JPH03197907A - Method for aligning optical axis position of optical parts - Google Patents
Method for aligning optical axis position of optical partsInfo
- Publication number
- JPH03197907A JPH03197907A JP33654389A JP33654389A JPH03197907A JP H03197907 A JPH03197907 A JP H03197907A JP 33654389 A JP33654389 A JP 33654389A JP 33654389 A JP33654389 A JP 33654389A JP H03197907 A JPH03197907 A JP H03197907A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- package
- transmitted light
- angular position
- light output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title description 11
- 230000010287 polarization Effects 0.000 abstract description 11
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
光部品の光軸位置合わせ方法に関し、
光軸位置合わせの際の作業性及びその精度等の向上が図
れる光軸位置合わせ方法を提供することを目的とし、
少なくとも一方が偏光面を有する2つの光部品を相互に
光軸位置合わせするための、上記両光部品を透過し得る
光の出力を検出し得る透過光出力検出手段と上記両光部
品の相対位置を調整し得る位置調整手段とを有する、光
部品の光軸位置合わせ装置において、上記両光部品を第
1の方向に、最大透過光出力及び最小透過光出力にそれ
ぞれ対応し得る相対角度の中間の任意角度位置まで相対
回転移動せしめ、その第1の角度位置における透過光出
力を検出し、その第1角度位置から上記第1の方向と逆
の第2の方向に、同一の透過光出力が得られる第2の角
度位置まで上記両光部品を相対回転移動せしめ、上記第
1角度位置及び第2角度位置の中間の第3の角度位置ま
で上記両光部品を相対回転移動せしめ、以て上記両光部
品の最適な光軸位置合わせを得るように構成する。[Detailed Description of the Invention] [Summary] Regarding a method for aligning an optical axis of an optical component, an object of the present invention is to provide an optical axis alignment method that can improve workability and accuracy during optical axis alignment. , for mutually aligning the optical axes of two optical components, at least one of which has a plane of polarization, a transmitted light output detection means capable of detecting the output of light that can be transmitted through both of the optical components, and a relative position between the two optical components. In the optical component optical axis positioning device, the optical axis alignment device has a position adjusting means that can adjust the position, and the optical components are moved in a first direction at relative angles corresponding to the maximum transmitted light output and the minimum transmitted light output, respectively. A relative rotational movement is made to an arbitrary angular position in the middle, the transmitted light output at the first angular position is detected, and the same transmitted light output is detected from the first angular position in a second direction opposite to the first direction. The above-mentioned optical components are relatively rotationally moved to a second angular position where the above-mentioned first angular position and the second angular position are obtained, and the above-mentioned optical components are relatively rotationally moved to a third angular position intermediate the first angular position and the second angular position. The configuration is such that optimal optical axis alignment of both the optical components is obtained.
本発明は、少な(とも一方が偏光面を有する2つの光部
品を相互に光軸位置合わせするための、上記両光部品を
透過し得る光の出力を検出し得る透過光出力検出手段と
上記両光部品の相対位置を調整し得る位置調整手段とを
有する、光部品の光軸位置合わせ装置における光軸位置
合わせ方法に関する。The present invention provides a transmitted light output detecting means capable of detecting the output of light that can pass through both optical components, and a transmitted light output detection means for mutually aligning the optical axes of two optical components, one of which has a polarization plane. The present invention relates to an optical axis positioning method in an optical axis positioning apparatus for optical components, which has a position adjustment means capable of adjusting the relative positions of both optical components.
