[go: up one dir, main page]

JPH03177385A - Circuit substrate having high thermal conductivity - Google Patents

Circuit substrate having high thermal conductivity

Info

Publication number
JPH03177385A
JPH03177385A JP31657289A JP31657289A JPH03177385A JP H03177385 A JPH03177385 A JP H03177385A JP 31657289 A JP31657289 A JP 31657289A JP 31657289 A JP31657289 A JP 31657289A JP H03177385 A JPH03177385 A JP H03177385A
Authority
JP
Japan
Prior art keywords
substrate
layer
silicone resin
metallized layer
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31657289A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
弘志 佐藤
Tadashi Nakano
正 中野
Masato Kumagai
正人 熊谷
Toshihiko Funabashi
敏彦 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31657289A priority Critical patent/JPH03177385A/en
Publication of JPH03177385A publication Critical patent/JPH03177385A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Ceramic Products (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PURPOSE:To provide a circuit substrate having high heat conductivity, showing bond strength between AlN substrate and metallized layer, bond reliability, etc., by forming a metallized layer through a silicone layer on the surface of a sintered material consisting essentially of AlN. CONSTITUTION:A silicone resin layer is formed on an AIN substrate by a method of coating the AlN substrate with a solution containing silicone resin oligomer (e.g. trimethoxysilane oligomer) followed by curing, etc. Then, a metallized layer is formed on the silicone resin layer by thick film printing method, DBC method, thin film method, electroless plating, etc., to produce a circuit substrate having high heat conductivity. Consequently, since the silicone resin layer is formed before the metallized layer is formed on the AlN substrate, bond strength between the metallized layer and the AlN substrate can be improved and the prepared substrate having high heat conductivity is especially useful as IC insulating substrate.

Description

【発明の詳細な説明】 [産業上のfll用分野j 本発明は、高熱伝導性基板として、特にIC絶縁基板と
して有用な、基板との接合強度・接合信頼性に優れる金
属化層を持つ窒化アルミニウム(AβN)基板に関する
[Detailed Description of the Invention] [Industrial FLL Field] The present invention is directed to a nitrided substrate having a metallized layer that has excellent bonding strength and bonding reliability with the substrate and is useful as a highly thermally conductive substrate, particularly as an IC insulating substrate. The present invention relates to an aluminum (AβN) substrate.

〔従来の技術] 従来より、半導体装基板等に使用されるセラミック基板
としては、アルミナを主成分とするものか主に使用され
てきたが、半導体の高電力化。
[Prior Art] Conventionally, ceramic substrates mainly containing alumina have been used for semiconductor packaging substrates, etc., but as the power of semiconductors increases.

高集積化及びモジュール化にともない、回路の回位面積
当りの発熱量が増大している。
With higher integration and modularization, the amount of heat generated per circuit area is increasing.

このためにアルミナ基板より放熱性が大きく(すなわち
熱伝導率が高い)、電気的特性がアルミナに這いセラミ
ック基板が必要とされている。
For this reason, a ceramic substrate is needed, which has greater heat dissipation (that is, higher thermal conductivity) than an alumina substrate and has electrical characteristics comparable to alumina.

このような特性を満足するセラミック基板として、高熱
伝導性、高絶縁性、高絶縁耐性、低誘電率、低誘電損失
等の優れた電気的特性を有する窒化アルミニウム基板が
近年、注目されている。
As a ceramic substrate that satisfies these characteristics, aluminum nitride substrates, which have excellent electrical properties such as high thermal conductivity, high insulation properties, high dielectric strength, low dielectric constant, and low dielectric loss, have attracted attention in recent years.

しかしながら、AβN基板に導体ペーストもしくは抵抗
体ペーストを印刷焼成する場合、ペースト中のガラスと
AffN基板の濡れが悪くペーストとAffN基板表面
の接合信頼性が低いという問題点があった。このことは
、DBC法(DirectBond Copper法)
等の金属化層形成法でも同様である。また、現在、A4
2N基板専用ペーストが開発されつつあるが、接合信頼
性の高いものはまだ得られていない。
However, when a conductor paste or a resistor paste is printed and fired on an AβN substrate, there is a problem in that the glass in the paste and the AffN substrate do not wet well, and the bonding reliability between the paste and the surface of the AffN substrate is low. This is the DBC method (Direct Bond Copper method)
The same applies to metallized layer forming methods such as . Also, currently A4
Pastes specifically for 2N substrates are being developed, but one with high bonding reliability has not yet been obtained.

