[go: up one dir, main page]

JPH0568877B2 - - Google Patents

Info

Publication number
JPH0568877B2
JPH0568877B2 JP59239471A JP23947184A JPH0568877B2 JP H0568877 B2 JPH0568877 B2 JP H0568877B2 JP 59239471 A JP59239471 A JP 59239471A JP 23947184 A JP23947184 A JP 23947184A JP H0568877 B2 JPH0568877 B2 JP H0568877B2
Authority
JP
Japan
Prior art keywords
aln
glass
substrate
layer
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59239471A
Other languages
Japanese (ja)
Other versions
JPS61119094A (en
Inventor
Nobuo Iwase
Kazuyoshi Saito
Yoshasu Godai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP23947184A priority Critical patent/JPS61119094A/en
Priority to EP85102159A priority patent/EP0153737B1/en
Priority to US06/706,280 priority patent/US4659611A/en
Priority to DE85102159T priority patent/DE3587481T2/en
Publication of JPS61119094A publication Critical patent/JPS61119094A/en
Publication of JPH0568877B2 publication Critical patent/JPH0568877B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、実質的に窒化アルミニウムセラミツ
クからなる基体(以下、AlN基体という。)を用
いた高熱伝導性回路基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a highly thermally conductive circuit board using a substrate substantially made of aluminum nitride ceramic (hereinafter referred to as an AlN substrate).

[発明の技術的背景とその問題点] 従来から回路基板として用いられている材料と
して、Al2O3等のセラミツク基板、樹脂基板等の
各種の材料がある。なかでもAl2O3セラミツク基
板は、機械的強度、電気的絶縁性に優れており、
また、グリーンシート化が容易であるため多層配
線等の高密度配線が可能であり、広く用いられて
いる。一方、近年の電子機器の小形化等の進展に
伴い、回路基板上の電気素子(IC等)実装密度
が高くなつてきている。さらに、パワー半導体等
の搭載も考慮すると回路基板上での発熱量が大き
くなる傾向があり、放熱を効果的に行うことが要
求される。
[Technical Background of the Invention and Problems Therein] Various materials have been conventionally used for circuit boards, such as ceramic substrates such as Al 2 O 3 and resin substrates. Among them, Al 2 O 3 ceramic substrates have excellent mechanical strength and electrical insulation.
Furthermore, since it is easy to form into a green sheet, high-density wiring such as multilayer wiring is possible, and it is widely used. On the other hand, with the recent progress in miniaturization of electronic devices, the mounting density of electrical elements (ICs, etc.) on circuit boards has become higher. Furthermore, when considering the mounting of power semiconductors and the like, the amount of heat generated on the circuit board tends to increase, and effective heat dissipation is required.

しかしながらAl2O3セラミツク基板の熱伝導率
は20W/m・K程度と低く、発熱量が多い場合に
基板側からの放熱が余り期待できない。従つて、
高密度実装、パワー半導体搭載モジユール等の際
の基板側から放熱を考慮すると、機械的強度、電
気的絶縁性等の回路基板として要求される特性を
備え、かつ、熱導電性の良好な回路基板の開発が
要求されている。
However, the thermal conductivity of the Al 2 O 3 ceramic substrate is as low as about 20 W/m·K, and when a large amount of heat is generated, it is not expected that heat will be dissipated from the substrate side. Therefore,
Considering heat dissipation from the board side during high-density mounting and modules with power semiconductors, etc., a circuit board that has the characteristics required for a circuit board such as mechanical strength and electrical insulation, and has good thermal conductivity. development is required.

近年のフアインセラミツクス技術の進展に伴
い、SiC、AlN等の機械的強度に優れたセラミツ
ク材料が開発されている。これらの材料は熱導電
性も優れ、構造材としての応用が研究されてい
る。また、SiCの良好な熱導電性を利用して、こ
れを回路基板として用いようとする動きもある
が、誘電率が高く、絶縁耐圧が低いため、高周
波、高電圧が印加される素子の搭載を考慮すると
問題がある。
With the recent progress in fine ceramics technology, ceramic materials with excellent mechanical strength, such as SiC and AlN, have been developed. These materials also have excellent thermal conductivity, and their application as structural materials is being studied. There is also a movement to use SiC as a circuit board by taking advantage of its good thermal conductivity, but due to its high dielectric constant and low dielectric strength, it cannot be used for mounting elements to which high frequencies and high voltages are applied. There is a problem when considering this.