〔従来の技術〕
光フアイバ通信システムにおいては、システムの高速化
等に伴い、光接続部等などからの反射光がレーザダイオ
ード(LD)に再入射して生じる反射雑音が問題となり
、このためこれを解決するべく反射再入射光を除去し得
る非相反な伝搬機能を有する光アイソレータを内蔵した
光半導体モジュールが増加している。このような光半導
体モジュール(LDモジュール)の−例を第4図に示す
、同図において、51はLDチップ52及び光結合用の
第1のレンズ53が収容されるLDパッケージ(以下、
単に、パッケージ)、54は光アイソレータ55が内蔵
される光アイソレークケース(以下、単に、ケース)、
56は光ファイバ57を保持するフェルール58が嵌着
され光結合用の第2のレンズ59が収容されるアダプタ
である。[Prior Art] In optical fiber communication systems, as the speed of the system increases, reflection noise generated when reflected light from optical connections etc. re-enters the laser diode (LD) becomes a problem. In order to solve this problem, optical semiconductor modules that include built-in optical isolators that have a non-reciprocal propagation function that can remove reflected and re-incident light are increasing in number. An example of such an optical semiconductor module (LD module) is shown in FIG. 4. In the figure, 51 denotes an LD package (hereinafter referred to as
54 is an optical isolator case (hereinafter simply referred to as a case) in which the optical isolator 55 is built-in;
Reference numeral 56 denotes an adapter into which a ferrule 58 holding an optical fiber 57 is fitted and a second lens 59 for optical coupling is accommodated.
これらのパッケージ51、ケース54、及びアダプタ5
6のうち、パッケージ51とケース54との接続、すな
わちLDチップ52と光アイソレータ55との光軸位置
合わせについて以下説明する。現状においてはパッケー
ジ51上にケース54をセットしてLDチップ52を発
光させ、光アイソレータ55を透過したその光のパワー
を検出し、それが最大となるようにパッケージ51及び
ケース54の相対位置及び角度をいわゆる目視調整して
最適な光軸位置関係が得られるようにしている。These package 51, case 54, and adapter 5
6, the connection between the package 51 and the case 54, that is, the alignment of the optical axis between the LD chip 52 and the optical isolator 55 will be described below. Currently, the case 54 is set on the package 51, the LD chip 52 emits light, the power of the light transmitted through the optical isolator 55 is detected, and the relative position of the package 51 and the case 54 is adjusted so that the power is maximized. The angle is visually adjusted to obtain the optimum optical axis positional relationship.
[発明が解決しようとする課題〕
しかるに、偏光面を有する光アイソレータのような光部
品にあっては、その透過光の出力がLDチップと光アイ
ソレータとの相対的な角度調整量(変位)に対して正弦
波(サインカーブ)的なカーブを描くように変化する。[Problem to be Solved by the Invention] However, in the case of an optical component such as an optical isolator that has a plane of polarization, the output of transmitted light depends on the relative angle adjustment amount (displacement) between the LD chip and the optical isolator. On the other hand, it changes as if drawing a sine wave (sine curve) curve.
従って、合わせるべき透過出力の最大値近辺では角度変
位に対する光出力の変化が極めて微小であり、このため
従来の調整方法のままでは精度良(的確にLDチップ及
び光アイソレータの偏波軸を一致さ廿ることはなかなか
困難である。Therefore, the change in optical output with respect to angular displacement is extremely small near the maximum value of the transmitted output that should be matched, and therefore the conventional adjustment method has good accuracy (the polarization axes of the LD chip and the optical isolator cannot be precisely aligned). It is quite difficult to leave.
このような点に鑑み本発明は、偏波面を有する2つの光
部品を光軸位置合わせする際の作業能率や位置決め精度
を著しく向上させ得る光軸位置合わせ方法を提供するこ
とを課題とする。In view of these points, it is an object of the present invention to provide an optical axis alignment method that can significantly improve work efficiency and positioning accuracy when aligning the optical axes of two optical components having polarization planes.