ペーストとAffN基板表面の接合性を向上させるため
に、AβN基板表面を大気もしくは酸素雰囲気中で加熱
することにより基板表面にアルミナ層を形成し、その上
に金属化層を形成する方は(特開昭62−46986号
公報)がある。
In order to improve the bondability between the paste and the AffN substrate surface, an alumina layer is formed on the substrate surface by heating the AβN substrate surface in the air or an oxygen atmosphere, and a metallized layer is formed on top of the alumina layer. Publication No. 46986/1986).

同様の目的で、A ff N基板表面に酸化物被膜を形
成し、その上に金属化層を形成する方法が知られている
。酸化物層を形成する方法としては、酸fヒ物のコロイ
ド粒子を含んだl容Ifi(特開昭63−248786
号公報)あるいは金属アルコキシドを含有した清液を塗
布し、大気中で焼成する(特開昭62−123087号
公報)湿式法、又はP V D (F’hysical
 Vapor Deposition )やCVD(C
heraical Vapor Deposition
 )等の乾式法(特開昭62−182183号公報)が
ある。
For the same purpose, a method is known in which an oxide film is formed on the surface of an A ff N substrate and a metallized layer is formed thereon. As a method for forming the oxide layer, ifi containing colloidal particles of acid and arsenate (Japanese Patent Application Laid-Open No. 63-248786) is used.
(Japanese Patent Application Laid-open No. 123087/1987), a wet method in which a liquid containing a metal alkoxide is applied and fired in the air (Japanese Patent Application Laid-open No. 123087/1987), or P V D (F'hysical
Vapor Deposition) and CVD (C
Heraical Vapor Deposition
) and the like (Japanese Unexamined Patent Publication No. 182183/1983).

しかしながら、Al2N基板表面の直接酸化法では、緻
密なアルミナ層を形成すること、アルミナ層の厚みを制
御することが特に困難である。また、アルミナ基板のア
ルミナの純度が高純度になるとかえって密着強度が落ち
るという知見があり、アルミナ単体からなる表面層と厚
膜ペーストの密@性にも問題が残る。このことは、基板
表面にアルミナ膜を形成した場合で6同様であり、酸化
物膜形成法では他の組成系を選択する必要がある。
However, in the direct oxidation method of the surface of the Al2N substrate, it is particularly difficult to form a dense alumina layer and to control the thickness of the alumina layer. Furthermore, there is knowledge that as the purity of the alumina in the alumina substrate increases, the adhesion strength actually decreases, and there remains a problem in the adhesion between the surface layer made of alumina alone and the thick film paste. This is the same as in 6 when an alumina film is formed on the substrate surface, and it is necessary to select another composition system in the oxide film forming method.

一方、酸化物のコロイド粒子を分散させた1g液をA 
I2 N基板表面に塗布し、大気中で焼成する酸化物被
膜形成法では、緻密な酸化物層を形成することが困難で
あるために密着強度を向上させることが容易ではない。
On the other hand, 1 g of liquid containing oxide colloidal particles was added to A
In the method of forming an oxide film in which I2N is coated on the surface of a substrate and fired in the atmosphere, it is difficult to form a dense oxide layer, so it is not easy to improve the adhesion strength.

また、コロイド粒子を分散させた病?夜を調整すること
に手間がかかるという問題もある。
Also, a disease that disperses colloidal particles? There is also the problem that it takes time and effort to adjust the night.

また、金属アルコキシドを含有した清液をA ff N
基板表面に塗布し、大気中で焼成する方法では1.A 
Q N基板との接合性に問題がある。史)こ金属アルコ
キシドを含有した(8液の保仔が非常に困難である。
In addition, the clear liquid containing metal alkoxide is A ff N
In the method of coating the substrate surface and baking it in the atmosphere, 1. A
Q There is a problem with bonding with the N substrate. History) Containing metal alkoxides (8 liquids) are very difficult to maintain.

重に、PVD、CVD等の乾式l去では、装置が大がか
りになり、コストと量産性にち問題がある。
In addition, dry removal methods such as PVD and CVD require large-scale equipment, which poses problems in terms of cost and mass production.