AlN基体は、電気絶縁性、熱導電性ともに良
好であり、回路基板への応用が有望視される。し
かしながらAlNは、例えば金属アルミニウム溶
融用のルツボとして用いられているように、金属
に対する濡れ性が悪く導体層の接合は困難とされ
ていた。従つてAlN基体に直接導体路を形成し
た回路基板はなく、せいぜいサイリスタ等の電力
用半導体を有機系の接着剤で固定し放熱板として
利用する程度であつた。
AlN substrates have good electrical insulation and thermal conductivity, making them promising for application to circuit boards. However, AlN has poor wettability with metals and is difficult to bond with conductor layers, as is used, for example, in crucibles for melting metal aluminum. Therefore, there is no circuit board in which conductor paths are directly formed on an AlN substrate, and at best, a power semiconductor such as a thyristor is fixed with an organic adhesive and used as a heat sink.

特開昭52−37914号、特開昭50−132022号等に
銅板をセラミツクに直接接合する技術が開示され
ており、この技術を用いてAlN基体上に導体層
を形成することも考えられるが、微細パターンの
形成には限界があり、また、高密度配線に不可欠
な多層配線も困難であつた。
JP-A-52-37914, JP-A-50-132022, etc. disclose a technology for directly bonding a copper plate to ceramic, and it is conceivable to use this technology to form a conductor layer on an AlN substrate. However, there are limits to the formation of fine patterns, and multilayer wiring, which is essential for high-density wiring, is also difficult.

[発明の目的] 本発明は以上の点を考慮してなされたもので、
電気的絶縁性、機械的強度および熱伝導性に優れ
た高熱伝導性回路基板の製造方法を提供すること
を目的とする。
[Object of the invention] The present invention has been made in consideration of the above points, and
An object of the present invention is to provide a method for manufacturing a highly thermally conductive circuit board that has excellent electrical insulation, mechanical strength, and thermal conductivity.

[発明の概要] 本発明は、酸化層が形成されたAlN基体を回
路基板を応用することを基本とするものである。
[Summary of the Invention] The present invention is based on applying an AlN substrate on which an oxide layer is formed to a circuit board.

本発明者等がAlN基体の回路基板への応用に
ついて研究を進めた結果、AlN基体表面に酸化
層を形成することにより、回路基板として非常に
優れたものとなることを見出した。すなわち酸化
層を形成することにより、導体層の接着が可能と
なるばかりか、ガラス層の接着も可能となるので
ある。特にガラス層の良好な接着は、各種の利点
がある。
As a result of research into the application of AlN substrates to circuit boards, the present inventors discovered that forming an oxide layer on the surface of an AlN substrate makes it an extremely excellent circuit board. That is, by forming an oxide layer, not only the conductor layer can be bonded, but also the glass layer can be bonded. In particular, good adhesion of the glass layer has various advantages.

AlNセラミツクは金属等に対する濡れ性の悪
いことが知られているがガラスに対する濡れ性も
悪い。しかしながら酸化層を形成することにより
金属に対する濡れ性が向上し、導体層の形成が可
能となる。また、酸化層を有していないAlN基
体に直接ガラス層を形成した場合は、ガラス層中
にアワが生じてしまい、強固な接合を得ることが
できない。これはAlN基体が大気中で高温にさ
らされるとアンモニアガス等の気体を発生するた
めと考えられる。これに対し酸化層を有する
AlN基体上に形成したガラス層中には、この様
なアワが生じず基体と良好な接合を得ることがで
きる。
AlN ceramics are known to have poor wettability with metals, etc., but they also have poor wettability with glass. However, by forming an oxide layer, the wettability with respect to metal is improved, and a conductor layer can be formed. Furthermore, if a glass layer is directly formed on an AlN substrate that does not have an oxide layer, bubbles will occur in the glass layer, making it impossible to obtain a strong bond. This is thought to be because the AlN substrate generates gases such as ammonia gas when exposed to high temperatures in the atmosphere. In contrast, it has an oxide layer
Such bubbles do not occur in the glass layer formed on the AlN substrate, and a good bond to the substrate can be obtained.

