[go: up one dir, main page]

JPH03165961A - Method and apparatus for casting with pressurizing - Google Patents

Method and apparatus for casting with pressurizing

Info

Publication number
JPH03165961A
JPH03165961A JP4524990A JP4524990A JPH03165961A JP H03165961 A JPH03165961 A JP H03165961A JP 4524990 A JP4524990 A JP 4524990A JP 4524990 A JP4524990 A JP 4524990A JP H03165961 A JPH03165961 A JP H03165961A
Authority
JP
Japan
Prior art keywords
pressure
mold
casting
molten metal
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4524990A
Other languages
Japanese (ja)
Inventor
Shigeo Hama
濱 葆夫
Hiroshi Watabe
洋 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPH03165961A publication Critical patent/JPH03165961A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the quality having high reliability and high accuracy by arranging a melting furnace or holding furnace and a mold in a pressure vessel, casting in this pressurized vessel and executing pressure control while linking with progress of solidification of a casting. CONSTITUTION:Inner part in the pressurized vessel separatable into plural pieces is divided into a high pressure chamber 1a and low pressure chamber 1b through a shelter member having a pouring hole. In the case the starting is executed at lower pressure than the pressure of low pressure casting executed with the higher pressure than the atmosphere pressure by the prescribed pressure, the melting furnace or the holding furnace is set in a high pressure chamber in the pressure vessel filled up with inert gas, etc., pressure-controlled in the high pressure, and by executing the temp. control to the molten metal held, the molten metal can be poured into the mold laid in the low pressure chamber. Involusion of the oxidized molten metal of aluminum alloy, etc., into the mold at the time of pouring the molten metal, is prevented. Further, as the molten metal is poured into the mold in the low pressure chamber side from the melting furnace or the holding furnace in the high pressure chamber side, good gas vent from the mold is executed, and by increasing pressure as progressing the solidification, the defect of pin hole, shrinkage, etc., can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,主としてアルミニウム合金,マグネシウム合
金.チタン合金等の金属を大気あるいは不活性雰囲気の
減圧下または加圧下において鋳造を行う鋳造方法および
その装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention mainly applies to aluminum alloys and magnesium alloys. The present invention relates to a casting method and apparatus for casting metal such as titanium alloy under reduced pressure or pressure in air or an inert atmosphere.

〔従来の技術〕[Conventional technology]

近時,信頼性の高いアルミニウム合金(以下アルミ合金
という)鋳物の製造法が種々開発され多様化しつつあり
,自動車部品の内の重要保安部品の材料も鉄鋼からアル
ミ合金鋳物に代えて軽量化が図られている。このため,
従来は比較的大型の製品まで寸法精度良く,能率的に生
産できる低圧鋳造法による鋳造が行なわれている。
Recently, various manufacturing methods for highly reliable aluminum alloy (hereinafter referred to as aluminum alloy) castings have been developed and diversified, and materials for important safety parts of automobile parts are also being made lighter by replacing steel with aluminum alloy castings. It is planned. For this reason,
Conventionally, even relatively large products have been cast using a low-pressure casting method that allows efficient production with good dimensional accuracy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記低圧鋳造法による鋳造においては,複雑な4 形状の薄肉あるいは厚内鋳物を製造する場合,または難
鋳造材を適用する場合,鋳造欠陥を完全に防止すること
は困難である。そしてこれらを改善するための種々の使
用材料に対応する凝固制御手段がなく,さらに溶湯の乱
流等による酸化物の発生や,加圧空気による溶湯の酸化
等により鋳物に巻き込みが発生して.著しく機械的性質
,靭性の低下をきたしている。また,加圧中の空気によ
り水素ガスが溶湯に固溶し,ビンホール発生やミクロシ
ュリンケージ欠陥発生の要因となっているが,これらを
対策することが困難であった。
In casting using the above-mentioned low-pressure casting method, it is difficult to completely prevent casting defects when manufacturing thin-walled or thick-walled castings with complex shapes, or when using difficult-to-cast materials. In order to improve these problems, there is no solidification control means suitable for the various materials used, and entrainment occurs in the casting due to the generation of oxides due to turbulent flow of the molten metal and oxidation of the molten metal due to pressurized air. Mechanical properties and toughness are significantly reduced. In addition, pressurized air causes hydrogen gas to dissolve in the molten metal, causing bottle holes and microshrinkage defects, but it has been difficult to take countermeasures against these problems.