[発明が解決しようとする課題1 本発明は上記従来技術の問題点を解決し、Al2N基板
に対する金属化層の接合強度と接合信頼性が向上された
高熱伝導性回路基板を提供しようとするものである。
[Problem to be Solved by the Invention 1] The present invention aims to solve the above-mentioned problems of the prior art and provide a highly thermally conductive circuit board in which the bonding strength and bonding reliability of the metallized layer to the Al2N substrate are improved. It is.

[課題を解決するための手段J 本発明は上記課題を解決するために、窒化アルミニウム
を主成分とする焼結体と、その表面に形成されたシリコ
ーン樹脂層と、さらにその上に形成された金属化層とか
ら成ることを特徴とする高部伝導性回路基板を提供する
ものである。
[Means for Solving the Problems J] In order to solve the above problems, the present invention provides a sintered body mainly composed of aluminum nitride, a silicone resin layer formed on the surface of the sintered body, and a silicone resin layer formed on the surface of the sintered body. The present invention provides a highly conductive circuit board comprising a metallized layer.

[作用1 本発明者らの実験によれば、AffN基板上にシフコー
ン樹脂を含有する187aを塗布し、加熱硬化させた後
に、金属化面を形成したところ十分な接合強度が得られ
、本発明はかかる知見により得られたものである。
[Effect 1] According to experiments conducted by the present inventors, sufficient bonding strength was obtained when 187a containing Schiffcone resin was coated on an AffN substrate, heated and cured, and then a metallized surface was formed. was obtained from this knowledge.

、A I2 N基板上のシリコーン樹脂層は、一般にシ
フコーン園脂オリゴマーを含有する溶酸(コーテイング
液)をA R、N基板上に塗布し、その後硬化させるこ
とにより形成される。
The silicone resin layer on the , A I2 N substrate is generally formed by applying a molten acid (coating liquid) containing a Schifkorn resin oligomer onto the A R,N substrate and then curing it.

本発明で用いられるシリコーン樹脂オリゴマーとしでは
、トリメトキシシラン、トリメチルエトキシシラン メ
チルジメトキシシラン、テトラエトキシシラン等のアル
コキシシランのオリゴマー、ヘキサメチルジシラン、オ
クタメチルシクロテトラシラザン等のシラザンのオリゴ
マー、反応性シロキサンオリゴマー等が挙げられる。
The silicone resin oligomers used in the present invention include alkoxysilane oligomers such as trimethoxysilane, trimethylethoxysilane, methyldimethoxysilane, and tetraethoxysilane, silazane oligomers such as hexamethyldisilane and octamethylcyclotetrasilazane, and reactive siloxanes. Examples include oligomers.

シリコーン樹脂オリゴマーのl8媒は、シリコン樹脂オ
リゴマーを溶解させるものであればかまわないが、特に
有機溶媒が好ましい。有機溶媒としては、例えば、エタ
ノール、イソプロピルアルコール、メチルイソブチルケ
トン、トルエン等がある。
The l8 medium for the silicone resin oligomer may be any solvent as long as it can dissolve the silicone resin oligomer, but organic solvents are particularly preferred. Examples of the organic solvent include ethanol, isopropyl alcohol, methyl isobutyl ketone, and toluene.

コーテイング液の塗布方法には制限はなく、例えばデイ
ツプコート法、スピンコード法、スプレイイ去等がある
There are no restrictions on the method of applying the coating liquid, and examples include dip coating, spin-coating, and spray-on.

シリコーン樹脂の硬化は、カロ塾、触媒などにより行わ
れる。例えば、加熱硬化l去では、加熱温度はシリコー
ン樹脂の種類により異なり一概に言えないが、100〜
600℃が好ましく、130〜300℃かより好ましい
Curing of the silicone resin is carried out using Karojuku, a catalyst, or the like. For example, in heat curing, the heating temperature varies depending on the type of silicone resin and cannot be generalized, but
600°C is preferred, and 130-300°C is more preferred.