このように良好なガラス層の接合が得られるこ
とは、回路基板として非常に重要である。例えば
シールを行なう際にはキヤツプと基体とを接合す
る必要があるが、このときガラスによる封止を行
なうことができる。リードフレームと基体との接
着を考えた場合もガラス接合を用いることができ
る。また、印刷多層配線を行なう場合、層間絶縁
のための誘電体層が必要であるが、ガラス層をそ
の誘電体層として用いることができる。
Obtaining such good bonding of the glass layers is very important for circuit boards. For example, when performing sealing, it is necessary to bond the cap and the base, and at this time sealing with glass can be performed. Glass bonding can also be used when considering adhesion between the lead frame and the base. Further, when performing printed multilayer wiring, a dielectric layer is required for interlayer insulation, and a glass layer can be used as the dielectric layer.

さらに基体上に抵抗体を形成する場合、特に有
利となる。抵抗体ペーストは一般にガラスに導体
粉が分散しているため、ガラス接合が良好に行な
われなければならない。また、抵抗体の場合は回
路設計等の点からその抵抗値の再現性が重要であ
る。酸化層が形成されていないAlN基体を用い
た場合は前述のごとくガラス層である抵抗体中に
アワが生じてしまうため、抵抗値のバラツキが非
常に大きいが、本発明によればアワが生じること
がなく良好な接合が得られるため、非常に抵抗値
の再現性良く、そのバラツキが小さい。
Furthermore, this is particularly advantageous when a resistor is formed on the substrate. Since resistor paste generally has conductor powder dispersed in glass, it is necessary to bond the glass well. Furthermore, in the case of a resistor, reproducibility of its resistance value is important from the point of view of circuit design and the like. If an AlN substrate without an oxide layer is used, as mentioned above, wrinkles will occur in the resistor, which is a glass layer, resulting in very large variations in resistance value, but according to the present invention, wrinkles will occur. Since a good bond can be obtained without any problems, the reproducibility of the resistance value is very good and the variation is small.

さてこの酸化層であるが、ガラス層とAlN基
体との接合強度を考慮した場合、酸化層が余り薄
いとその効果が発揮されないため、0.5μm以上程
度が好ましい。また余り厚いと、酸化層とAlN
基体との熱膨脹率の違い等の影響で酸化層の剥離
が生じてしまうため、100μm以下程度が好まし
い。この酸化層はアルミナ、ベーマイト等である
が、AlNに比較して熱導電性に劣るため、同程
度の接合強度が得られる範囲でできるだけ薄いほ
うが良く、2〜20μm程度が好ましい。
Now, regarding this oxide layer, when considering the bonding strength between the glass layer and the AlN substrate, if the oxide layer is too thin, its effect will not be exhibited, so it is preferably about 0.5 μm or more. Also, if it is too thick, the oxide layer and AlN
The thickness is preferably about 100 μm or less because the oxidized layer may peel off due to the difference in thermal expansion coefficient with the substrate. This oxide layer is made of alumina, boehmite, etc., but since it is inferior in thermal conductivity compared to AlN, it is better to be as thin as possible within the range where the same level of bonding strength can be obtained, and preferably about 2 to 20 μm.

AlN基体上に酸化層を形成する方法としては、
例えば、大気中における高温処理があげられる。
この熱処理温度、および処理時間により、形成さ
れる酸化層の厚さが変化する。この高温処理の処
理温度が高くなるにつれ処理時間が短くなるが、
1000〜1300℃、3〜0.5hr程度で行なうことが好
ましい。その他、水蒸気中等の酸化性雰囲気中で
の熱処理(空気中に比べ比較的低温でよく、100
〜140℃程度でよい。2〜3気圧等の高圧下で行
なうことが好ましい。)、酸性液中での浸漬等各種
の方法があげられる。
The method for forming an oxide layer on an AlN substrate is as follows:
For example, high temperature treatment in the atmosphere can be mentioned.
The thickness of the oxide layer formed changes depending on the heat treatment temperature and treatment time. As the processing temperature of this high-temperature processing increases, the processing time becomes shorter,
It is preferable to carry out the treatment at 1000 to 1300°C for about 3 to 0.5 hours. In addition, heat treatment in an oxidizing atmosphere such as water vapor (relatively low temperature compared to air is required;
~140℃ is sufficient. It is preferable to carry out under high pressure such as 2 to 3 atmospheres. ), immersion in an acidic solution, and other methods.