上記課題を解決するために本発明に係る光部品の光軸位
置合わせ方法によれば、少なくとも一方が偏光面を有す
る2つの光部品を相互に光軸位置合わせするための、上
記両光部品を透過し得る光の出力を検出し得る透過光出
力検出手段と上記両光部品の相対位置を調整し得る位置
調整手段とを有する、光部品の光軸位置合わせ装置にお
いて、(イ) 上記両光部品を第1の方向に、最大透
過光出力及び最小透過光出力にそれぞれ対応し得る相対
角度の中間の任意角度位置まで相対回転移動せしめ、
(0)その第1の角度位置における透過光出力を検出し
、
&〜 その第1角度位置から上記第1の方向と逆の第2
の方向に、同一の透過光出力が得られるる第2の角度位
置まで上記両光部品を相対回転移動せしめ、
に)上記第1角度位置及び第2角度位置の中間の第3の
角度位置まで上記両光部品を相対回転移動せしめ、
以て上記両光部品の最適な光軸位置合わせを得るように
したことを構成上の特徴とする。In order to solve the above problems, according to a method for aligning optical axes of optical components according to the present invention, the method for aligning the optical axes of two optical components, at least one of which has a polarization plane, is performed. In an optical axis alignment device for an optical component, which includes a transmitted light output detection means capable of detecting the output of light that can be transmitted, and a position adjustment means capable of adjusting the relative position of the two optical components, (a) both of the light The component is relatively rotationally moved in a first direction to an arbitrary angular position between the relative angles that can correspond to the maximum transmitted light output and the minimum transmitted light output, respectively, and (0) the transmitted light output at the first angular position is detecting &~ a second direction opposite to the first direction from the first angular position;
(b) relatively rotationally moving the optical components to a second angular position at which the same transmitted light output is obtained in the direction; and (b) to a third angular position intermediate between the first angular position and the second angular position. A structural feature is that both of the optical components are relatively rotationally moved, thereby obtaining optimal optical axis alignment of both of the optical components.
光軸位置合わせされるべき光部品を第1の方向に所定角
度だけ相対回転移動せしめて透過光出力を検出し、そこ
から逆の方向に、同一の透過光出力が得られる第2の角
度位置まで相対回転移動せしめ、第1及び第2角度位置
の中間の位置まで相対回転移動せしめる。これにより両
光部品の偏波軸が良好に一致する。The optical component to be aligned with the optical axis is relatively rotationally moved by a predetermined angle in the first direction, the transmitted light output is detected, and from there, the transmitted light output is detected at a second angular position where the same transmitted light output is obtained in the opposite direction. The relative rotational movement is made to a position intermediate between the first and second angular positions. This allows the polarization axes of both optical components to match well.
以下、図面を参照して本実施例を説明する。 The present embodiment will be described below with reference to the drawings.
第1図は本発明に係る光部品の光軸位置合わせ装置の一
実施例の全体概略構成図である。同図を参照すると、ベ
ース1中央側には光軸位置合わせされるべき一方の光部
品、すなわちLDパッケージ51(LDチップ52)が
θステージ2及びその上に固着された固定治具3を介し
て着脱自在に固定されている。θステージ2はLDパッ
ケージ51をその中実軸線周りに回動させ得るものであ
る。FIG. 1 is an overall schematic diagram of an embodiment of an optical axis alignment device for optical components according to the present invention. Referring to the figure, one optical component to be aligned with the optical axis, that is, an LD package 51 (LD chip 52), is placed on the center side of the base 1 via a θ stage 2 and a fixture 3 fixed thereon. It is removably fixed. The θ stage 2 is capable of rotating the LD package 51 around its solid axis.
パッケージ51の上には光軸位置合わせされるべき他方
の光部品、すなわち光アイソレータケース54(光アイ
ソレータ55)が配置される。このケース54は、ベー
ス1右方側に配設されたXステージ5、Yステージ6、
及びZステージ7に連結された押圧・調整治具8を介し
てZステージ7によりパッケージ51に対して押圧・密
着され得ると共にXステージ5及びYステージ6により
ベース1の面内方向に移動せしめられ得るようになって
いる。The other optical component to be aligned with the optical axis, that is, the optical isolator case 54 (optical isolator 55) is placed above the package 51. This case 54 includes an X stage 5, a Y stage 6, and
The package 51 can be pressed and brought into close contact with the package 51 by the Z stage 7 via a pressing/adjusting jig 8 connected to the Z stage 7, and can be moved in the in-plane direction of the base 1 by the X stage 5 and Y stage 6. I'm starting to get it.
パッケージ51及びケース54の上方側には、光軸位置
合わせ時にLDチップ52(図示せず)から発せられて
光アイソレータ55(図示せず)を透過する光の出力を
検出し得るアンプ内蔵型の検出器10がベース左方側に
配設されたXステージ11及びYステージ12に連結さ
れた取付は金具13を介して配置され、両ステージ11
、12によりベース1の面内方向に移動せしめられ得
るようになっている。On the upper side of the package 51 and the case 54, there is a built-in amplifier that can detect the output of light emitted from the LD chip 52 (not shown) and transmitted through the optical isolator 55 (not shown) during optical axis alignment. The detector 10 is connected to the X stage 11 and Y stage 12 arranged on the left side of the base through metal fittings 13.
