[go: up one dir, main page]

JPH03169063A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH03169063A
JPH03169063A JP30954989A JP30954989A JPH03169063A JP H03169063 A JPH03169063 A JP H03169063A JP 30954989 A JP30954989 A JP 30954989A JP 30954989 A JP30954989 A JP 30954989A JP H03169063 A JPH03169063 A JP H03169063A
Authority
JP
Japan
Prior art keywords
integrated circuit
circuit device
electrode
semiconductor layer
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30954989A
Other languages
Japanese (ja)
Inventor
Akio Matsuoka
松岡 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30954989A priority Critical patent/JPH03169063A/en
Publication of JPH03169063A publication Critical patent/JPH03169063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To control the capacitance and to enable adjustment to realize target characteristics of a semiconductor integrated circuit device by varying the voltage at which a diffusion resistance is isolated. CONSTITUTION:A P-type semiconductor layer 31 is made a diffusion resistance and has a resistance between those of an electrode 26 and an electrode 27. A voltage not lower than that applied to the electrodes 26, 27 is applied to an electrode 28. A reverse bias is made to be applied to a p-n junction between a P-type semiconductor layer 31 and an N-type semiconductor layer 32. Thereby, a diffusion resistance of the semiconductor layer 31 is isolated from others. Furthermore, at this time, a depletion layer 33 enlarges simultaneously and the diffusion resistance of the P-type semiconductor layer 31 has a capacitance with respect to the earth. The thickness (d) of the depletion layer 33 depends on a voltage applied to the electrode 28; if the voltage is high (low), the thickness (d) of the depletion layer 33 increases (decrease). Therefore, a capacitance is variable in accordance with a voltage applied to the electrode 28 and the diffusion resistor 31 has a resistance value and a variable capacitance value simultaneously. Thereby, adjustment is possible to realize target characteristics of an integrated circuit device.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体集積回路装置に関し、特に拡散抵抗を有
する半導体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and particularly to a semiconductor integrated circuit device having a diffused resistance.

[従来の技術] 従来、この種の半導体集積装置は、抵抗に対して並列に
容量をもたせたい場合、Metal  Insulat
or   Semiconductor構造(以下、M
IS構造と称す)等のコンデンサを接続していた。
[Prior Art] Conventionally, in this type of semiconductor integrated device, when it is desired to have a capacitance in parallel with a resistor, Metal Insulat is used.
or Semiconductor structure (hereinafter referred to as M
A capacitor such as IS structure was connected.

[発明が解決しようとする課題] 上述した従来の半導体集積回路装置は、MIS構造等の
コンデンサを使用していることから、所望の容量値のコ
ンデンサを形成するためには面積を広く占めることとな
り、半導体集積回路装置の集積度を高めることができな
いという欠点がある。
[Problems to be Solved by the Invention] Since the conventional semiconductor integrated circuit device described above uses a capacitor such as an MIS structure, it takes up a large area in order to form a capacitor with a desired capacitance value. However, there is a drawback that the degree of integration of the semiconductor integrated circuit device cannot be increased.

また、MIS構造等のコンデンサの容量値はプロセスの
バラツキに影響されるという欠点がある。
Furthermore, there is a drawback that the capacitance value of a capacitor such as an MIS structure is affected by process variations.

[発明の従来技術に対する相違点] 上述した従来の半導体集積回路装置に対し、本発明は空
乏層を形成することによって拡散抵抗自体に容量もたせ
、MIS構造等のコンデンサを特別に接続しないという
相違点を有し、更に空乏層の厚さを調整することによっ
て外部から容量値が調整可能であるという相違点を有す
る。
[Differences between the invention and the prior art] The present invention differs from the conventional semiconductor integrated circuit device described above in that the diffused resistor itself has a capacitance by forming a depletion layer, and a capacitor such as a MIS structure is not specially connected. The difference is that the capacitance value can be adjusted externally by adjusting the thickness of the depletion layer.

[課題を解決するための手段コ・ 本発明の半導体集積回路装置は、互いに並列に接続され
た拡散抵抗とコンデンサとを有する半導体集積回路装置
において、前記拡散抵抗を周囲から絶縁分離する空乏層
を形成し、当該空乏層がアースに対して有する容量値を
前記コンデンサとして用いることを特徴とする。
[Means for Solving the Problems] A semiconductor integrated circuit device of the present invention includes a depletion layer that insulates and separates the diffused resistor from the surroundings in a semiconductor integrated circuit device having a diffused resistor and a capacitor connected in parallel with each other. and the capacitance value that the depletion layer has with respect to ground is used as the capacitor.

