9a and is received by the photodetector 10a, and information regarding the target particles can be obtained from the amount of each received light.A stopper 7 is provided. As a result, the unscattered laser beams L1 and L2 are not directly received by the photodetectors 10a and 10b.
一方、側方散乱光は集光レンズ11によって平行光とさ
れた後にレンズ12、絞り13、レンズ14を経て、例
えば被検粒子の形状等によってそれぞれの波長領域ごと
にダイクロイックミラー15.16及びミラー17で反
射され、それぞれフィルタ18.21.24とレンズ1
9.22.25を介して光検出器20.23.26で受
光され、その受光量から被検粒子に関する情報が得られ
る。On the other hand, the side scattered light is made into parallel light by the condensing lens 11, and then passes through the lens 12, diaphragm 13, and lens 14, and then is divided into dichroic mirrors 15, 16 and mirrors for each wavelength region depending on the shape of the particles to be examined, etc. 17 and filters 18, 21, 24 and lens 1, respectively.
The light is received by the photodetector 20.23.26 via 9.22.25, and information regarding the target particle can be obtained from the amount of the received light.
このように、波長が異なる2種類のHe−Neレーザー
ビームLlとAr”レーザービームL2とが被検粒子を
光走査し、その散乱光を測光して統計量として扱うこと
ができるので、単一波長の際には得られない新たな粒子
解析データを得ることができ、また単一波長のレーザー
ビームだけを用いるよりも測定精度が高くなる。In this way, the two types of He-Ne laser beam Ll and Ar'' laser beam L2 with different wavelengths optically scan the target particle, and the scattered light can be photometered and treated as a statistical quantity, so that a single It is possible to obtain new particle analysis data that cannot be obtained when using a single wavelength laser beam, and the measurement accuracy is higher than using only a single wavelength laser beam.
測定時のサンプル液には、例えばHe −Neレーザー
ビームL1によって励起される3、3°−ジプロピルチ
アジカルボシアニンや、Ar”レーザービームL2によ
って励起されるFITC(フルオレセインイソチオシア
ネート)、PI(プロビジウムイオダイド)等の蛍光剤
を混入することもできる。予め、これらの笠光剤を特定
の抗体と結合させておけば、サンプル液内にその抗体と
反応する抗原が存在する場合には、抗原抗体反応を起こ
させて抗原を蛍光剤で標識することが可能となる。The sample liquid at the time of measurement includes, for example, 3,3°-dipropylthiadicarbocyanine excited by the He-Ne laser beam L1, FITC (fluorescein isothiocyanate) excited by the Ar'' laser beam L2, and PI ( It is also possible to mix fluorescent agents such as Providium iodide.If these fluorescent agents are bound to a specific antibody in advance, if an antigen that reacts with that antibody is present in the sample solution, , it becomes possible to cause an antigen-antibody reaction and label the antigen with a fluorescent agent.
この蛍光剤で標識されたサンプル液にHe−Neレーザ
ービームLl及びAr”レーザービームL2を照射して
、その蛍光強度を測定すれば、特定の抗原に関する情報
を得ることができる。Information regarding a specific antigen can be obtained by irradiating the sample liquid labeled with this fluorescent agent with a He-Ne laser beam Ll and an Ar'' laser beam L2 and measuring the fluorescence intensity.
単一波長のレーザービームだけを用いる測定では、単一
波長のレーザービームによって励起される蛍光剤は限定
されるので、1回の測定によって測定でき、例えば抗原
等の数も限定されるが、異なった波長の2種類のレーザ
ービームを用いれば効率良く多数の被検粒子に関する情
報を得ることができる。In measurements using only a laser beam of a single wavelength, the number of fluorescent agents that can be excited by the laser beam of a single wavelength is limited, so it can be measured in one measurement, and the number of antigens, etc., is also limited. By using two types of laser beams with different wavelengths, it is possible to efficiently obtain information regarding a large number of particles to be detected.
