[go: up one dir, main page]

JPH03178341A - Thermostatic tank and method for operating the same - Google Patents

Thermostatic tank and method for operating the same

Info

Publication number
JPH03178341A
JPH03178341A JP7239389A JP7239389A JPH03178341A JP H03178341 A JPH03178341 A JP H03178341A JP 7239389 A JP7239389 A JP 7239389A JP 7239389 A JP7239389 A JP 7239389A JP H03178341 A JPH03178341 A JP H03178341A
Authority
JP
Japan
Prior art keywords
sample
block
peltier element
heat storage
constant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7239389A
Other languages
Japanese (ja)
Inventor
Masamichi Usuda
臼田 正道
Takamichi Ito
伊藤 孝道
Harusuke Tsunematsu
常松 治資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atto Corp
Original Assignee
Atto Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atto Corp filed Critical Atto Corp
Priority to JP7239389A priority Critical patent/JPH03178341A/en
Publication of JPH03178341A publication Critical patent/JPH03178341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)

Abstract

PURPOSE:To cool and heat a sample with a sharp temp. gradient by unifying a Peltier element with a regenerative block having large heat capacity and making a block holding a sample relatively movable so as to allow the same to come close to or separate from the regenerative block. CONSTITUTION:In a thermostatic tank cooling and heating a sample 1 using a Peltier element 4, the Peltier element 4 is unified with a regenerative block 5 having large heat capacity while a block 2 for holding the sample 1 is prepared to be made relatively movable so as to come close to or separate from the regenerative block 5. As a result, the setting of constant temp. within a range from low temp. to high temp. of 80 deg.C or higher can be achieved by simple constitution using one thermostatic tank and the sample can be also cooled and heated with temp. gradient far sharper as compared with a conventional type and the operation of the thermostatic tank is simple.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は恒温槽に係り特にペルチェ素子と電気ヒータと
を組合せ試料を急速に任意の設定温度に至らしめ得る恒
温槽に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thermostatic chamber, and more particularly to a thermostatic chamber that can rapidly bring a sample to an arbitrary set temperature by combining a Peltier element and an electric heater.

[従来の技術] 従来の恒温槽は設定温度を変えて、その目標の温度に至
らしめるには必ず成る時間を要し、この所要時間の長さ
により使用目的に適合しない事が屡々ある。
[Prior Art] Conventional constant temperature ovens always require a certain amount of time to reach the target temperature by changing the set temperature, and are often not suitable for the purpose of use due to the length of time required.

温度を急速に上げ、または下げるためには恒温槽内に入
れた試料に対して短時間に人世の熱を授受する必要があ
る。
In order to rapidly raise or lower the temperature, it is necessary to transfer human heat to and from the sample placed in the thermostatic chamber in a short period of time.

これに対し、既存の方法として、多くの場合、加温には
大容量の電気ヒータが用いられ冷却には低温の循環水を
用いることが一般的である。
In contrast, existing methods generally use large-capacity electric heaters for heating and use low-temperature circulating water for cooling.

いずれの場合も装置そのものが大きく、かつ冷却にあっ
ては、水の循環装置などの設備を必要とするので、非常
に使い勝手が悪いといえる。
In either case, the device itself is large and requires equipment such as a water circulation device for cooling, making it extremely difficult to use.

冷却には半導体熱交換素子(ペルチェ素子)を用いるも
のもあり、このことは特筆することではないが、これで
短時間に冷却を行うには、高価な素子を多量に用いると
同時に大電力をも消費することになり、コスト高、かつ
装置は大型になる。
Some devices use semiconductor heat exchange elements (Peltier elements) for cooling, and although this is not particularly noteworthy, in order to achieve cooling in a short time with this, it is necessary to use a large amount of expensive elements and a large amount of power. This also results in higher costs and larger equipment.

然もこのペルチェ素子は80℃以上の温度で破壊される
性質があり電気ヒータと隣接して恒温槽に組込んだ場合
には恒温槽の加熱時に破損されるのでペルチェ素子を恒
温槽に適用することは事実上出来なかった。
However, this Peltier element has the property of being destroyed at temperatures above 80°C, and if it is installed in a thermostatic oven next to an electric heater, it will be damaged when the thermostatic oven is heated, so the Peltier element is not used in the thermostatic oven. That was virtually impossible.