[実施例コ 次に本発明について図面を参照して説明する。[Example code] Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の半導体集積回路装置の
等価回路であり、図中の1,  3,  7,  8,
9,13,14,1Bは拡散抵抗、4,l8はコンデン
サ、2,  5,  6,  10,  11,  1
2,  15,17はトランジスタである。第2図は第
1図中に示す拡散抵抗とコンデンサとが並列接続された
部分l9または20を示す平面図である。第3図は第2
図■一■の断面図である。
FIG. 1 is an equivalent circuit of a semiconductor integrated circuit device according to a first embodiment of the present invention, and 1, 3, 7, 8,
9, 13, 14, 1B are diffused resistors, 4, l8 are capacitors, 2, 5, 6, 10, 11, 1
2, 15, and 17 are transistors. FIG. 2 is a plan view showing a portion 19 or 20 in which the diffused resistor and capacitor shown in FIG. 1 are connected in parallel. Figure 3 is the second
It is a sectional view of Figure ■1■.

第1図に示すように部分19は抵抗3にコンデンサ4が
並列に接続され、B点がアースへつながっている。また
同様に、部分20は抵抗16にコンデンサ18が並列に
接続され、D点がアースへつながっている。本実施例は
、第3図に示すようにP型半導体層31を拡散抵抗とし
たものであり、電極26と電極27の間に抵抗値を持つ
。電極28には、電極26,電極27にかかる電圧以上
の電圧をかけP型半導体層31とN型半導体層32のP
N接合に逆バイアスがかかるようにして、P型半導体層
31の拡散抵抗を他から絶縁する。更に、この時同時に
、空乏N33が広がりP型半導体層31の拡散抵抗はア
ースに対して容量を持つ。
As shown in FIG. 1, in the portion 19, a resistor 3 and a capacitor 4 are connected in parallel, and a point B is connected to ground. Similarly, in the portion 20, a resistor 16 and a capacitor 18 are connected in parallel, and point D is connected to ground. In this embodiment, as shown in FIG. 3, the P-type semiconductor layer 31 is used as a diffused resistor, and has a resistance value between the electrode 26 and the electrode 27. A voltage higher than the voltage applied to the electrodes 26 and 27 is applied to the electrode 28 to remove the P of the P-type semiconductor layer 31 and the N-type semiconductor layer 32.
By applying a reverse bias to the N junction, the diffused resistance of the P type semiconductor layer 31 is insulated from others. Furthermore, at the same time, the depletion N33 expands and the diffused resistance of the P-type semiconductor layer 31 has a capacitance with respect to the ground.

この時の容量Cを次の(1)式に示す。The capacitance C at this time is shown in the following equation (1).

ε8◆ εS◆ S C=           ・・・・・・・・・・・・
・・・・・・・(1)d ただし、εのは真空中の誘電率、εSはN型半導体層3
2の比誘電率、dは空乏N33の厚さ、モしてSは第2
図のWとLの積である。一般的な条件で試算すると、 
(1)式より1μm2当りの容量値は0.3fF程度で
ある。空乏層33の厚さdは電極28にかける電圧によ
り決まり、その電圧が高ければ空乏層33の厚さdは大
きくなり、電圧が低ければ空乏層33の厚さdは小さく
なる。従って(1)式より電極28にかける電圧により
容量が可変可能であり、1μm2当り0.1fF程度可
変できる。ゆえに、第2図の拡散抵抗は抵抗値と可変な
容量値を同時に持つことになる。
ε8◆ εS◆ S C= ・・・・・・・・・・・・
・・・・・・・・・(1)d However, ε is the dielectric constant in vacuum, and εS is the N-type semiconductor layer 3
2, d is the thickness of the depletion N33, and S is the second
It is the product of W and L in the figure. Calculated under general conditions,
From equation (1), the capacitance value per 1 μm 2 is approximately 0.3 fF. The thickness d of the depletion layer 33 is determined by the voltage applied to the electrode 28; if the voltage is high, the thickness d of the depletion layer 33 becomes large, and if the voltage is low, the thickness d of the depletion layer 33 becomes small. Therefore, from equation (1), the capacitance can be varied by changing the voltage applied to the electrode 28, and can be varied by about 0.1 fF per 1 μm2. Therefore, the diffused resistor shown in FIG. 2 has a resistance value and a variable capacitance value at the same time.