[発明の効果1
以上説明したように本発明に係る検体検査装置は、波長
が異なる複数の光ビームを単一の音響光学素子により被
検部を光走査することにより、1種類の照射光では得ら
れなかった複数のパラメータが1度の測定で得られると
共に、光走査により光照射域に幅を持たせているため、
光学系のアライメントや流体系の不安定さに対する許容
差が大きくなり、更には光走査手段である音響光学素子
が単一で済むためコスト的にも有利である。[Effects of the Invention 1] As explained above, the specimen testing device according to the present invention scans the test area with a single acousto-optic element using a plurality of light beams with different wavelengths, so that a single type of irradiation light is not required. Multiple parameters that could not be obtained can be obtained in one measurement, and the light irradiation area is widened by optical scanning, so
The tolerance for the alignment of the optical system and the instability of the fluid system is increased, and furthermore, it is advantageous in terms of cost because only a single acousto-optic element is required as the optical scanning means.
図面は本発明に係る検体検査装置の実施例を示し、第1
図は前方散乱光用測光光学系の構成図、第2図は側方散
乱光・蛍光測光用の光学系の構成図、第3図は音響光学
素子の偏向角の説明図である。The drawings show an embodiment of the specimen testing device according to the present invention.
FIG. 2 is a block diagram of a photometric optical system for forward scattered light, FIG. 2 is a block diagram of an optical system for side scattered light/fluorescence photometry, and FIG. 3 is an explanatory diagram of the deflection angle of an acousto-optic element.
Claims (1)
得られる光学信号から検体粒子の解析を行う検体検査装
置において、被検粒子が1個ずつ通過するフローセル部
と、それぞれ発生する光ビームの波長が異なる複数個の
レーザー光源と、前記複数個の光ビームを同時に入射さ
せ、前記フローセル部内の被検部を光走査するための単
一の音響光学素子とを有することを特徴とする検体検査
装置。1. In a sample testing device that irradiates a light beam onto test particles in a fluid and analyzes the test particles from optical signals obtained by photometry, there is a flow cell section through which the test particles pass one by one, and the light generated by each. The method is characterized by comprising a plurality of laser light sources having different beam wavelengths and a single acousto-optic element for simultaneously inputting the plurality of light beams and optically scanning the test area in the flow cell section. Sample testing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1294222A JPH03154850A (en) | 1989-11-13 | 1989-11-13 | Specimen inspecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1294222A JPH03154850A (en) | 1989-11-13 | 1989-11-13 | Specimen inspecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03154850A true JPH03154850A (en) | 1991-07-02 |
Family
ID=17804918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1294222A Pending JPH03154850A (en) | 1989-11-13 | 1989-11-13 | Specimen inspecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03154850A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08211059A (en) * | 1994-11-04 | 1996-08-20 | Boehringer Mannheim Gmbh | Prepared white trigger material for enhancing signal detection in bioluminescence and chemiluminescence reaction |
US6087182A (en) * | 1998-08-27 | 2000-07-11 | Abbott Laboratories | Reagentless analysis of biological samples |
KR100416245B1 (en) * | 1995-05-24 | 2004-06-11 | 아 베 익스 | Device for the optical inspection of a fluid, esqecially for hematological analyses |
US7267798B2 (en) | 1998-05-14 | 2007-09-11 | Luminex Corporation | Multi-analyte diagnostic system and computer implemented process for same |
WO2008082813A1 (en) * | 2006-12-29 | 2008-07-10 | Abbott Laboratories | Method and apparatus for rapidly counting and identifying particles in suspension by scanning |
CN102684057A (en) * | 2011-03-11 | 2012-09-19 | 苏州生物医学工程技术研究所 | Ultraviolet and visible band acousto-optic Q-switch |