[発明により解決すべき課題] 本発明は敢えてペルチェ素子を利用し上記した従来型欠
点を排除しきわめて簡潔な装置でありながら、前述の目
的を十分に満たしてくれる装置及び方法にある。
[Problems to be Solved by the Invention] The present invention is directed to an apparatus and method that utilizes a Peltier element, eliminates the above-described drawbacks of the conventional method, and is extremely simple, yet fully satisfies the above-mentioned objects.

[上記課題の解決手段コ そこで本発明では、ペルチェ素子で別に設けた蓄熱体(
鋼、アルミニウム等)を予め冷却しておき、これを移動
可能とし急激な冷却を必□とする時に、機械的に試料保
持ブロックに密着させることで、急速な冷却を実現しよ
うとするものであり、もち論これと同時にペルチェ素子
も冷却動作を持続させることにより、総合的に冷却能力
を増大させることができる。
[Means for solving the above problems] Therefore, in the present invention, a heat storage body separately provided with a Peltier element (
This method attempts to achieve rapid cooling by pre-cooling materials (such as steel, aluminum, etc.), making them movable, and mechanically bringing them into close contact with a specimen holding block when rapid cooling is required. Of course, by continuing the cooling operation of the Peltier element at the same time, the overall cooling capacity can be increased.

以−Lのように本発明は急速冷却を簡素な装置で実現し
たことが最大の特徴といえる。
The greatest feature of the present invention is that it achieves rapid cooling with a simple device, as shown in FIG.

[作用] 本発明に於いては、試料を保持ブロックに保持しておき
この保持ブロックをペルチェ素子により予め笑質」二股
定温度に冷却又は加熱しておいた蓄熱ブロックに密着さ
せたり切離したり出来る様に保持ブロックの上下機構を
設け、試料保持ブロックな蓄熱ブロックに密着させて熱
の接授を行ったり、切離して熱の接授を止めたりして、
任意の時に試料の冷却、加温が急速に達成出来る。
[Function] In the present invention, a sample is held in a holding block, and this holding block can be brought into close contact with or separated from a heat storage block that has been cooled or heated to a constant temperature using a Peltier device. Similarly, a mechanism for raising and lowering the holding block is provided, and the heat storage block, which is the sample holding block, can be brought into close contact with the heat storage block to transfer heat, or separated to stop the transfer of heat.
Cooling and heating of samples can be rapidly achieved at any time.

特に80℃以上の試料加熱が要望される時は従来の様に
試料ブロック自体を電気ヒータにより加熱するが、この
場合6上記移動機構を駆動してペルチェ素子にこの高温
が及ばない様にする。
In particular, when it is desired to heat the sample to 80° C. or higher, the sample block itself is heated by an electric heater as in the past, but in this case, the moving mechanism 6 is driven to prevent this high temperature from reaching the Peltier element.

[実施例] 第3図は本発明に類似した従来の恒温槽を示し斜視図を
(A)、断面図を(,13)で示′1−1は液体状の試
料を入れ例えば遠心分離帯より取り外したガラスチュー
ブでありこれら複数本を保持ブロック2に開けた穴の中
に挿入保持させる。
[Example] Fig. 3 shows a conventional constant temperature bath similar to the present invention, with a perspective view (A) and a cross-sectional view (13). A plurality of these glass tubes are inserted and held in holes made in the holding block 2.

保持ブロックの下面に偏平なペルチェ素子4を貼付け、
これに通憲して保持ブロック2の温度を制御する。
Attach a flat Peltier element 4 to the lower surface of the holding block,
In accordance with this, the temperature of the holding block 2 is controlled.

3はペルチェ素子4の放勿フィンをちった放熱器である
Reference numeral 3 denotes a heat radiator formed by removing the radiation fins of the Peltier element 4.

この従来例にあっては試料を設定温度に維持するには試
料ブロック内にガラスチュブlを保持せしめてからペル
チェ素子に通′毛を開始するので設定温度に達するまで
に時間を要する。
In this conventional example, in order to maintain the sample at the set temperature, the glass tube 1 is held in the sample block and then the hairs begin to pass through the Peltier element, so it takes time to reach the set temperature.

更にペルチェ素子は80℃以上には加熱出来ないので本
従来型恒温槽は高温加熱は出来ない欠点があった。
Furthermore, since the Peltier element cannot be heated above 80° C., this conventional thermostat has the disadvantage that it cannot be heated to high temperatures.