, 12, it can be moved in the in-plane direction of the base 1.
以上の機械的構成を統轄的に制御する制御回路20は、
例えばマイクロコンピュータとして構成され、双方向性
バス21によって相互に接続されたROM (リードオ
ンリメモリ)22、RAM(ランダムアクセスメモリ)
23、cpu (マイクロプロセッサ)24、I10ポ
ート25、及びA/D変換器26が設けられている。The control circuit 20 that centrally controls the above mechanical configuration is
For example, a ROM (read only memory) 22 and a RAM (random access memory) configured as a microcomputer and interconnected by a bidirectional bus 21
23, a CPU (microprocessor) 24, an I10 port 25, and an A/D converter 26.
A/D変換器26には、上述の透過光の検出器10から
出力され得るアナログ電圧の電気信号が供給される。The A/D converter 26 is supplied with an analog voltage electrical signal that can be output from the transmitted light detector 10 described above.
話が前後するが、上述の各ステージ2.5.6゜7.1
1及び12は駆動源としてそれぞれ例えばパルスモータ
(図示せず)を内蔵すると共に、リニア又は回転軸受(
図示せず)を備え、所定移動運動を行い得るようになっ
ている。そして、これらのステージのモータは、CPU
、分配回路、及び励磁回路等から成る市販のモータコン
トローラ28によりマイクロコンピュータ20からの指
令に基づきそれぞれ独立して駆動制御される。The story goes back and forth, but each of the above stages 2.5.6゜7.1
1 and 12 each have a built-in pulse motor (not shown) as a drive source, and a linear or rotary bearing (
(not shown) so that a predetermined movement can be performed. And the motors of these stages are controlled by the CPU
, a distribution circuit, an excitation circuit, etc., each of which is independently driven and controlled based on commands from the microcomputer 20.
以上の構成を有する本実施例装置を用いて実際にパッケ
ージ51(LDチップ52)とケース54(光アイソレ
ータ55)の光軸位置合わせを行う工程について、第2
図に概略を示すフローチャートに基づきこれを説明する
が、その前に、LDチップ52及び光アイソレータ55
の相対角度とこれらの両光部品を透過する光の出力との
関係を簡単に説明する。上述の如く相対角度を横軸、透
過光出力を縦軸にとった場合、第3図に示すように正弦
波(サインカーブ)的なカーブが描かれる。そして、光
軸位置合わせされるべき両光部品の位置関係は、相対角
度θ(ズレ)がゼロ(0)のとき、すなわち透過光出力
Pが最大(P wax)のときである。The second section describes the process of actually aligning the optical axes of the package 51 (LD chip 52) and the case 54 (optical isolator 55) using the apparatus of this embodiment having the above configuration.
This will be explained based on the flowchart schematically shown in the figure.
The relationship between the relative angle of and the output of light transmitted through both optical components will be briefly explained. As described above, when the relative angle is plotted on the horizontal axis and the transmitted light output is plotted on the vertical axis, a sinusoidal curve is drawn as shown in FIG. 3. The positional relationship between the two optical components to be optically aligned is when the relative angle θ (displacement) is zero (0), that is, when the transmitted light output P is maximum (P wax).
先ずθステージ2上の固定治具3にパッケージ51を固
定し、さらにその上にケース54を載せてXステージ5
、Yステージ6、及びZステージ7をセットする(ステ
ップ201)、このとき、LDチップ52と光アイソレ
ータ55との光軸がある程度台ワた(相対角度θ−θ。First, the package 51 is fixed to the fixing jig 3 on the θ stage 2, and then the case 54 is placed on top of it, and the X stage 5
, the Y stage 6, and the Z stage 7 (step 201). At this time, the optical axes of the LD chip 52 and the optical isolator 55 are aligned to some extent (relative angle θ-θ).
: θ。はゼロになるべく近い値)位置関係になるよう
に設定しておく。: θ. is a value as close to zero as possible) Set the positional relationship.
また、LDチップ52の発光出力を所定量に設定してお
く。Further, the light emission output of the LD chip 52 is set to a predetermined amount.