本発明に用いるAlN基体は、AlN原料にY、
希土類元素、アルカリ土類元素等の添加物を加え
て(金属元素換算で0.01〜15wt%程度)の常圧焼
結、ホツトプレスする方法、酸素を7wt%以下程
度含有するAlN原料を用いて前記添加物を加え
ての常圧焼結、ホツトプレスする方法、また、実
質的に添加物を加えることなくAlN原料単独で
のホツトプレスする方法等で製造する。本発明は
添加物の有無にかかわらずAlN基体であればど
のような方法で製造されたものにでも適用でき
る。
The AlN substrate used in the present invention includes Y and Y in the AlN raw material.
A method of adding additives such as rare earth elements and alkaline earth elements (approximately 0.01 to 15 wt% in terms of metal elements) and performing pressureless sintering and hot pressing, and using an AlN raw material containing approximately 7 wt% or less of oxygen. It is manufactured by atmospheric pressure sintering with the addition of additives, hot pressing, or hot pressing using only the AlN raw material without substantially adding any additives. The present invention can be applied to any AlN substrate manufactured by any method, regardless of the presence or absence of additives.

AlN基体の熱伝導率な、40W/m・K以上、
例えば100W/m・Kとアルミナセラミツクの
20W/m・Kに比べ格段に優れており、機械的強
度40〜50Kg/mm2(アルミナ25Kg/mm2)電気的絶縁
耐力140〜170kV/cm(アルミナ100kV/cm)と
回路基板として要求される特性がアルミナ以上で
ある。この様なAlNセラミツクの良好な特性を
生かして、高熱伝導性回路基板を得ることができ
るのである。本発明においては、AlN基体表面
が酸化されているため、厳密にはAlNとは言え
ないが、その酸化層は極めて薄いため、本発明で
得られる高熱伝導性回路基板の諸特性は酸化層を
有しないAlN基体とほぼ同様である。
Thermal conductivity of AlN substrate is 40W/m・K or more,
For example, 100W/m・K and alumina ceramic
It has a mechanical strength of 40 to 50 Kg/mm 2 (alumina 25 Kg/mm 2 ) and an electrical dielectric strength of 140 to 170 kV/cm (alumina 100 kV/cm), which is required for circuit boards. Its properties are better than those of alumina. By taking advantage of these good properties of AlN ceramics, it is possible to obtain circuit boards with high thermal conductivity. In the present invention, since the surface of the AlN substrate is oxidized, it cannot be strictly called AlN, but since the oxide layer is extremely thin, the various properties of the high thermal conductivity circuit board obtained by the present invention depend on the oxidation layer. It is almost the same as the AlN substrate without it.

本発明のガラス層は一般にアルミナ基体に用い
られているものを用いることができる。例えば、
PbO−SiO2−B2−O3系や、BaO−SiO2−B2O3
等のガラスを用いることができる。AlN基体の
酸化状態の変化等の影響を考慮すると軟化点が
350〜950℃のガラスを400〜1000℃程度の温度で
接着することが好ましい。なお本発明では、この
ときガラス層を構成する元素が多少酸化層中に拡
散してもよく、本発明で得られる高熱伝導性回路
基板においては、酸化層中にこのような拡散成分
が少量含有されても何ら問題はない。
As the glass layer of the present invention, those commonly used for alumina substrates can be used. for example,
Glasses such as PbO-SiO 2 -B 2 -O 3 and BaO-SiO 2 -B 2 O 3 can be used. Considering the effects of changes in the oxidation state of the AlN substrate, the softening point is
It is preferable to bond glass having a temperature of 350 to 950°C at a temperature of about 400 to 1000°C. In addition, in the present invention, the elements constituting the glass layer may be diffused into the oxide layer to some extent, and in the highly thermally conductive circuit board obtained by the present invention, the oxide layer may contain a small amount of such diffusing components. There is no problem if you do.