第1図(A)(B)は本発明恒温槽の実施例を示す斜視
図、及び断面図を示し、恒温化されるべき試料はガラス
チューブl内に入っている液体状のちのである。
FIGS. 1(A) and 1(B) show a perspective view and a cross-sectional view of an embodiment of the constant temperature bath of the present invention, in which the sample to be constant temperature is in a liquid state contained in a glass tube l.

2はガラスチューブlを多数熱接授よく保持する熱良導
体の保持ブロックで、下面は蓄熱ブロック5よりの熱の
接授をよくするため蓄熱ブロックの上面とよく密着する
様に加工する。
Reference numeral 2 denotes a holding block made of a good thermal conductor that holds a large number of glass tubes 1 well by thermal welding, and its lower surface is processed to be in close contact with the upper surface of the heat storage block 5 in order to improve heat welding from the heat storage block 5.

このチューブ保持ブロック2は蓄熱ブロック5と約5m
m程度まで離れる様に上下移動する様に構成する。(図
示せず) 蓄熱ブロック5は銅、アルミニウム等の材質よりなる可
及的熱容量の大きい蓄熱ブロックである。
This tube holding block 2 is approximately 5m apart from the heat storage block 5.
It is configured to move up and down so as to be separated by about m. (Not shown) The heat storage block 5 is a heat storage block made of a material such as copper or aluminum and has a large possible heat capacity.

この下面にはペルチェ素子4とよく密着させて該ペルチ
ェ素子4との熱接授をよくしである。
This lower surface is in close contact with the Peltier element 4 to improve thermal bonding with the Peltier element 4.

該ペルチェ素子4の下面はフィン付放熱器3が取り付け
てあり、蓄熱ブロック5と放熱器3との間にペルチェ素
子4が介在してこれら3ツの部材は密着し積層されて1
体に構成せられる。
A heat radiator 3 with fins is attached to the lower surface of the Peltier element 4, and the Peltier element 4 is interposed between the heat storage block 5 and the heat radiator 3, and these three members are laminated in close contact with each other.
Constructed in the body.

次に本発明のこの構成になる恒温槽の操作につき説明す
る。
Next, the operation of the constant temperature bath having this configuration of the present invention will be explained.

先づ試料を冷却する場合は、予め蓄熱ブロック5をその
希望する設定温度に冷却するべくペルチェ素子に通電し
ておく。
When cooling the sample first, the Peltier element is energized in advance to cool the heat storage block 5 to its desired set temperature.

もち論ペルチェ素子への通電と蓄熱ブロック5の温度と
は公知の温度制御方式により蓄熱ブロックは設定温度に
維持されているものとする。
It is assumed that the power supply to the Peltier element and the temperature of the heat storage block 5 are maintained at a set temperature by a known temperature control method.

次に試料を入れたガラスチューブl(例えば遠心分離器
より取り外した遠心チューブ)を試料保持ブロック2に
保持し、該ブロックを上下機構によりその下面を蓄熱ブ
ロック5の上面に密着させる。
Next, the glass tube l containing the sample (for example, the centrifugal tube removed from the centrifuge) is held in the sample holding block 2, and the lower surface of the block is brought into close contact with the upper surface of the heat storage block 5 by the vertical mechanism.

この様にして保持ブロック2は畜熱ブロック5と同じ温
度に維持せられる。
In this way, the holding block 2 is maintained at the same temperature as the heat storage block 5.

試料を80℃以下に恒温加熱する場合も上記と全て同様
であるので説明を省略する。
The case where the sample is heated at a constant temperature of 80° C. or lower is also the same as above, so the explanation will be omitted.

次に試料を80’C以上に恒温加熱する場合は公知の様
に電気ヒータ(図示せず)により試料ブロックを加熱す
るが、ここで特に注意することはこの場合は保持ブロッ
ク2と蓄熱ブロック5とは上下機構により約5mm以上
離し保持ブロックの高温がペルチェ素子4へ伝わらない
様にしている事である。
Next, when heating the sample at a constant temperature of 80'C or higher, the sample block is heated by an electric heater (not shown) as is known in the art. This means that the high temperature of the holding block is prevented from being transmitted to the Peltier element 4 by separating the holding block by a distance of about 5 mm or more using a vertical mechanism.