次いで、θステージ2によりパッケージ51をいずれか
一方の回転方向(第1の方向)に所定角度量α°、例え
ば45°回転させる(ステップ203)、そして、この
角度位置(第1の角度位置)における透過光出力P1を
検出する(ステップ205)。Next, the package 51 is rotated by a predetermined angle α°, for example, 45°, in one of the rotational directions (first direction) by the θ stage 2 (step 203), and the package 51 is rotated at this angular position (first angular position). Detect the transmitted light output P1 at (step 205).
次いで、今度は逆方向(第2の方向)にパッケージ51
を回転駆動する(ステップ20?)、そして、透過光出
力Pが上記第1角度位置における光出力PIと同じ値に
なったところでパッケージ510回転を止める(ステッ
プ209.211) 、このとき、上記第1角度位置か
らの角度送り量β° (あるいは実際的にはモータ駆動
用の送りパルス量等)を算出する(ステップ213)。Next, the package 51 is moved in the opposite direction (second direction).
(step 20?), and when the transmitted light output P becomes the same value as the optical output PI at the first angular position, the rotation of the package 510 is stopped (steps 209 and 211). The angular feed amount β° from one angular position (or in practice, the feed pulse amount for driving the motor, etc.) is calculated (step 213).
次いで、パッケージ51を今度はその逆の方向、すなわ
ち最初と同じ第1の方向にAβ0だけ回転駆動する(ス
テップ215)、これにより、第3図の特性図からも良
好に理解され得るように、補間的に両光部品の光軸が精
度良(−敗する、すなわち両光部品がその透過光出力P
が最大(P wax)となる位置関係を有することにな
る。Next, the package 51 is now rotated by Aβ0 in the opposite direction, that is, in the same first direction as the first direction (step 215), so that, as can be well understood from the characteristic diagram of FIG. By interpolation, the optical axes of both optical components have good precision (-defective, that is, both optical components have their transmitted light output P
This means that the positional relationship is such that (P wax) is the maximum.
以上説明したように本実施例の調整方法によれば、極め
て簡単・確実にそして機械的に両光部品の光軸位置合わ
せを精度良く行うことが可能となる。具体的には、本方
法によれば従来の透過光出力が最大(ピーク)となるよ
う模索的に調整する方法に比べて、その精度が20〜3
0倍向上することが実験的に認められる。As explained above, according to the adjustment method of this embodiment, it is possible to align the optical axes of both optical components mechanically and with high precision, extremely simply and reliably. Specifically, according to this method, the accuracy is 20 to 3 times higher than the conventional method of exploratory adjustment to maximize the transmitted light output (peak).
It is experimentally confirmed that this is improved by 0 times.
なお、上述しなかったがパッケージ51の各回転移動後
には実際上、出射ビームの角度ずれ等を補正するために
検出器10の位置調整を行うと共に、角度を除く両光部
品の相対位置調整を行うことが好ましい。Although not mentioned above, after each rotational movement of the package 51, the position of the detector 10 is adjusted in order to correct the angular deviation of the emitted beam, and the relative position of both optical components is adjusted except for the angle. It is preferable to do so.
また、上記実施例では全自動的に調整を行うようにして
いるが、マイクロコンピュータ20を用いずに半自動的
に調整を行うこともできる。すなわち、検出器10から
の出力をアナログ又はデジタル的に表示する例えばパワ
ーメータ(図示せず)を設けると共に必要なステッピン
グモータの例えば移動パルス量を表示し得る装置を設け
、これらの指示値を目視・計算しながら、上記第2図の
フローチャートに準じて調整を行えば良い。Further, in the above embodiment, the adjustment is performed fully automatically, but it is also possible to perform the adjustment semi-automatically without using the microcomputer 20. That is, a power meter (not shown) for displaying the output from the detector 10 in analog or digital form, for example, and a device capable of displaying, for example, the amount of movement pulses of the necessary stepping motor, are provided, and these indicated values can be visually checked.・While performing calculations, adjustments can be made according to the flowchart in Figure 2 above.
