JP3096583B2 - Method for manufacturing semiconductor laser module - Google Patents
Method for manufacturing semiconductor laser moduleInfo
- Publication number
- JP3096583B2 JP3096583B2 JP06250459A JP25045994A JP3096583B2 JP 3096583 B2 JP3096583 B2 JP 3096583B2 JP 06250459 A JP06250459 A JP 06250459A JP 25045994 A JP25045994 A JP 25045994A JP 3096583 B2 JP3096583 B2 JP 3096583B2
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- lens
- emitting element
- semiconductor light
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 29
- 238000000034 method Methods 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000013307 optical fiber Substances 0.000 claims description 57
- 230000003287 optical effect Effects 0.000 claims description 16
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
Landscapes
- Optical Couplings Of Light Guides (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体発光素子とレン
ズと光ファイバとを光結合させて一体化した光通信用光
源等に利用される半導体レーザモジュールの製造方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor laser module used for an optical communication light source or the like in which a semiconductor light emitting element, a lens and an optical fiber are optically coupled and integrated.
【0002】[0002]
【従来の技術】半導体レーザモジュールの基本的な構成
を図1に示す。半導体発光素子14の発光点がレンズ1
3の中心と一致するように両者が基台18に固定され、
該基台18がパッケージ17内に斜めに配置されてい
る。半導体発光素子14から出射されたレーザ光は、レ
ンズ13により集光され、端面20が斜めに研磨された
光ファイバ12に結合する。図のX方向は光ファイバ1
2の軸11に対する垂直な面内で図面上で上から下へ向
かう方向、Y方向は図面の裏から表に向かう方向、Z方
向は光ファイバ12の軸11に平行に左から右へ向かう
方向、θ方向は光ファイバ12の右から見て反時計回り
の方向である。2. Description of the Related Art FIG. 1 shows a basic structure of a semiconductor laser module. The light emitting point of the semiconductor light emitting element 14 is the lens 1
Both are fixed to the base 18 so as to coincide with the center of 3,
The base 18 is disposed obliquely in the package 17. The laser light emitted from the semiconductor light emitting element 14 is condensed by the lens 13 and is coupled to the optical fiber 12 whose end face 20 has been polished obliquely. The X direction in the figure is the optical fiber 1
2 is a direction from the top to the bottom of the drawing in a plane perpendicular to the axis 11, the Y direction is a direction from the back of the drawing to the front, and the Z direction is a direction from the left to the right parallel to the axis 11 of the optical fiber 12. , Θ directions are counterclockwise as viewed from the right of the optical fiber 12.
【0003】光ファイバ12の端面20を斜めに研磨し
ているのは、該端面20での反射光(近端反射)が半導
体発光素子14へ再注入されると、反射雑音を生じて変
調特性が劣化するという問題が生じるためである。更
に、光ファイバ12への入射光量を最大にするために、
光ファイバ12の軸11に対して基台18を傾けること
により、光ファイバ12へ入射するレーザ光の光軸15
を傾けている。光ファイバ12の軸11に対するレーザ
光の光軸15の傾き角度、すなわち光軸傾き角度19
は、特開昭61−67809号公報や特開昭61−13
8216号公報にも述べられているとおり、光ファイバ
12の中のレーザ光の光軸が該光ファイバ12の軸11
と一致すべく、入射光が光ファイバ12の端面20で屈
折するように決定される。例えば、光ファイバ12の端
面20がその軸11の垂直面に対して8゜斜めに研磨さ
れている場合には、最大入射光量を得るためには光軸傾
き角度19が3.8゜となるように調整しなければなら
ない。The reason why the end face 20 of the optical fiber 12 is polished obliquely is that when the light reflected at the end face 20 (near-end reflection) is re-injected into the semiconductor light emitting element 14, reflection noise is generated and modulation characteristics are generated. This is because there is a problem in that is deteriorated. Furthermore, in order to maximize the amount of light incident on the optical fiber 12,
By tilting the base 18 with respect to the axis 11 of the optical fiber 12, the optical axis 15 of the laser beam
Is tilted. The inclination angle of the optical axis 15 of the laser beam with respect to the axis 11 of the optical fiber 12, that is, the optical axis inclination angle 19
Are disclosed in JP-A-61-67809 and JP-A-61-13.
No. 8216, the optical axis of the laser light in the optical fiber 12 is
Is determined so that the incident light is refracted at the end face 20 of the optical fiber 12. For example, when the end face 20 of the optical fiber 12 is polished at an angle of 8 ° with respect to the vertical plane of the axis 11, the optical axis tilt angle 19 becomes 3.8 ° in order to obtain the maximum amount of incident light. Must be adjusted as follows.