また、このように酸化層を有するAlN基体を
用いることにより、基体上に形成した厚膜パター
ン中にアワの発生がないため、特に厚膜抵抗パタ
ーンを形成した場合その抵抗値を再現性良く形成
できるというメリツトを有する。厚膜抵抗ペース
トとしては、やはりアルミナ用等の一般に用いら
れているものでよく、例えば、RuO2ペースト、
LaF6ペースト等を用いることができる。また、
導体ペーストとしても通常のAg、Au、Cu、Ni、
Alペースト等を用いることができる。
In addition, by using an AlN substrate with an oxide layer in this way, there is no formation of wrinkles in the thick film pattern formed on the substrate, so when forming a thick film resistor pattern, the resistance value can be formed with good reproducibility. It has the advantage of being able to The thick film resistor paste may be one commonly used for alumina, such as RuO 2 paste,
LaF 6 paste etc. can be used. Also,
Usual Ag, Au, Cu, Ni, as conductor paste
Al paste etc. can be used.

[発明の効果] 以上説明したように本発明によれば、AlN基
体上にガラス層を強固に接合することができ、
AlNセラミツクの電気的絶縁性、機械的強度を
生かした高熱伝導性回路基板を得ることができ
る。
[Effects of the Invention] As explained above, according to the present invention, a glass layer can be firmly bonded onto an AlN substrate,
It is possible to obtain a highly thermally conductive circuit board that takes advantage of the electrical insulation and mechanical strength of AlN ceramics.

この回路基板は比較的発熱量の多い、高密度実
装用、パワー半導体搭載用として好適である。
This circuit board generates a relatively large amount of heat and is suitable for high-density mounting and for mounting power semiconductors.

[発明の実施例] 以下に、本発明の実施例を説明する。[Embodiments of the invention] Examples of the present invention will be described below.

実施例 1 Y2O3を3wt%含有するAlN基体を大気中1250
℃、1hrの条件で酸化処理をおこなつた。得られ
たAlN基体表面には6μmのAl2O3層が形成されて
いた 次いで所定の部位にガラスペースト(日本電気
ガラスLS0120M)を塗布し脱バインダーの後、
350℃、5min.の条件で仮焼した。その後、42ア
ロイ製のリードフレームを乗せ、420℃、10min.
の条件で本焼成を行なつた。次いで、ICをマウ
ント、ボンデイングの後、アルミナ製のキヤツプ
を前記ガラスを用いて420℃、10min.の条件で焼
成接合し封着した。
Example 1 An AlN substrate containing 3wt% Y 2 O 3 was exposed to 1250 nm in the atmosphere.
Oxidation treatment was performed at ℃ for 1 hour. A 6μm Al 2 O 3 layer was formed on the surface of the obtained AlN substrate.Next, glass paste (Nippon Electric Glass LS0120M) was applied to the predetermined areas and the binder was removed.
Calcination was performed at 350°C for 5 minutes. Then, place a 42 alloy lead frame and heat at 420℃ for 10min.
The main firing was carried out under the following conditions. Next, after mounting and bonding the IC, an alumina cap was bonded and sealed using the glass by firing at 420° C. for 10 minutes.

ガラス層中にはアワが確認されず良好な接合が
実現されていることが確認された。接合強度はリ
ードフレーム、キヤツプとも破断に対する垂直加
重で500g以上と充分実用上問題のない値を示し
た。熱抵抗はアルミナの同様のCERDIP28ピンの
パツケージの場合の15%減であつた。従つてアル
ミナの場合1Wしか入力できなかつたものが1.2W
まで入力できることになつた。
It was confirmed that no bubbles were observed in the glass layer and that good bonding was achieved. The bonding strength of both the lead frame and the cap was 500 g or more under normal load before breaking, which is a value that does not pose any practical problems. Thermal resistance was 15% lower than that of a similar CERDIP 28 pin package in alumina. Therefore, in the case of alumina, the input that could only be 1W is 1.2W.
Now you can enter up to

実施例 2 AlN基体を10%リン酸液に浸漬し、酸化処理
を行なつた。基体表面には3μmの酸化被膜が形
成されていた。このAlN基体上に、Auペースト
(dupont991)を325メツシユパターンで印刷し、
常温に10min.放置の後、120℃、10min.の条件で
乾燥し、続いて850℃、10min.の条件で焼成し
た。誘電体層として上下導体層導通用の貫通孔を
有するようにガラスペースト(dupont9950)を
印刷形成し、上記条件と同様のプロセスで焼成し
た。このガラス層はAlN基体と良好な接着を形
成していた。この工程を3回繰返し、3層配線を
実現した。各層間でのシヨートもなく、また、接
合強度も充分であり、信頼性の高いものであつ
た。
Example 2 An AlN substrate was immersed in a 10% phosphoric acid solution and subjected to oxidation treatment. An oxide film of 3 μm was formed on the surface of the substrate. On this AlN substrate, Au paste (dupont991) was printed in a 325 mesh pattern,
After being left at room temperature for 10 minutes, it was dried at 120°C for 10 minutes, and then fired at 850°C for 10 minutes. Glass paste (Dupont 9950) was printed and formed as a dielectric layer so as to have through holes for conduction between the upper and lower conductor layers, and fired under the same process as the above conditions. This glass layer formed good adhesion with the AlN substrate. This process was repeated three times to achieve three-layer wiring. There was no shortening between the layers, the bonding strength was sufficient, and the reliability was high.