本発明は,注入された溶湯が鋳型内で凝固して行く過程
で,製品形状,重量kこ合わ・已適宜に圧力を加え,し
かもその加え方を制御することにより.例えば, ■凝固収縮時の空間部に,溶湯を適切に補給することが
できる。
The present invention applies pressure as appropriate to the product shape, weight, and weight while the injected molten metal solidifies in the mold, and also controls the method of application. For example, (1) Molten metal can be appropriately replenished into the space during solidification and contraction.

■溶湯中のガスを凝固後の鋳物中に残さない。■Do not leave gas in the molten metal in the casting after solidification.

■鋳型内の薄い隙間にも溶湯を十分に流入させることが
できる。
■ Molten metal can sufficiently flow into thin gaps in the mold.

5 ■鋳型と溶湯の隙間の空気層が減少し,鋳物の冷却が促
進できる。
5 ■ The air layer between the mold and the molten metal is reduced, which facilitates cooling of the casting.

■形状複雑で溶湯が分岐しやすく,そのために起こりや
すい湯廻り不良を防止できる。
■The complicated shape makes it easy for the molten metal to branch out, which can prevent poor flow of the metal.

というように,上記従来の低圧鋳造法における問題点を
解消し,種々の使用材質に対応じて上記鋳造欠陥の発生
を抑制して,高品質の鋳物を高精度かつ高能率に製造す
ることができる鋳造方法と装置を提供することを目的と
するものである。
As described above, it is possible to eliminate the problems with the conventional low-pressure casting method, suppress the occurrence of the casting defects, and manufacture high-quality castings with high precision and high efficiency in response to various materials used. The purpose of this invention is to provide a casting method and device that can be used.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は,上記目的を達威するため種々検討の結果,大
気中あるいはAr ,N2等の不活性ガス雰囲気中で時
間の経過につれて圧力を高め,従来の低圧鋳造法におけ
る加圧力(0〜lkgf/cm2)よりも高圧力下で圧
力制御し,かつ溶解炉または保持炉によって保持された
溶湯の温度を制御しつつ鋳造を行えば(大気あるいは不
活性ガスの濃度.圧力および溶湯の温度等は使用材質に
対応じた最適な範囲を予め設定してお<),上記鋳造欠
陥の6 抑制に対して効果的であることを知見し,これを行うた
めの鋳造方法を開発し,またその装置を得た。その具体
的な条件制御法としては,■注入された溶湯を,鋳型内
の隙間の注入口より遠い部位から順次凝固させるように
.鋳型の冷却能を連続的に制御する。また同時に鋳造方
案も適切にたてる。
As a result of various studies in order to achieve the above object, the present invention has been developed to increase the pressure over time in the air or in an inert gas atmosphere such as Ar or N2, thereby increasing the pressure (0 to lkgf) in the conventional low-pressure casting method. /cm2), and the temperature of the molten metal held in a melting furnace or holding furnace (concentration of atmosphere or inert gas, pressure, temperature of molten metal, etc.) We found that setting the optimum range in advance according to the material used is effective in suppressing the above-mentioned casting defects, developed a casting method to do this, and developed the equipment. I got it. The specific method for controlling the conditions is: ■ The injected molten metal is allowed to solidify sequentially starting from the part of the gap in the mold that is farthest from the injection port. Continuously controls mold cooling capacity. At the same time, a suitable casting plan is also developed.