尚、第2図および第3図中の29.  30.  36
は絶縁膜、34はN型半導体層、35はP型半導体層で
ある。
Note that 29. in FIGS. 2 and 3. 30. 36
is an insulating film, 34 is an N-type semiconductor layer, and 35 is a P-type semiconductor layer.

第4図は本発明の第2の実施例の拡散抵抗の平面図であ
り、第1図の部分19,20に対応する部分を示す。前
記実施例と同様に、第4図に示す部分は抵抗にコンデン
サが並列に接続され、一端がアースへつながっている。
FIG. 4 is a plan view of a diffused resistor according to a second embodiment of the present invention, showing portions corresponding to portions 19 and 20 in FIG. As in the previous embodiment, in the portion shown in FIG. 4, a resistor and a capacitor are connected in parallel, and one end is connected to ground.

本実施例の特徴は、長さ2L,幅Wの一対の拡散抵抗3
9.40をその両端部で電極48.47で接続して並列
に設けたことてあり、他は前記実施例と同様である。拡
散抵抗値は拡散抵抗長しと幅Wの比で決まり、Lが大き
いと拡散抵抗値は大きくなり、Wが大きいと拡散抵抗値
は小さくなる。拡散抵抗が持つ容量値は(1)式で与え
られ、抵抗の面積S、すなわちWとLの′積で決まる。
This embodiment is characterized by a pair of diffused resistors 3 with a length of 2L and a width of W.
9.40 are connected in parallel at both ends with electrodes 48.47, and the rest is the same as in the previous embodiment. The diffused resistance value is determined by the ratio of the length of the diffused resistor to the width W; when L is large, the diffused resistance value becomes large, and when W is large, the diffused resistance value becomes small. The capacitance value of the diffused resistor is given by equation (1), and is determined by the area S of the resistor, that is, the product of W and L.

従って、この実施例では拡散抵抗を並列接続しているの
で、拡散抵抗値を変えず容量値だけを4倍程度大きくで
きる利点がある。
Therefore, in this embodiment, since the diffused resistors are connected in parallel, there is an advantage that only the capacitance value can be increased by about 4 times without changing the diffused resistance value.

[発明の効果コ 以上説明したように本発明は、拡散抵抗を有する半導体
集積回路装置において、外部にMIS構造等のコンデン
サを接続することなく容量を持たせることができ、半導
体集積回路装置の集積度を高め、チップ面積を縮小し、
生産数を増加できる効果がある。
[Effects of the Invention] As explained above, the present invention enables a semiconductor integrated circuit device having a diffused resistance to have a capacitance without externally connecting a capacitor such as an MIS structure, and improves the integration of the semiconductor integrated circuit device. by increasing the degree of accuracy and reducing the chip area.
This has the effect of increasing production numbers.

またMIS構造等のコンデンサの容量はプロセスにより
変動するが、本発明は拡散抵抗を絶縁分離するための電
圧を変化させることにより、容量値を制御でき、半導体
集積回路装置が目標の特性になるように調整することが
できる効果がある。
In addition, the capacitance of a capacitor such as an MIS structure varies depending on the process, but the present invention can control the capacitance value by changing the voltage for insulating and separating the diffused resistor, so that the semiconductor integrated circuit device has the target characteristics. There is an effect that can be adjusted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる半導体集積回路装置
の等価回路、第2図は第1図中の要部を示す平面図、第
3図は第2図中の■一■矢視断面図、第4図は本発明の
第2実施例に係る半導体集積回路装置の要部の平面図で
ある。 1,  3,  7,  8,  9,  13,  
14,16,31,39.40・・・・・拡散抵抗、4
, 1 8 ・コンデンサ、 2,  5,  6,  10,  1  1,12,
15.17・・・・・・・トランジスタ、26,  2
7.  28, 46.47・ ・ ・ ・ ・ ・ ・ ・・ a電極
、32, 34・ N型半導体層、 29,30.36・・・・・・・絶縁膜、31,35・
・・・・・・・・・P型半導体層、33・・・・・・・
・・・・・・空乏層。
FIG. 1 is an equivalent circuit of a semiconductor integrated circuit device according to an embodiment of the present invention, FIG. 2 is a plan view showing the main parts in FIG. 1, and FIG. The sectional view and FIG. 4 are plan views of essential parts of a semiconductor integrated circuit device according to a second embodiment of the present invention. 1, 3, 7, 8, 9, 13,
14, 16, 31, 39.40... Diffusion resistance, 4
, 1 8 ・Capacitor, 2, 5, 6, 10, 1 1, 12,
15.17...Transistor, 26, 2
7. 28, 46.47... a electrode, 32, 34, N-type semiconductor layer, 29, 30.36... insulating film, 31, 35...
......P-type semiconductor layer, 33...
...depletion layer.