硬fヒ後のシリコーン1−31脂層の厚さは、0.01
μmより薄いと接合層として幼果が不十分で、50gm
より厚い場合は、A 12 N基板の熱伝導性に悪影響
を及ぼすので、O,O1〜50umが好ましく、O,1
〜5μmがより好ましい。
The thickness of the silicone 1-31 fat layer after hardening is 0.01
If it is thinner than μm, there will be insufficient young fruit as a bonding layer, and the thickness of 50g
If it is thicker, it will have a negative effect on the thermal conductivity of the A 12 N substrate, so O,O1~50um is preferable, and O,1
~5 μm is more preferable.

金属化層の形成法としては、厚膜印刷法、DBC法、薄
膜法、無電解メツキ法等がある。例えば厚膜印刷法では
、金(AuJ 、金−白金(Au−Pt1.白金(pt
)、銀(Ag)、銀−パラジウムfAg−Pd)等を導
体とする厚膜ペーストをスクリーン印刷法により印刷し
、ついで大気中、酸素雰囲気中あるいは窒素雰囲気中で
、約850〜950℃の範囲内の温度で焼付けし、金属
化層を形成する。
Methods for forming the metallized layer include a thick film printing method, a DBC method, a thin film method, and an electroless plating method. For example, in the thick film printing method, gold (AuJ), gold-platinum (Au-Pt1.
), silver (Ag), silver-palladium fAg-Pd), etc. as a conductor is printed by screen printing, and then heated in the air, oxygen atmosphere, or nitrogen atmosphere at a temperature of about 850 to 950°C. Baking at a temperature within 100 mL to form a metallized layer.

A Q N基板の表面には極薄のアルミナ層が存在して
いることが知られている。金属−AffN基板の結合は
、このアルミナ薄層と金属との結合と考えられる。しか
しながら、このアルミナ層は極めて薄く、密着は不十分
である。
It is known that an extremely thin alumina layer exists on the surface of an AQN substrate. The metal-AffN substrate bond is considered to be the bond between this alumina thin layer and the metal. However, this alumina layer is extremely thin and its adhesion is insufficient.

しかし、本発明においてはシリコーン樹脂オリゴマーは
硬化・収縮によって非常に緻密な膜を形成し、AβN基
板表面と強固に接合する。特に。
However, in the present invention, the silicone resin oligomer forms a very dense film by curing and shrinking, and is firmly bonded to the surface of the AβN substrate. especially.

厚膜性接合のように金属化するとき熱を加える方法では
、界面層に相互拡散層が生成することによって、結合が
更に強固になっていると考えられ、一方、金属はシリコ
ーン樹脂層に浸透して強く接合するものと考えられる。
In methods that apply heat during metallization, such as thick-film bonding, it is thought that the bond becomes even stronger by forming an interdiffusion layer at the interface layer, while the metal penetrates into the silicone resin layer. It is thought that this creates a strong bond.

[実施例1 実施例I ACN基板(1インチ×1インチX 0.63mm1に
メチルトリエトキシシランのオリゴマーのイソプロピル
アルコール溶液(濃度0. t m o Q/2)をデ
イツプ法で塗布し、大気中でl 80 °Cで20分で
加熱硬化させた後、Ag−Pd厚膜ペスト(デュポン社
製9061)で2mmX2mmのパターンをスクリーン
印刷し、大気中で850℃で20分焼成し、金属化層を
形成した。そこに直径0.6 m mの銅ワイヤーをA
g2−Pb4O−3r)58の半田で半田付けし、90
度ビール強度を測定したところ、3.2 k g重であ
った。
[Example 1 Example I ACN substrate (1 inch x 1 inch x 0.63 mm1) was coated with an isopropyl alcohol solution (concentration 0.t m o Q/2) of an oligomer of methyltriethoxysilane by a dip method and exposed to air. After heat curing at 80 °C for 20 minutes, a 2 mm x 2 mm pattern was screen printed with Ag-Pd thick film paste (DuPont 9061) and baked at 850 °C for 20 minutes in air to form the metallized layer. A copper wire with a diameter of 0.6 mm was formed there.
g2-Pb4O-3r) 58 solder, 90
When the strength of the beer was measured, it was found to be 3.2 kg.

比較例1 他の表面処理を行ったAβN基板について上記のビール
強度試験を行い、実施例と比較した。
Comparative Example 1 The above beer strength test was conducted on an AβN substrate subjected to other surface treatments, and compared with the example.