更に、上記実施例において、パッケージ51を第1方向
に回転させる(ステップ203)際のその角度量α1と
して例えば45°としたが、これに何ら限られることな
く、実験的に求めたあるいは実用的な最適な角度量とす
ればよい。Furthermore, in the above embodiment, the angle α1 when rotating the package 51 in the first direction (step 203) is set to 45°, for example, but it is not limited to this, and may be any experimentally determined or practical angle. The optimum angle amount may be used.
言うまでもないが、本発明の本質は、僅かな角度ずれで
も光出力の変位が大きい特性領域に着目しその領域にお
ける同一の光出力が検出され得る2つの角度位置から補
間的に偏波軸−数位置を割り出すということであり、従
ってその思想自体は上記実施例に何ら限定されるもので
はない、すなわち、偏波が関係して(るような光モジュ
ールであれば殆ど総て、例えば低偏波ファイバ同士の光
軸合わせや偏光プリズムと光ファイバとの光結合等に対
して本発明を適用することが出来る。Needless to say, the essence of the present invention is to focus on a characteristic region where the optical output varies greatly even with a slight angular shift, and to interpolate the polarization axis and number from two angular positions where the same optical output in that region can be detected. Therefore, the idea itself is not limited to the above embodiment. In other words, almost all optical modules that involve polarization (for example, low polarization) The present invention can be applied to alignment of optical axes between fibers, optical coupling between a polarizing prism and an optical fiber, and the like.
以上の如く本発明によれば、簡便に機械的に光軸位置合
わせ作業を行い得ながらその精度等の向上が図れ、極め
て実用的・経済的である。As described above, according to the present invention, it is possible to easily and mechanically perform optical axis positioning work while improving the accuracy thereof, which is extremely practical and economical.
第1図は本発明に係る光部品の光軸位置合わせ装置の一
実施例の全体概略構成図、
第2図は光軸位置合わせの概略フローチャート図、
第3図は相対角度及び透過光出力の特性図、第4図は光
半導体モジュールの一例の長手断面図である。
2・・・θステージ、 10・・・検出器、2
0・・・制御回路、
51°°LD/ゞツケージ・ 52.・−LDチッ
、・、54・・・光アイソレータケース、
55・・・光アイソレータ。Fig. 1 is an overall schematic configuration diagram of an embodiment of an optical axis alignment device for optical components according to the present invention, Fig. 2 is a schematic flowchart of optical axis alignment, and Fig. 3 is a diagram of relative angle and transmitted light output. The characteristic diagram, FIG. 4, is a longitudinal sectional view of an example of an optical semiconductor module. 2...θ stage, 10...detector, 2
0...Control circuit, 51°°LD/Cage 52.・-LD chip... 54... Optical isolator case, 55... Optical isolator.
Claims (1)
1,52,54,55)を相互に光軸位置合わせするた
めの、上記両光部品(51,52,54,55)を透過
し得る光の出力を検出し得る透過光出力検出手段と上記
両光部品の相対位置を調整し得る位置調整手段とを有す
る、光部品の光軸位置合わせ装置において、 (イ)上記両光部品(51,52,54,55)を第1
の方向に、最大透過光出力及び最小透過光出力にそれぞ
れ対応し得る相対角度の中間の任意角度位置まで相対回
転移動せしめ、 (ロ)その第1の角度位置における透過光出力を検出し
、 (ハ)その第1角度位置から上記第1の方向と逆の第2
の方向に、同一の透過光出力が得られる第2の角度位置
まで上記両光部品(51,52,54,55)を相対回
転移動せしめ、 (ニ)上記第1角度位置及び第2角度位置の中間の第3
の角度位置まで上記両光部品(51,52,54,55
)を相対回転移動せしめ、 以て上記両光部品(51,52,54,55)の最適な
光軸位置合わせを得るようにしたことを特徴とする光部
品の光軸位置合わせ方法。[Claims] 1. Two optical components (5
1, 52, 54, 55) for mutually aligning the optical axes of the optical components (51, 52, 54, 55); In an optical component optical axis positioning device having a position adjusting means capable of adjusting the relative positions of both optical components, (a) both optical components (51, 52, 54, 55) are placed in a first position.
(b) detect the transmitted light output at the first angular position; c) A second direction opposite to the first direction from the first angular position.