【0004】組立工程において治具等を用いて基台18
をパッケージ17に固定するのであるが、治具の精度、
レンズ13及び半導体発光素子14の固定精度等によ
り、光軸傾き角度19を正確に3.8゜に設定すること
は困難である。また、図の光軸傾き角度19はXY面内
でのX方向への傾きしか示していないが、実際にはY方
向にも傾きが生じている。そこで、実際には基台18を
パッケージ17に固定した後、光ファイバ12を通して
出射するレーザ光の光量が最大となるように光量を測定
しながら光ファイバ12に対してパッケージ17をθ方
向に回転させる調整を実施していた。これをθ調芯とい
う。In the assembling process, a base 18 is fixed by using a jig or the like.
Is fixed to the package 17, but the accuracy of the jig,
Due to the fixing accuracy of the lens 13 and the semiconductor light emitting element 14, it is difficult to accurately set the optical axis tilt angle 19 to 3.8 °. Although the optical axis tilt angle 19 in the figure shows only the tilt in the X direction within the XY plane, the tilt actually occurs in the Y direction. Therefore, after fixing the base 18 to the package 17, the package 17 is rotated in the θ direction with respect to the optical fiber 12 while measuring the light quantity so that the light quantity of the laser light emitted through the optical fiber 12 is maximized. Had been adjusted. This is called θ alignment.
【0005】[0005]
【発明が解決しようとする課題】上記従来の方法によれ
ば、光ファイバ12への最大入射光量を得るためにパッ
ケージ17を光ファイバ12に対して微小角度で回転さ
せる必要があり、このため調芯工程に多大の時間を要し
ていた。例えばθ調芯の微小角度を5゜とし、60゜の
範囲内を調芯するためには、最大12点の角度に対して
それぞれX,Y方向の位置調整が必要となり、調芯工程
に多大な時間がかかるものである。また、レーザ光の光
軸15の傾き方向は製品ごとにばらつきがあるために、
調芯時間のばらつきが大きく、工程時間の管理に多大な
費用がかかっていた。これにより、半導体レーザモジュ
ールの製造において、非常に生産性が悪く低コスト化の
妨げとなっていた。According to the above-mentioned conventional method, it is necessary to rotate the package 17 at a small angle with respect to the optical fiber 12 in order to obtain the maximum amount of light incident on the optical fiber 12. A lot of time was required for the core process. For example, in order to set the minute angle of θ alignment to 5 ° and to perform alignment within the range of 60 °, position adjustment in the X and Y directions for up to 12 points of angle is required, which is a great deal of time in the alignment process. It takes a long time. Also, since the inclination direction of the optical axis 15 of the laser light varies from product to product,
The dispersion of the alignment time was large, and the management of the process time was very expensive. As a result, in the production of the semiconductor laser module, the productivity is extremely low, which hinders cost reduction.
【0006】本発明の目的は、半導体レーザモジュール
の組立工程における調芯時間を短縮し、以て生産性の向
上、低コスト化を図ることにある。An object of the present invention is to shorten the alignment time in the assembly process of a semiconductor laser module, thereby improving the productivity and reducing the cost.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明では、光ファイバを通して出射するレーザ
光の光量が最大となるように半導体発光素子及びレンズ
に対する光ファイバのXY面内の第1の最適位置を求め
る工程と、光ファイバを前記第1の最適位置からZ方向
に相対移動させたうえ該光ファイバを通して出射するレ
ーザ光の光量が最大となるように半導体発光素子及びレ
ンズに対する光ファイバのXY面内の第2の最適位置を
求める工程と、前記第1及び第2の最適位置の間の関係
から所要の回転角度を求め該角度だけ光ファイバをθ方
向に相対回転させる工程とを採用した。In order to achieve the above object, the present invention provides a semiconductor light emitting device and a lens in which the laser light emitted through an optical fiber is positioned in the XY plane of the optical fiber with respect to the semiconductor light emitting element and the lens. A step of obtaining a first optimum position; and moving the optical fiber relative to the first optimum position in the Z direction, and moving the optical fiber with respect to the semiconductor light emitting element and the lens such that the amount of laser light emitted through the optical fiber is maximized. A step of obtaining a second optimum position of the optical fiber in the XY plane, and a step of obtaining a required rotation angle from the relationship between the first and second optimum positions and relatively rotating the optical fiber by the angle in the θ direction And adopted.