■内圧変化が大きく鋳造欠陥の出やすい部位に適切に溶
湯を袖給するように,溶湯を注入後凝固が完了するまで
圧力をかけ,そのかけ方(時間当りの圧力上昇度)は欠
陥を発生さ・已ないように自在に調整する。
■In order to properly supply molten metal to areas where internal pressure changes are large and casting defects are likely to occur, pressure is applied until solidification is completed after pouring the molten metal, and the way in which it is applied (pressure rise per hour) can cause defects. Adjust as you like so that it does not drop.

■加圧制御開始(以下スター1−という)時は減圧下あ
るいは加圧下とする。いずれにするかは対象物および要
求品質レヘル等により決めるが,特に熔渦中のガスを減
らす必要のある場合は,減圧下でスタートし,次第に加
圧していく。
■When starting pressurization control (hereinafter referred to as star 1-), the pressure should be reduced or increased. Which method to use depends on the object to be used and the required quality level, but especially if it is necessary to reduce the gas in the molten vortex, start under reduced pressure and gradually increase the pressure.

ことが必要であり,特に■5■項が本発明のポイントで
ある。
In particular, item (5) is the key point of the present invention.

本願の第1番目の発明は,圧力容器内に溶解炉または保
持炉および鋳型を設け.前記圧力容器内で鋳造し,鋳物
の凝固の進行に連動せしめて圧力制御を行うことを特徴
どする圧力付加鋳造方法である。
The first invention of the present application provides a melting furnace or a holding furnace and a mold in a pressure vessel. This is a pressure-added casting method characterized by casting in the pressure vessel and controlling the pressure in conjunction with the progress of solidification of the casting.

第2番目の発明は,複数個に分離可能で加圧源と減圧源
とにそれぞれ必要に応じ連通ずる圧力容器内に1鋳型へ
の注湯量の制御手段および加熱・保温手段を有する溶解
炉または保持炉を設け,かつ前記圧力容器内の圧力を制
御する圧力制御手段と 前記溶解炉または保持炉内の溶
湯の温度を前記加熱・保温手段を介して制御する温度制
御手段を設けたことを特徴とする加圧付加鋳造装置であ
る。
The second invention is a melting furnace or a melting furnace having a means for controlling the amount of molten metal poured into one mold and a means for heating and insulating the mold in a pressure vessel that can be separated into a plurality of pieces and communicates with a pressure source and a depressurization source as necessary. A holding furnace is provided, and a pressure control means for controlling the pressure in the pressure vessel, and a temperature control means for controlling the temperature of the molten metal in the melting furnace or the holding furnace via the heating/warming means. This is a pressurized addition casting equipment.

第3番目の発明は,複数個に分離可能な圧力容器内を,
注湯口を有する遮断部材を介して加圧源に必要に応じ連
通ずる高圧室と減圧源に必要に応じ連通ずる低圧室とに
分割し,高圧室内に注湯量の制御手段および加熱・保温
手段を有する溶解炉または保持炉を設けるとともに,低
圧室内への鋳型の収容を可能にし,かつ前記高圧室およ
び低圧室の圧力を制御する圧力制御手段と,前記溶解炉
または保持炉内の溶湯の温度を前記加熱・保温手段を介
して制御する温度制御手段を設けたことを特徴とする加
圧{=J加鋳造装置である。
The third invention is that the inside of the pressure vessel can be separated into a plurality of parts.
The system is divided into a high-pressure chamber that communicates with a pressurizing source as necessary and a low-pressure chamber that communicates with a depressurizing source as necessary via a shutoff member having a pouring port, and a means for controlling the amount of poured hot water and a means for heating and keeping warm are installed in the high-pressure chamber. A melting furnace or a holding furnace is provided, and a pressure control means that enables the mold to be accommodated in a low pressure chamber and controls the pressure of the high pressure chamber and the low pressure chamber, and a pressure control means that controls the temperature of the molten metal in the melting furnace or the holding furnace. This pressurizing {=J casting apparatus is characterized in that it is provided with a temperature control means that is controlled via the heating/warming means.