実施例及び比較例の測定結果を第1表に示す。Table 1 shows the measurement results of Examples and Comparative Examples.

第  1  表 基板2:Ai!N基板単体 基板3:AβN基板にアルミナコロイド粒子を分散させ
たエタノール溶液(濃度 0、1 m oβ/β)をデイツプ法で塗布し、900
℃で大気中で1時間焼成し た。
Table 1 Substrate 2: Ai! N substrate single substrate 3: An ethanol solution (concentration 0, 1 m o β/β) in which alumina colloidal particles are dispersed is applied to an AβN substrate by a dip method,
It was baked at ℃ for 1 hour in the air.

基板4:Al2N基板にアルミニウムセカンダリブトキ
シドのエタノール溶液(濃度 0、1 m o 12 / にりをデイツプ法で塗布し
、900℃で大気中で1時間焼成し た。
Substrate 4: An ethanol solution of aluminum secondary butoxide (concentration: 0, 1 m 0 12 /Ni) was coated on an Al2N substrate by a dip method, and baked at 900° C. in the air for 1 hour.

基板5 : /IN基板にシリカコロイド粒子を分散さ
せたイソプロピルアルコール溶液 (濃度0.1 m oβ/β)をデイツプ法で塗布し、
970℃で大気中で1時間 焼成した。
Substrate 5: An isopropyl alcohol solution (concentration 0.1 moβ/β) in which silica colloidal particles are dispersed is applied to the /IN substrate by a dip method,
It was baked at 970° C. in the air for 1 hour.

基板6:Al2N基板にテトラエチルシリケートのイソ
プロピルアルコール溶液(濃 度0.1 m o 9 /β)をデイツプ法で塗布し、
970℃で大気中で1時間焼成 した。
Substrate 6: An isopropyl alcohol solution of tetraethyl silicate (concentration 0.1 m o 9 /β) was coated on an Al2N substrate by a dip method,
It was baked at 970° C. in the air for 1 hour.

実施例2 Aj2N基板(1インチ×1インチX 0.63mm)
にヘキサメチルジシラザンのオリゴマーのメタノール溶
液(濃度0.1 m o I!、 / 12 )をデイ
ツプ法で塗布し、大気中で180℃で20分で加熱硬化
させた後、厚さ0−5 m mの99.99%銅板を真
空中で820℃で1時間焼成し、2mmX2mmのパタ
ーンをもつ金属化層を形成した。そこに直径0.8 m
 mの銅ワイヤーを5n60−Pb40の半田で半田付
けし、90度ビール強度を測定したところ、22.1k
g重であった。
Example 2 Aj2N board (1 inch x 1 inch x 0.63 mm)
A methanol solution of hexamethyldisilazane oligomer (concentration 0.1 m o I!, /12) was coated on the surface using the dip method, and after heating and curing in the air at 180 °C for 20 minutes, a thickness of 0-5 was applied. A 99.99% copper plate of mm was fired in vacuum at 820° C. for 1 hour to form a metallized layer with a 2 mm×2 mm pattern. There is a diameter of 0.8 m
When we soldered 5m copper wire with 5n60-Pb40 solder and measured the beer strength at 90 degrees, it was 22.1k.
It was heavy.

比較例2 他の表面処理を行ったAl2N基板について上記のビー
ル強度試験を行い、実施例と比較した。
Comparative Example 2 The beer strength test described above was conducted on an Al2N substrate subjected to other surface treatments, and compared with the example.

実施例及び比較例の測定結果を第2表に示す。Table 2 shows the measurement results of Examples and Comparative Examples.

第  2  表 基板2:A氾N基板単体 基板3 : A12N基板にアルミナコロイド粒子を分
散させたイソプロピルアルコール溶 液(a度0.1 m o Il! / 12 )をデイ
ツプ法で塗布し、900℃で大気中で1時 間焼成した。
Table 2 Substrate 2: A flooded N substrate Single substrate 3: An isopropyl alcohol solution (a degree 0.1 m o Il!/12) in which alumina colloidal particles are dispersed is applied to an A12N substrate by the dip method, and heated at 900°C. It was baked in the air for 1 hour.