(d) the first angular position and the second angular position; (d) the first angular position and the second angular position; middle third
Both optical parts (51, 52, 54, 55) are moved up to the angular position of
) is relatively rotationally moved, thereby obtaining optimal optical axis alignment of both the optical components (51, 52, 54, 55).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33654389A JPH03197907A (en) | 1989-12-27 | 1989-12-27 | Method for aligning optical axis position of optical parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33654389A JPH03197907A (en) | 1989-12-27 | 1989-12-27 | Method for aligning optical axis position of optical parts |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03197907A true JPH03197907A (en) | 1991-08-29 |
Family
ID=18300221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33654389A Pending JPH03197907A (en) | 1989-12-27 | 1989-12-27 | Method for aligning optical axis position of optical parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03197907A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004012335A (en) * | 2002-06-07 | 2004-01-15 | Fuji Photo Optical Co Ltd | Method for supporting inclination error adjustment of testing substance |
JP2010071741A (en) * | 2008-09-17 | 2010-04-02 | Toshiba Corp | Piping thickness measurement method and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58111010A (en) * | 1981-12-23 | 1983-07-01 | Fujitsu Ltd | Positioning device |
JPS6333884A (en) * | 1986-07-29 | 1988-02-13 | Toshiba Corp | Measuring method of deviation of optical axis of semiconductor laser and device used for said method |
JPS6375710A (en) * | 1986-09-18 | 1988-04-06 | Fujitsu Ltd | Constant polarization fiber alignment jig |
-
1989
- 1989-12-27 JP JP33654389A patent/JPH03197907A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58111010A (en) * | 1981-12-23 | 1983-07-01 | Fujitsu Ltd | Positioning device |
JPS6333884A (en) * | 1986-07-29 | 1988-02-13 | Toshiba Corp | Measuring method of deviation of optical axis of semiconductor laser and device used for said method |
JPS6375710A (en) * | 1986-09-18 | 1988-04-06 | Fujitsu Ltd | Constant polarization fiber alignment jig |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004012335A (en) * | 2002-06-07 | 2004-01-15 | Fuji Photo Optical Co Ltd | Method for supporting inclination error adjustment of testing substance |
JP2010071741A (en) * | 2008-09-17 | 2010-04-02 | Toshiba Corp | Piping thickness measurement method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5536916A (en) | Method for performing automatic alignment-adjustment of laser robot and the device | |
US4714339A (en) | Three and five axis laser tracking systems | |
EP0304307A2 (en) | Position error sensing and feedback apparatus and method | |
US4866362A (en) | Target tracking system | |
JPH022082B2 (en) | ||
JPS63292005A (en) | Detecting apparatus of amount of movement corrected from running error | |
JP2014026108A (en) | Optical axis adjustment method of optical component, and optical axis adjustment device | |
JPH03197907A (en) | Method for aligning optical axis position of optical parts | |
JPH10123356A (en) | Method for measuring position of optical transmission member and method for manufacturing optical device | |
JP3733549B2 (en) | Optical fiber alignment fixing device | |
US4278893A (en) | Alignment apparatus | |
JP2000162484A (en) | Face aligning device for optical components | |
JP3010769B2 (en) | Method and apparatus for assembling optical element module | |
JPH06265759A (en) | Automatic optical axis aligning device | |
KR100317437B1 (en) | system for aligning axis of beam with laser and method for aligning axis of beam with the same | |
JPH07251277A (en) | Device for monitoring laser beam in laser beam machine | |
JPH05157947A (en) | Assembly device for optical element module | |
JPS6341814A (en) | Method and device for matching optical axes between semiconductor element and optical transmission line | |
JPH0724589A (en) | Method and device for adjusting automatic alignment of laser beam robot | |
CN212526480U (en) | High-precision high-efficiency laser processing device | |
JP3096583B2 (en) | Method for manufacturing semiconductor laser module | |
JP3833520B2 (en) | Assembly apparatus and assembly method | |
JPH06118318A (en) | Optical switch device and method for aligning the same | |
JPH1190668A (en) | Method and device for detecting incident condition of laser beam into optical fiber and method and device for regulating incidence of optical fiber using the same method and device | |
JPH0335205A (en) | Apparatus for producing optical unit |