【0008】[0008]
【作用】本発明によれば、第1及び第2の最適位置の間
の関係から求めた角度だけ光ファイバをθ方向に回転さ
せた段階で、従来のθ調芯における光ファイバの最終位
置がほぼ得られる。したがって、光ファイバへほぼ最大
の入射光量が得られる状態からθ調芯を始めることがで
きる。しかも、第1及び第2の最適位置を求める工程
は、θ調芯に比べて容易に実施できる。According to the present invention, when the optical fiber is rotated in the θ direction by the angle determined from the relationship between the first and second optimum positions, the final position of the optical fiber in the conventional θ alignment is determined. Almost obtained. Therefore, θ alignment can be started from a state in which a substantially maximum amount of incident light is obtained on the optical fiber. In addition, the step of obtaining the first and second optimum positions can be easily performed as compared with the θ alignment.
【0009】[0009]
【実施例】本発明に係る半導体レーザモジュールの製造
方法の具体例を、図1及び図2を用いて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific example of a method for manufacturing a semiconductor laser module according to the present invention will be described with reference to FIGS.
【0010】図1において、半導体発光素子14から出
射されたレーザ光は、レンズ13により集光されたう
え、光ファイバ12に入射する。この入射レーザ光の光
軸15は、従来例で述べたような理由により、光ファイ
バ12の軸11に対してX,Y方向に傾きを生じてい
る。まず、この状態で光ファイバ12の出力測定を通じ
てX,Y,Z方向の調芯を行ない、入射光量が最大とな
る光ファイバ12の位置(X0 ,Y0 )を測定する。In FIG. 1, a laser beam emitted from a semiconductor light emitting element 14 is condensed by a lens 13 and then enters an optical fiber 12. The optical axis 15 of the incident laser light is inclined in the X and Y directions with respect to the axis 11 of the optical fiber 12 for the reason described in the conventional example. First, in this state, the alignment in the X, Y, and Z directions is performed by measuring the output of the optical fiber 12, and the position (X 0 , Y 0 ) of the optical fiber 12 at which the amount of incident light is maximum is measured.
【0011】次に、光ファイバ12を+Z方向へ例えば
100μm移動させ、X,Y方向の調芯を行ない、入射
光量が最大となる光ファイバ12の位置(X1 ,Y1 )
を測定する。図2は、(X0 ,Y0 )を原点としたとき
の(X1 ,Y1 )の位置を示した一例である。この例の
場合、レーザ光の光軸15は、+X方向へ傾くとともに
+Y方向にも傾きを生じていることがわかる。Next, the optical fiber 12 is moved in the + Z direction by, for example, 100 μm, and the alignment in the X and Y directions is performed, and the position (X 1 , Y 1 ) of the optical fiber 12 at which the amount of incident light is maximized.
Is measured. FIG. 2 is an example showing the position of (X 1 , Y 1 ) when (X 0 , Y 0 ) is the origin. In this example, it can be seen that the optical axis 15 of the laser light is inclined in the + X direction and also inclined in the + Y direction.
【0012】図2中の角度θ1 は、θ1 =tan
-1((Y1 −Y0 )/(X1 −X0 ))で求められる。
このように、Z方向の2点でそれぞれ光ファイバ12へ
の最大入射光量が得られるX,Y位置を求めることによ
り、光ファイバ12の軸11に対するレーザ光の光軸1
5の傾き方向を容易に知ることができる。The angle θ 1 in FIG. 2 is given by θ 1 = tan
-1 ((Y 1 -Y 0 ) / (X 1 -X 0 )).
As described above, by determining the X and Y positions at which the maximum amount of light incident on the optical fiber 12 is obtained at two points in the Z direction, the optical axis 1 of the laser light with respect to the axis 11 of the optical fiber 12 is obtained.
5 can be easily known.
【0013】次に、パッケージ17を光ファイバ12に
対して角度θ1 だけθ方向へ回転させる。この時点で従
来のθ調芯における光ファイバ12の最終位置がほぼ得
られる。したがって、この状態からθ調芯を行なえば、
光ファイバ12へほぼ最大の入射光量が得られる状態か
らθ調芯を始めることができるので、調芯時間を大幅に
短縮することができる。実際に従来の方法と比較したと
ころ、調芯時間は平均して約1/5に短縮された。ま
た、ほぼθ調芯された状態からθ方向の調芯を始めるこ
とができるので、調芯時間のばらつきは非常に小さく、
工程管理コストを最小限にすることができる。Next, the package 17 is rotated in the θ direction by an angle θ 1 with respect to the optical fiber 12. At this point, the final position of the optical fiber 12 in the conventional θ alignment is substantially obtained. Therefore, if θ alignment is performed from this state,
Since the θ alignment can be started from a state in which a substantially maximum amount of incident light is obtained on the optical fiber 12, the alignment time can be greatly reduced. Actually, as compared with the conventional method, the alignment time was reduced to about 1/5 on average. In addition, since the alignment in the θ direction can be started from a state where the θ alignment is substantially performed, the variation in the alignment time is very small,
Process control costs can be minimized.