基板4:AβN基板にアルミニウムエトキシドのエタノ
ール溶液(濃度0−1 m oβ/β)をデイツプ法で
塗布し、900℃ で大気中で1時間焼成した。
Substrate 4: An ethanol solution of aluminum ethoxide (concentration 0-1 moβ/β) was coated on an AβN substrate by a dip method, and baked at 900° C. in the air for 1 hour.

基板5 : 、、IN基板にシリカコロイド粒子を分散
させたメタノール溶液(a度0.1 m o 12 / 42 )をデイツプ法で塗布し。
Substrate 5: A methanol solution (a degree 0.1 mo 12/42) in which silica colloid particles were dispersed was applied to the IN substrate by a dip method.

970℃で大気中で1時間焼成し た。Bake at 970℃ for 1 hour in the air. Ta.

:A42N基板にテトライソブロビルシJケートのイソ
プロパツール溶液容液(a度0.1 m o Q /β
)をデイツプ法で塗布し、970℃で大気中で1時間焼
成 した。
: An isopropanol solution of tetraisobrobyrsilicate on an A42N substrate (a degree 0.1 m o Q /β
) was applied using the dip method and baked at 970° C. in the air for 1 hour.

基板6 実施例3 AβN基板(1インチ×1インチx 0.63mm)に
ジフェニルジメトキシシランのオリゴマーのイソプロピ
ルアルコール溶液(a度0.1m o Q / 12 
)をデイツプ法で塗布し、大気中で180℃で20分で
加熱硬化させた後、金ターゲツトでスパッター法で2m
mX2mmのパターンをもつ金属化層を形成した。そこ
に直径0.6mmの銅ワイヤーをI n5O−Pb50
の半田で半田付けし、90度ビール強度を測定したとこ
ろ、io、4kg重であった。
Substrate 6 Example 3 A βN substrate (1 inch x 1 inch x 0.63 mm) was coated with an isopropyl alcohol solution of diphenyldimethoxysilane oligomer (a degree 0.1 m o Q/12
) was coated using the dip method, heated and cured at 180°C for 20 minutes in the air, and then coated with a gold target for 2 m using the sputtering method.
A metallization layer with a m×2 mm pattern was formed. Insert a copper wire with a diameter of 0.6 mm therein.
When I soldered it with the same solder and measured the beer strength at 90 degrees, it weighed 4 kg.

比較例3 他の表面処理を行ったAl2N基板について上記のビー
ル強度試験を行い、実施例と比較した。
Comparative Example 3 The beer strength test described above was conducted on an Al2N substrate subjected to other surface treatments, and compared with the example.

実施例及び比較例の測定結果を第3表に示す。Table 3 shows the measurement results of Examples and Comparative Examples.

第  3  表 基板2:AβN基板単体 基板3 : AffN基板にアルミナコロイド粒子を分
散させたブクノール溶液(濃度0.1moβ/I2)を
デイツプ法で塗布し。
Table 3 Substrate 2: AβN substrate Single substrate 3: A Buchnol solution (concentration 0.1 moβ/I2) in which alumina colloidal particles were dispersed was applied to an AffN substrate by a dip method.

900℃で大気中で1時間焼成し た。Bake in air at 900℃ for 1 hour. Ta.

基板4 : Al2N基板にアルミニウムイソプロポキ
シドのエタノール溶液(濃度O9I m o Q / Q )をデイツプ法で塗布し。
Substrate 4: An ethanol solution of aluminum isopropoxide (concentration O9I mo Q/Q) was applied to an Al2N substrate by a dip method.

900℃で大気中で1時間焼成し た。Bake in air at 900℃ for 1 hour. Ta.

基#ii5:AβN基板にシリカコロイド粒子を分散さ
せたメタノール溶液(濃度0.1 mob/β)をデイツプ法で塗布し。
Group #ii5: A methanol solution (concentration 0.1 mob/β) in which silica colloid particles were dispersed was applied to an AβN substrate by a dip method.

970℃で大気中で1時間焼成し た。Bake at 970℃ for 1 hour in the air. Ta.

基板6:AffN基板にテトラメチルシリケートのイソ
プロパツール溶液(a度0.1moβ/lをデイツプ法
で塗布し。
Substrate 6: An isopropanol solution of tetramethyl silicate (0.1 moβ/l at a degree of a degree) was applied by dip method to an AffN substrate.