第4番目の発明は.複数個に分離可能で加圧源に必要に
応じ連通ずる高圧側圧力容器と,複数個に分離可能で減
圧源に必要に応じ連通ずる低圧側圧力容器とを併設し,
前記高圧側圧力容器内に加熱・保温手段を有する溶解炉
または保持炉を設けるとともに.前記低圧側圧力容器内
への鋳型の収容を可能にして.前記溶解炉または保持炉
の炉底部の近傍と前記鋳型の湯口の間を連通ずる注湯管
を設け,かつ前記高圧側圧力容器内および低圧側圧力容
器内の圧力を制御する圧力制御手段と,前記溶解炉また
は保持炉内の溶湯の温度を前記加熱・保温手段を介して
制御する温度制御手段を設けたことを特徴とする加圧付
加鋳造装置である。
The fourth invention is... A high-pressure side pressure vessel that can be separated into multiple units and communicates with a pressure source as necessary, and a low-pressure side pressure vessel that can be separated into multiple units and communicates with a reduced pressure source as necessary, are installed together.
A melting furnace or a holding furnace having heating and heat retention means is installed in the high-pressure side pressure vessel. The mold can be housed in the low-pressure side pressure vessel. A pressure control means for controlling the pressure in the high-pressure side pressure vessel and the low-pressure side pressure vessel, which includes a pouring pipe that communicates between the vicinity of the bottom of the melting furnace or the holding furnace and the sprue of the mold; The pressurized addition casting apparatus is characterized in that it is provided with a temperature control means for controlling the temperature of the molten metal in the melting furnace or the holding furnace via the heating/warming means.

第5番目の発明は2複数個に分離可能な圧力容器内を,
鋳型の載置可能な遮断部材によって.加9 圧源に必要に応じ連通ずる上部高圧室と減圧源に必要に
応じ連通ずる下部低圧室とに分割し,前記遮断部材に鋳
型を載置したとき該鋳型を通してガス体の通過可能な開
口を前記遮断部材に設けるとともに,前記上部高圧室内
に注湯量の制御手段および加熱・保温手段を有する溶解
炉または保持炉を設け,かつ前記上部高圧室内および下
部低圧室内の圧力を制御する圧力制御手段と.前記溶解
炉または保持炉内の溶湯の温度を前記加熱・保温手段を
介して制御する温度制御手段を設けたことを特徴とする
加圧付加鋳造装置である。
The fifth invention is a pressure vessel that can be separated into two or more parts.
By means of a blocking member on which the mold can be placed. 9. Divided into an upper high pressure chamber that communicates with a pressure source as necessary and a lower low pressure chamber that communicates with a reduced pressure source as necessary, and an opening that allows gas to pass through the mold when the mold is placed on the blocking member. is provided in the blocking member, and a melting furnace or a holding furnace is provided in the upper high-pressure chamber having a means for controlling the amount of molten metal poured into the chamber and a heating and heat-retaining means, and a pressure control means for controlling the pressure in the upper high-pressure chamber and the lower low-pressure chamber. and. The pressurized addition casting apparatus is characterized in that it is provided with a temperature control means for controlling the temperature of the molten metal in the melting furnace or the holding furnace via the heating/warming means.

第6番目の発明は.請求項2ないし5のいずれかに記載
の加圧付加鋳造装置を用いて金属を鋳造するに際し,注
湯時は鋳型内の圧力を減圧下または加圧下の状態とし,
時間経過とともに該鋳型内の圧力を高めて行くことを特
徴とする加圧付加鋳造方法である。
The sixth invention is... When casting metal using the pressurized addition casting apparatus according to any one of claims 2 to 5, the pressure in the mold is kept under reduced pressure or under increased pressure during pouring,
This is a pressurized addition casting method characterized by increasing the pressure within the mold over time.