【0014】以上のとおり、本実施例では、従来のθ方
向の調芯に先立って、X,Y,Z方向の調芯、光フ
ァイバ12をZ方向へ微小移動させた状態でのX,Y方
向の調芯、光ファイバ12のθ方向への相対回転とい
う3つの工程を採用したので、ほぼθ調芯された状態か
らθ方向の調芯を始めることができ、調芯時間を大幅に
短縮することができる。As described above, in the present embodiment, prior to the conventional alignment in the θ direction, the alignment in the X, Y, and Z directions, and the X, Y with the optical fiber 12 slightly moved in the Z direction. Since the three processes of centering in the direction and relative rotation of the optical fiber 12 in the θ direction are adopted, the centering in the θ direction can be started from a state where the θ is centered substantially, and the centering time is greatly reduced. can do.
【0015】[0015]
【発明の効果】以上説明してきたとおり、本発明によれ
ば、Z方向の2点でそれぞれ光ファイバへの最大入射光
量が得られるX,Y位置を求め、その結果に基づいて所
要の角度だけ光ファイバをθ方向に相対回転させること
としたので、従来に比べ半導体レーザモジュールの組立
工程における調芯時間を大幅に短縮できるとともに、調
芯時間のばらつきを最小限に抑えることができる。これ
により、半導体レーザモジュールの生産性の向上を実現
でき、また工程管理コストを小さく抑えることができ、
結果として大幅な低コスト化を達成できる。As described above, according to the present invention, the X and Y positions at which the maximum amount of incident light on the optical fiber can be obtained at two points in the Z direction are obtained, and based on the result, only the required angle is obtained. Since the optical fiber is relatively rotated in the θ direction, the alignment time in the assembling process of the semiconductor laser module can be significantly reduced as compared with the related art, and variation in the alignment time can be minimized. Thereby, the productivity of the semiconductor laser module can be improved, and the process management cost can be reduced.
As a result, significant cost reduction can be achieved.
【図1】本発明が適用される半導体レーザモジュールの
構成図である。FIG. 1 is a configuration diagram of a semiconductor laser module to which the present invention is applied.
【図2】本発明による光軸傾き角度測定方法の説明図で
ある。FIG. 2 is an explanatory diagram of an optical axis tilt angle measuring method according to the present invention.
11 光ファイバの軸 12 光ファイバ 13 レンズ 14 半導体発光素子 15 レーザ光の光軸 17 パッケージ 18 基台 19 光軸傾き角度 20 光ファイバの端面 Reference Signs List 11 optical fiber axis 12 optical fiber 13 lens 14 semiconductor light emitting element 15 laser light optical axis 17 package 18 base 19 optical axis tilt angle 20 end face of optical fiber
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−166906(JP,A) 特開 昭60−191211(JP,A) 特開 昭63−94208(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/24 - 6/42 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-166906 (JP, A) JP-A-60-191211 (JP, A) JP-A-63-94208 (JP, A) (58) Field (Int.Cl. 7 , DB name) G02B 6/24-6/42
Claims (1)
ズと斜めの端面を有する光ファイバとを、前記半導体発
光素子から出射されたレーザ光が前記レンズを通して前
記光ファイバの軸に対する所要の光軸傾き角度をもって
前記光ファイバの斜めの端面に入射するように光結合さ
せて一体化した半導体レーザモジュールの製造方法であ
って、 前記光ファイバの軸方向にZ軸をとり、該Z軸に対して
垂直にXY面をとるとき、前記半導体発光素子から前記
レンズを通して前記光ファイバの斜めの端面に入射し該
光ファイバを通して出射するレーザ光の光量が最大とな
るように、前記半導体発光素子及びレンズに対する前記
光ファイバのXY面内の第1の最適位置を求める工程
と、 前記半導体発光素子及びレンズに対して前記光ファイバ
を前記第1の最適位置からZ軸方向に相対移動させたう
え、該光ファイバを通して出射するレーザ光の光量が最
大となるように、前記半導体発光素子及びレンズに対す
る前記光ファイバのXY面内の第2の最適位置を求める
工程と、 前記第1及び第2の最適位置の間の関係から所要の回転
角度を求め、該求めた角度だけ前記半導体発光素子及び
レンズに対して前記光ファイバをZ軸回りに相対回転さ
せる工程とを備えたことを特徴とする半導体レーザモジ
ュールの製造方法。An optical fiber having a semiconductor light emitting element, at least one lens, and an optical fiber having an oblique end face, wherein a laser beam emitted from the semiconductor light emitting element passes through the lens and has a required optical axis inclination with respect to the axis of the optical fiber. What is claimed is: 1. A method for manufacturing a semiconductor laser module, wherein an optical fiber is optically coupled so as to be incident on an oblique end face of the optical fiber at an angle, and a Z axis is set in an axial direction of the optical fiber, When taking an XY plane, the semiconductor light emitting element and the lens with respect to the lens so that the amount of laser light incident on the oblique end face of the optical fiber through the lens from the semiconductor light emitting element and emitted through the optical fiber