実施例 3 6wt%のY2O3を含有するAlN基体を121℃、2
気圧の水蒸気中にいれ168hr放置し、酸化処理を
行なつた。基体表面には3〜5μmのベーマイト
膜(Al2O3ライク)が形成されていた。次いで
Ag−Pdペースト(ESL9601)を所定のパターン
で印刷し125℃、10min.の条件で乾燥した後、
930℃、10min.の条件で焼成して導体路を形成し
た。次にガラス層として抵抗ペースト
(dupont16シリーズ100kΩ/□、1kΩ/□、
10kΩ/□、1000kΩ/□)を250メツシユのスク
リーンを用いて印刷した。850℃、10min.、空気
中の条件で焼成したところ、抵抗体中にはアワが
生じず良好な接着が得られ、抵抗値は全て±15%
以内に納まつた。
Example 3 An AlN substrate containing 6wt% Y 2 O 3 was heated at 121°C for 2
It was placed in water vapor at atmospheric pressure and left for 168 hours for oxidation treatment. A boehmite film (like Al 2 O 3 ) with a thickness of 3 to 5 μm was formed on the surface of the substrate. then
After printing Ag-Pd paste (ESL9601) in a predetermined pattern and drying it at 125℃ for 10 minutes,
A conductor path was formed by firing at 930°C for 10 minutes. Next, resistive paste (dupont16 series 100kΩ/□, 1kΩ/□,
10kΩ/□, 1000kΩ/□) was printed using a 250 mesh screen. When fired at 850°C for 10 min. in air, good adhesion was obtained without forming any bubbles in the resistor, and all resistance values were ±15%.
It was delivered within.

比較例として酸化処理のないAlN基体上に同
様に抵抗体を形成したところ、約±30%と非常に
大きいバラツキを示した。この傾向は、終結助剤
を含有しないホツトプレスによるAlN基体でも
同様であつた。
As a comparative example, when a resistor was similarly formed on an AlN substrate without oxidation treatment, it showed a very large variation of about ±30%. This tendency was the same for hot-pressed AlN substrates that did not contain termination aids.

以上実施例で説明したように、添加物を含むと
含まないとにかかわらずAlN基体上に酸化層を
形成することにより、導体層の接合、およびガラ
ス層の接合が可能となり、AlN基体の持つ高熱
伝導性、高耐圧性、機械的強度を十分に利用して
高熱伝導性回路基板を得ることができる。
As explained in the examples above, by forming an oxide layer on the AlN substrate regardless of whether it contains additives or not, it becomes possible to bond the conductor layer and the glass layer. A highly thermally conductive circuit board can be obtained by fully utilizing high thermal conductivity, high pressure resistance, and mechanical strength.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化アルミニウムセラミツク基体表面に予め
酸化層を形成した後、前記酸化層が表面に形成さ
れた窒化アルミニウムセラミツク基体上でガラス
ペーストを焼成することによりガラス層を形成す
ることを特徴とする高熱伝導性回路基板の製造方
法。
1. High thermal conductivity characterized by forming an oxide layer on the surface of an aluminum nitride ceramic substrate in advance, and then forming a glass layer by firing a glass paste on the aluminum nitride ceramic substrate with the oxide layer formed on the surface. Method of manufacturing circuit boards.
JP23947184A 1984-02-27 1984-11-15 High thermoconductive circuit board Granted JPS61119094A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23947184A JPS61119094A (en) 1984-11-15 1984-11-15 High thermoconductive circuit board
EP85102159A EP0153737B1 (en) 1984-02-27 1985-02-27 Circuit substrate having high thermal conductivity
US06/706,280 US4659611A (en) 1984-02-27 1985-02-27 Circuit substrate having high thermal conductivity
DE85102159T DE3587481T2 (en) 1984-02-27 1985-02-27 Circuit substrate with high thermal conductivity.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23947184A JPS61119094A (en) 1984-11-15 1984-11-15 High thermoconductive circuit board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28243294A Division JP2506270B2 (en) 1994-10-24 1994-10-24 High thermal conductivity circuit board and high thermal conductivity envelope