冷却、加熱何れの場合でもペルチェ素子への通電は維持
しつ1行なえば冷却加熱速度が早くなる。
In either case of cooling or heating, if the Peltier element is kept energized and one cycle is performed, the cooling/heating speed becomes faster.

上下機構は極めて簡単な機構であるので特に図示はして
おらず、保持ブロックの側壁に上下矢印で略示している
が、本発明に於いて重要な事は上下機構自体の構成では
なく、該機構により保持る♂り2とペルチェ素子4との
間に熱伝導絶縁が得られ、ペルチェ素子がこの種恒温槽
に適用され得た点にある。
Since the vertical mechanism is an extremely simple mechanism, it is not particularly illustrated, and is simply indicated by up and down arrows on the side wall of the holding block, but what is important in the present invention is not the configuration of the vertical mechanism itself, but the structure of the vertical mechanism itself. Thermal conductive insulation is obtained between the female hole 2 held by the mechanism and the Peltier element 4, and the Peltier element can be applied to this type of constant temperature bath.

第3図は本発明により如何に早く試料が設定温度に到達
されるかを従来型との比較に於いて示すグラフであり、
従来恒温槽即ち大熱容里の蓄熱ブロックがない場合に於
いては95℃の試料が希望設定温度37℃まで下げるの
に180秒要していたものが本発明によれば僅か30秒
で得られることを示すグラフである。
FIG. 3 is a graph showing how quickly the sample reaches the set temperature according to the present invention in comparison with the conventional method.
Conventionally, it took 180 seconds to lower a sample at 95°C to the desired set temperature of 37°C in the absence of a constant temperature bath, that is, a heat storage block with a large heat capacity, but according to the present invention, it took only 30 seconds. This is a graph showing that

尚、より急速な冷却を要する時は蓄熱ブロック5の温度
を予め設定温度より更に下げておき、保持ブロック2の
蓄熱ブロックへの密着頭初は急温度勾配を辿り其の後は
設定温度に向かって制御するようにしてもよい。
In addition, when more rapid cooling is required, the temperature of the heat storage block 5 is lowered further than the set temperature in advance, and when the holding block 2 comes into close contact with the heat storage block, the temperature initially follows a steep temperature gradient and then moves toward the set temperature. It may also be controlled by

[効果] 本発明によれば、低温から80’C以上の高温4 。[effect] According to the present invention, from low temperature to high temperature 4 of 80'C or more.

まで1つの恒温槽で恒温化が簡単な構成で達成出来るば
かりでなく、且つ、従来型よりも遥かに急な温度勾配を
以って試料を冷却加熱出来、然もその操作も簡単である
Not only can constant temperature be achieved with a single constant temperature bath with a simple configuration, but also the sample can be cooled and heated with a much steeper temperature gradient than conventional methods, and the operation is simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)CB)はペルチェ素子を用いた本発明によ
る恒温槽の斜視図及び断面図。 第2図は、本発明恒温槽の性能を従来型の性能と比較し
たグラフである。 第3図(A)(B)は従来型による恒温槽の斜視図及び
断面図である。 試料チューブ 試料チューブ保持ブロック ペルチェ素子放熱器 ペルチェ素子 蓄熱ブロック 3゛故然器 4 ペルチェ素子 5 蓄熱ブロック :ガラスチューブ :チューブ保持器 放熱器 :ペルチェ素子 (試料容器)
FIGS. 1(A) and 1(CB) are a perspective view and a sectional view of a constant temperature bath according to the present invention using a Peltier element. FIG. 2 is a graph comparing the performance of the thermostatic chamber of the present invention with that of a conventional type. FIGS. 3(A) and 3(B) are a perspective view and a sectional view of a conventional thermostat. Sample tube Sample tube holding block Peltier element heat sink Peltier element heat storage block 3゛ Natural vessel 4 Peltier element 5 Heat storage block: Glass tube: Tube holder Heat sink: Peltier element (sample container)

Claims (3)