JP2013527929A (en) * | 2010-05-03 | 2013-07-04 | バイオ−ラッド・ラボラトリーズ・インコーポレーテッド | Optical combiner for combining multiple laser beams in a flow cytometer |
-
1989
- 1989-11-13 JP JP1294222A patent/JPH03154850A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08211059A (en) * | 1994-11-04 | 1996-08-20 | Boehringer Mannheim Gmbh | Prepared white trigger material for enhancing signal detection in bioluminescence and chemiluminescence reaction |
KR100416245B1 (en) * | 1995-05-24 | 2004-06-11 | 아 베 익스 | Device for the optical inspection of a fluid, esqecially for hematological analyses |
US7267798B2 (en) | 1998-05-14 | 2007-09-11 | Luminex Corporation | Multi-analyte diagnostic system and computer implemented process for same |
US6426045B1 (en) | 1998-08-27 | 2002-07-30 | Abbott Laboratories | Reagentless analysis of biological samples |
US6365109B1 (en) | 1998-08-27 | 2002-04-02 | Abbott Laboratories | Reagentless analysis of biological samples |
US6773922B2 (en) | 1998-08-27 | 2004-08-10 | Abbott Laboratories | Reagentless analysis of biological samples |
US6087182A (en) * | 1998-08-27 | 2000-07-11 | Abbott Laboratories | Reagentless analysis of biological samples |
WO2008082813A1 (en) * | 2006-12-29 | 2008-07-10 | Abbott Laboratories | Method and apparatus for rapidly counting and identifying particles in suspension by scanning |
US7804594B2 (en) | 2006-12-29 | 2010-09-28 | Abbott Laboratories, Inc. | Method and apparatus for rapidly counting and identifying biological particles in a flow stream |
US8045162B2 (en) | 2006-12-29 | 2011-10-25 | Abbott Laboratories, Inc. | Method and apparatus for rapidly counting and identifying biological particles in a flow stream |
US8253938B2 (en) | 2006-12-29 | 2012-08-28 | Abbott Laboratories | Method and apparatus for rapidly counting and identifying biological particles in a flow stream |
JP2013527929A (en) * | 2010-05-03 | 2013-07-04 | バイオ−ラッド・ラボラトリーズ・インコーポレーテッド | Optical combiner for combining multiple laser beams in a flow cytometer |
CN102684057A (en) * | 2011-03-11 | 2012-09-19 | 苏州生物医学工程技术研究所 | Ultraviolet and visible band acousto-optic Q-switch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3975084A (en) | Particle detecting system | |
EP0160568B1 (en) | Methods and apparatus for analysis of particles and cells | |
JP4201058B2 (en) | Method for characterizing samples based on intermediate statistical data | |
US20200080939A1 (en) | High throughput method and apparatus for measuring multiple optical properties of a liquid sample | |
WO2000071991A1 (en) | Apparatus and method for optical detection in a limited depth of field | |
JPS61280548A (en) | Apparatus for analyzing particle | |
JPH0792077A (en) | Grain analyzing device | |
JPH03154850A (en) | Specimen inspecting device | |
JPH0224535A (en) | Particle analyzing apparatus | |
JPS6151569A (en) | Cell identifying device | |
JPH01270644A (en) | Particle analyser | |
JP2749928B2 (en) | Sample measuring method and sample measuring device | |
JPH0486546A (en) | Specimen inspection device | |
JPS63201554A (en) | Particle analyzing device | |
JPS6244650A (en) | Particle analyzing device | |
JP2749912B2 (en) | Sample measuring device and sample measuring method | |
JPH02245638A (en) | Specimen testing apparatus | |
JPH03150444A (en) | Sample inspecting device | |
JPS6244649A (en) | Particle analyzing device | |
JPH03221838A (en) | Method and device for measuring body to be tested | |
JPH03150446A (en) | Particle analyzing device | |
JPS62245942A (en) | Particle analyzer | |
JPH03221835A (en) | Instrument for measuring body to be tested | |
JPH0274845A (en) | Particle measuring apparatus | |
JPH03150445A (en) | Particle analyzing device |