Publications (2)

Publication Number Publication Date
JPS61119094A JPS61119094A (en) 1986-06-06
JPH0568877B2 true JPH0568877B2 (en) 1993-09-29

Family

ID=17045260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23947184A Granted JPS61119094A (en) 1984-02-27 1984-11-15 High thermoconductive circuit board

Country Status (1)

Country Link
JP (1) JPS61119094A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725617B2 (en) * 1985-08-22 1995-03-22 住友電気工業株式会社 Aluminum nitride substrate and manufacturing method thereof
US5352482A (en) * 1987-01-22 1994-10-04 Ngk Spark Plug Co., Ltd. Process for making a high heat-conductive, thick film multi-layered circuit board
JPH02263445A (en) * 1988-12-23 1990-10-26 Toshiba Corp Aluminum nitride substrate and semiconductor using same
JPH02174184A (en) * 1988-12-26 1990-07-05 Toshiba Corp Thick film circuit substrate
EP0381242B1 (en) * 1989-02-03 1992-05-27 Mitsubishi Materials Corporation Substrate used for fabrication of thick film circuit
JPH02207554A (en) * 1989-02-07 1990-08-17 Mitsubishi Metal Corp Semiconductor device substrate with excellent heat dissipation
JP2615970B2 (en) * 1989-02-10 1997-06-04 三菱マテリアル株式会社 Method for manufacturing an ANN multilayer substrate in which conductors and resistors are wired inside
EP0688047A1 (en) 1994-06-13 1995-12-20 Mitsubishi Materials Corporation Aluminium nitride substrate and method of producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075208A (en) * 1973-11-07 1975-06-20
JPS578176A (en) * 1980-06-20 1982-01-16 Seiko Epson Corp High speed thermal printer head
JPS59121175A (en) * 1982-12-28 1984-07-13 株式会社東芝 Manufacture of heat radiator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075208A (en) * 1973-11-07 1975-06-20
JPS578176A (en) * 1980-06-20 1982-01-16 Seiko Epson Corp High speed thermal printer head
JPS59121175A (en) * 1982-12-28 1984-07-13 株式会社東芝 Manufacture of heat radiator

Also Published As

Publication number Publication date
JPS61119094A (en) 1986-06-06

Similar Documents

Publication Publication Date Title
US4659611A (en) Circuit substrate having high thermal conductivity
KR900001838B1 (en) High heat conductive ceramics substrate
JPS644668B2 (en)
JPH0568877B2 (en)
KR102212836B1 (en) Method of manufacturing ceramic circuit board
JP2989975B2 (en) Method for manufacturing aluminum nitride substrate
JPH0576795B2 (en)
JP2506270B2 (en) High thermal conductivity circuit board and high thermal conductivity envelope
JPS60178687A (en) High thermal conductivity circuit board
JPS617647A (en) Circuit substrate
US5352482A (en) Process for making a high heat-conductive, thick film multi-layered circuit board
JP2751473B2 (en) High thermal conductive insulating substrate and method of manufacturing the same
US4936010A (en) Method of forming dielectric layer on a metal substrate having improved adhesion
JPH0770798B2 (en) High thermal conductivity circuit board
JPS60107845A (en) Circuit substrate for semiconductor
JPS63146483A (en) High thermal conductivity circuit board
JPH0691304B2 (en) High thermal conductivity circuit board
US5164547A (en) Articles having a dielectric layer on a metal substrate having improved adhesion
GB2144922A (en) Substrate for thick-film electrical circuits
JPH11343178A (en) Joining method of copper plate and non-oxide ceramics
JPH02125728A (en) Composite base and its manufacture
JPH0250638B2 (en)
JPH06279097A (en) Production of sintered glass ceramic and sintered glass ceramic
JPH058866B2 (en)
JPH02207554A (en) Semiconductor device substrate with excellent heat dissipation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term