【特許請求の範囲】[Claims] (1)ペルチェ素子を用いて試料を冷却、加熱する恒温
槽に於いて、ペルチェ素子を熱容量の大な蓄熱ブロック
に1体化し、一方、試料を保持する保持ブロックを用意
し、これを上記蓄熱ブロックと密着したり、切離したり
相対移動可能とした事を特徴とする恒温槽。
(1) In a constant temperature bath that uses a Peltier element to cool and heat a sample, the Peltier element is integrated into a heat storage block with a large heat capacity, and a holding block that holds the sample is prepared, and this is used for the heat storage described above. A thermostatic chamber that is characterized by being able to be brought into close contact with the block, separated from it, and moved relative to it.
(2)上記請求項(1)記載の恒温槽操作に於いて、ペ
ルチェ素子と1体化した蓄熱ブロックを予め試料に必要
な設定温度に実質上保持しておき、次に試料保持ブロッ
クを上記蓄熱ブロックに密着し、ペルチェ素子への通電
を止めない事を特徴とする恒温槽の操作方法。
(2) In the constant temperature chamber operation according to claim (1) above, the heat storage block integrated with the Peltier element is substantially maintained at a set temperature required for the sample in advance, and then the sample holding block is A method of operating a constant temperature oven, which is characterized by being in close contact with a heat storage block and not stopping electricity to the Peltier element.
(3)上記請求項(1)記載の恒温槽に於ける試料保持
ブロックに更に加熱用の電気ヒータを設けておき、該ヒ
ータにより上記試料保持ブロックを80℃以上に加熱す
る時は、上記ペルチェ素子と上記試料保持ブロックを相
対移動して切離すことを特徴とする恒温槽操作 方法。
(3) The sample holding block in the constant temperature oven according to claim (1) is further provided with an electric heater for heating, and when the sample holding block is heated to 80°C or higher by the heater, the Peltier A method of operating a constant temperature chamber, characterized in that the element and the sample holding block are separated by relative movement.
JP7239389A 1989-03-24 1989-03-24 Thermostatic tank and method for operating the same Pending JPH03178341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7239389A JPH03178341A (en) 1989-03-24 1989-03-24 Thermostatic tank and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7239389A JPH03178341A (en) 1989-03-24 1989-03-24 Thermostatic tank and method for operating the same

Publications (1)

Publication Number Publication Date
JPH03178341A true JPH03178341A (en) 1991-08-02

Family

ID=13487986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7239389A Pending JPH03178341A (en) 1989-03-24 1989-03-24 Thermostatic tank and method for operating the same

Country Status (1)

Country Link
JP (1) JPH03178341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002238119B2 (en) * 2001-03-03 2006-07-13 Gilson, Inc. Heat transfer apparatus for sample containing well plates
JP2007261559A (en) * 2006-03-02 2007-10-11 Aisin Seiki Co Ltd Steering wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002238119B2 (en) * 2001-03-03 2006-07-13 Gilson, Inc. Heat transfer apparatus for sample containing well plates
JP2007261559A (en) * 2006-03-02 2007-10-11 Aisin Seiki Co Ltd Steering wheel

Similar Documents

Publication Publication Date Title
US3194023A (en) Thermo-electric refrigerator unit
US4794217A (en) Induction system for rapid heat treatment of semiconductor wafers
WO1999043022A1 (en) Thermal cycling module and process using radiant heat
CN108028213A (en) Pre-heating mean for Millisecond annealing system
JP5870339B2 (en) Thermal shock test equipment
US5410130A (en) Heating and temperature cycling
BR102013017601B1 (en) DEVICE TO DEFROST A FROZEN BIOLOGICAL MATERIAL
JPH03178341A (en) Thermostatic tank and method for operating the same
JP2901653B2 (en) Heat treatment method and heat treatment apparatus
JP3113446B2 (en) incubator
JPH03101844A (en) Thermostatic bath
GB2188163A (en) Testing degradation of a sample under thermal cycling
GB2608698A (en) Multi-sample tissue homogenizer
US3264746A (en) Freeze-drying
KR20170140657A (en) temperature control system using the thermoelectric element and the coolant
JP3113531B2 (en) Crystal growth cell
JPS6446930A (en) Base plate for sample
CN222305840U (en) Micro-fluidic chip and temperature control system based on micro-fluidic chip
JPH10132770A (en) Thermal analysis apparatus
JP2016520791A (en) Heater made of phase change material
CN213276393U (en) Temperature control device
JP3247714B2 (en) Element heating / cooling test equipment
GB2096827A (en) Method of and apparatus for the controlled cooling of a product
US11629731B2 (en) Thermo-electric cooler pump methods and systems
CN220867431U (en) Bidirectional magnetic adsorption PCR module