970℃で大気中で1時間焼成し た。Bake at 970℃ for 1 hour in the air. Ta.

〔発明の効果] 本発明は、AβN基板上に金属化層を形成する前にシリ
コーン樹脂層を形成することにより、金属化層とAff
N基板の接合強度を向上させることができた。このため
に、従来よりも接合強度、接合信頼性に優れるAβN高
熱伝導性回路基板を得ることが可能となった6 また、従来の酸化物層形成法では基板にコーテイング液
を塗布した後に900℃以上の熱処理が必要であったが
1本発明においては180℃の低温で中間層(シリコー
ン樹脂層)を形成することが可能となった。
[Effects of the Invention] The present invention has the advantage of forming a silicone resin layer before forming a metallized layer on an AβN substrate, so that the metallized layer and the Aff
It was possible to improve the bonding strength of the N substrate. For this reason, it has become possible to obtain AβN high thermal conductivity circuit boards with superior bonding strength and bonding reliability compared to conventional methods6.In addition, in the conventional oxide layer formation method, after applying the coating liquid to the substrate, it is possible to obtain an AβN high thermal conductivity circuit board. Although the above heat treatment was necessary, the present invention makes it possible to form the intermediate layer (silicone resin layer) at a low temperature of 180°C.

Claims (1)

【特許請求の範囲】 1、窒化アルミニウムを主成分とする焼結体と、その表
面に形成されたシリコーン樹脂層と、さらにその上に形
成された金属化層とから成ることを特徴とする高熱伝導
性回路基 板。
[Claims] 1. A high-temperature device comprising a sintered body mainly composed of aluminum nitride, a silicone resin layer formed on the surface of the sintered body, and a metallized layer further formed thereon. Conductive circuit board.
JP31657289A 1989-12-07 1989-12-07 Circuit substrate having high thermal conductivity Pending JPH03177385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31657289A JPH03177385A (en) 1989-12-07 1989-12-07 Circuit substrate having high thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31657289A JPH03177385A (en) 1989-12-07 1989-12-07 Circuit substrate having high thermal conductivity

Publications (1)

Publication Number Publication Date
JPH03177385A true JPH03177385A (en) 1991-08-01

Family

ID=18078589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31657289A Pending JPH03177385A (en) 1989-12-07 1989-12-07 Circuit substrate having high thermal conductivity

Country Status (1)

Country Link
JP (1) JPH03177385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706221A3 (en) * 1994-10-07 1997-11-05 Hitachi, Ltd. Semiconductor device comprising a plurality of semiconductor elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706221A3 (en) * 1994-10-07 1997-11-05 Hitachi, Ltd. Semiconductor device comprising a plurality of semiconductor elements
US5956231A (en) * 1994-10-07 1999-09-21 Hitachi, Ltd. Semiconductor device having power semiconductor elements

Similar Documents

Publication Publication Date Title
JP2712618B2 (en) Resin-sealed semiconductor device
JPH0510310B2 (en)
EP0099570B1 (en) Coated ceramic substrates for mounting integrated circuits and methods of coating such substrates
JPH03116948A (en) Aluminum nitride package for superhigh frequency ic
JPH04152642A (en) adhesive paste
JP3336240B2 (en) Semiconductor element mounting board
JPH03177385A (en) Circuit substrate having high thermal conductivity
CN111106087B (en) Connection structure and forming method thereof
JPH0568877B2 (en)
US5096768A (en) Substrate used for fabrication of thick film circuit
US3903344A (en) Adherent solderable cermet conductor
JPS58103156A (en) Substrate for mounting semiconductor elements
JPH05259201A (en) Semiconductor device and its production
JPH0414504B2 (en)
JP3085667B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3064273B2 (en) High frequency porcelain
JP2001118960A (en) Carbon-based metal composite material board with electric insulating film
JPS61245555A (en) Terminal connecting structure for semiconductor
JP2616060B2 (en) Substrate material for semiconductor devices with excellent heat dissipation
JPS59115544A (en) Substrate for mounting semiconductor elements
JPH02125728A (en) Composite base and its manufacture
JPH0568801B2 (en)
JPS60107845A (en) Circuit substrate for semiconductor
JPH04152658A (en) heat dissipation insulation parts
JPS63134587A (en) Preparation of aluminum nitirde sintered body surface