is maximized. Obtaining a first optimum position in the XY plane of the optical fiber; and connecting the optical fiber to the semiconductor light emitting element and the lens. Is moved relative to the Z-axis direction from the optimal position of the optical fiber, and the second optimal position in the XY plane of the optical fiber with respect to the semiconductor light emitting element and the lens is set so that the amount of laser light emitted through the optical fiber is maximized. Determining a position; determining a required rotation angle from a relationship between the first and second optimal positions; and relative to the semiconductor light-emitting element and the lens by the determined angle relative to the semiconductor light-emitting element and the lens about the Z axis. Rotating the semiconductor laser module.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06250459A JP3096583B2 (en) | 1994-10-17 | 1994-10-17 | Method for manufacturing semiconductor laser module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06250459A JP3096583B2 (en) | 1994-10-17 | 1994-10-17 | Method for manufacturing semiconductor laser module |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08114725A JPH08114725A (en) | 1996-05-07 |
JP3096583B2 true JP3096583B2 (en) | 2000-10-10 |
Family
ID=17208197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06250459A Expired - Fee Related JP3096583B2 (en) | 1994-10-17 | 1994-10-17 | Method for manufacturing semiconductor laser module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3096583B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6678047B1 (en) | 1999-07-09 | 2004-01-13 | The Furukawa Electric Co., Ltd. | Method and apparatus for aligning optical axes of optical components |
JP3833889B2 (en) | 2000-11-29 | 2006-10-18 | 古河電気工業株式会社 | Laser diode device and optical fiber alignment method, alignment device using the method, and laser diode module |
-
1994
- 1994-10-17 JP JP06250459A patent/JP3096583B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08114725A (en) | 1996-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0611142B1 (en) | A process for optically joining an optical fiber array to an opponent member | |
JPH1082930A (en) | Optical module and its production | |
JPH07110420A (en) | Semiconductor laser element module and its assembling method | |
JP3167650B2 (en) | Photodetector with integrated mirror and method of making the same | |
JP3096583B2 (en) | Method for manufacturing semiconductor laser module | |
JPH10123356A (en) | Method for measuring position of optical transmission member and method for manufacturing optical device | |
JPH09318847A (en) | Photodetector and optical coupling structure for optical fiber | |
EP0846966A2 (en) | Optical waveguide | |
JPH04155983A (en) | Semiconductor laser device | |
JP3881564B2 (en) | Optical fiber fixture connection structure | |
JP3027649B2 (en) | Optical semiconductor device module | |
JP2823887B2 (en) | Method and apparatus for manufacturing optical unit | |
JP3131091B2 (en) | Method for manufacturing semiconductor laser module | |
JP2004258387A (en) | Diagonal tip fiber | |
JPH06230236A (en) | Optical circuit | |
JPH1062648A (en) | Optical fiber collimator | |
JP2516577Y2 (en) | Aligning device | |
JPS62210413A (en) | Optical coupling module | |
JPH09211239A (en) | Polarization maintaining fiber and polarization maintaining fiber semiconductor laser module | |
JPH06130250A (en) | Structure for connecting optical waveguide and optical fiber | |
JPH04150085A (en) | Semiconductor laser package | |
JP3331555B2 (en) | Optical fiber alignment method and optical fiber alignment device | |
JPH0854536A (en) | Optical fiber array and optical waveguide module coupling method | |
JPS61165707A (en) | Manufacturing device of optical branching device | |
JPH0545543A (en) | Optical component fixing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000725 |
|
LAPS | Cancellation because of no payment of annual fees |