Claims (1)

【特許請求の範囲】[Claims] 互いに並列に接続された拡散抵抗とコンデンサとを有す
る半導体集積回路装置において、前記拡散抵抗を周囲か
ら絶縁分離する空乏層を形成し、当該空乏層がアースに
対して有する容量値を前記コンデンサとして用いること
を特徴とする半導体集積回路装置。
In a semiconductor integrated circuit device having a diffused resistor and a capacitor connected in parallel to each other, a depletion layer is formed to insulate and separate the diffused resistor from the surroundings, and a capacitance value that the depletion layer has with respect to ground is used as the capacitor. A semiconductor integrated circuit device characterized by:
JP30954989A 1989-11-29 1989-11-29 Semiconductor integrated circuit device Pending JPH03169063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30954989A JPH03169063A (en) 1989-11-29 1989-11-29 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30954989A JPH03169063A (en) 1989-11-29 1989-11-29 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH03169063A true JPH03169063A (en) 1991-07-22

Family

ID=17994352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30954989A Pending JPH03169063A (en) 1989-11-29 1989-11-29 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH03169063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667538B2 (en) * 2000-05-24 2003-12-23 Sony Corporation Semiconductor device having semiconductor resistance element and fabrication method thereof
KR100427924B1 (en) * 2000-10-20 2004-04-28 산요덴키가부시키가이샤 Manufacturing method of a semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667538B2 (en) * 2000-05-24 2003-12-23 Sony Corporation Semiconductor device having semiconductor resistance element and fabrication method thereof
US6902992B2 (en) 2000-05-24 2005-06-07 Sony Corporation Method of fabricating semiconductor device having semiconductor resistance element
KR100427924B1 (en) * 2000-10-20 2004-04-28 산요덴키가부시키가이샤 Manufacturing method of a semiconductor device

Similar Documents

Publication Publication Date Title
JPS5951141B2 (en) Channel selection device
US4297654A (en) Crystal oscillator including a MOS-capacitor
US4456917A (en) Variable capacitor
US6836399B2 (en) Integrated circuit metal-insulator-metal capacitors formed of pairs of capacitors connected in antiparallel
US4831431A (en) Capacitance stabilization
US6784044B2 (en) High dopant concentration diffused resistor and method of manufacture therefor
US3333168A (en) Unipolar transistor having plurality of insulated gate-electrodes on same side
JPH02228063A (en) High frequency integrated circuit channel capacitor
KR950004608A (en) Programmable Anti-Fuse Element and Manufacturing Method Thereof
KR100221440B1 (en) Semiconductor device with capacitive element
US4449141A (en) Variable capacitor
US3612964A (en) Mis-type variable capacitance semiconductor device
JPH03169063A (en) Semiconductor integrated circuit device
JPH02137256A (en) Semiconductor integrated circuit
JPS59104180A (en) variable capacitance diode
JPH0396267A (en) Semiconductor integrated circuit device
JPH07135296A (en) Semiconductor integrated circuit device
US3585414A (en) Continuously tunable varactor
JP2563456B2 (en) MIS type capacitive element
JPH02137255A (en) Semiconductor integrated circuit
JPH036858A (en) Master-slice type semiconductor integrated circuit device
JP2000058877A (en) Semiconductor variable capacitance element
JPH04127565A (en) Semiconductor device provided with resistance element
JPH03155659A (en) Semiconductor device
GB2103012A (en) Variable capacitor