〔作用〕[Effect]

上記各発明とも,従来の大気圧よりO〜1 kgf10 /cm2高い圧力で行う低圧鋳造よりもスタートが負圧
である場合.高圧において圧力制御された不活性ガス等
を充填した圧力容器内の高圧室内に溶解炉または保持炉
を設置し,保持した溶湯の温度制御を行って低圧室内に
載置した鋳型内に注湯を行うことができるようになって
いる。従って.アルミ合金等の金属の溶湯が酸化されて
注湯時鋳型内に巻き込まれるのを防止することができ,
また高圧室側の溶解炉または保持炉から低圧室側の鋳型
に向かって注湯するので,鋳型からのガス抜きがよく,
また.圧力を凝固の進行につれて高めて行くことにより
,ピンホールやンユリンゲージ等の鋳物の欠陥を防止す
ることができる。
In each of the above-mentioned inventions, the starting pressure is negative compared to low-pressure casting which is performed at a pressure O~1 kgf10/cm2 higher than the conventional atmospheric pressure. A melting furnace or a holding furnace is installed in a high-pressure chamber of a pressure vessel filled with an inert gas, etc. that is pressure-controlled at high pressure, and the temperature of the held molten metal is controlled and poured into a mold placed in a low-pressure chamber. It is now possible to do so. Therefore. It can prevent molten metal such as aluminum alloy from being oxidized and being rolled into the mold during pouring.
In addition, since the metal is poured from the melting furnace or holding furnace on the high-pressure chamber side toward the mold on the low-pressure chamber side, degassing from the mold is easy.
Also. By increasing the pressure as solidification progresses, casting defects such as pinholes and ring gauges can be prevented.

〔実施例〕〔Example〕

以下,第1図ないし第7図により本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 7.

(実施例1) 第l図は本発明の第1実施例を示す断面図であり,第2
図は制御系統を示す図である。
(Embodiment 1) Fig. 1 is a sectional view showing the first embodiment of the present invention, and
The figure is a diagram showing a control system.

第1図において,1は中央部にて上下2個に分離可能な
圧力容器で,給気管11と排気管12とにより加圧源と
減圧源(いずれも図示せず)とにそれぞれ連通し,減圧
源を介して内部の空気を排除して必要により大気圧より
も低圧に減圧するとともに,加圧源を介して.大気ある
いはArまたはN2等の不活性ガスを供給し,例えば内
部容積の80%を置換して,大気圧以上3 0 kgf
/cm2程度の圧力まで加圧して充填することができる
ものである。2は.るつぼ状をしたアルミ合金の溶湯の
保持炉で,圧力容器l内の比較的上方の部分に設けられ
ており,外側に加熱と保温との温度制御が可能なヒータ
ー3を有するとともに,内部には例えばレハー装置4a
によって上下動し,下方に載置した鋳型lOへの注湯量
を制御するストッパー4を有している。さらに第2図に
示すように圧力容器l内の圧力を制御する圧力制御装置
5とヒーター3を介して保持炉2内の溶湯の温度を制御
する温度制御装置6とが設けられている。
In FIG. 1, reference numeral 1 denotes a pressure vessel that can be separated into two upper and lower parts at the center, and is connected to a pressurization source and a depressurization source (none of which are shown) through an air supply pipe 11 and an exhaust pipe 12, respectively. The internal air is removed via a decompression source and the pressure is reduced to below atmospheric pressure if necessary, and the pressure is reduced to below atmospheric pressure via a pressurization source. By supplying the atmosphere or an inert gas such as Ar or N2, for example by replacing 80% of the internal volume, the pressure is increased to 30 kgf above atmospheric pressure.
It is possible to pressurize and fill up to a pressure of about /cm2. 2 is. This is a crucible-shaped holding furnace for molten aluminum alloy, which is installed in a relatively upper part of the pressure vessel l.It has a heater 3 on the outside that can control the temperature for heating and keeping warm, and has a heater 3 on the inside that can control the temperature. For example, the recording device 4a
It has a stopper 4 that moves up and down by the stopper 4 to control the amount of molten metal poured into the mold 10 placed below. Furthermore, as shown in FIG. 2, a pressure control device 5 for controlling the pressure inside the pressure vessel 1 and a temperature control device 6 for controlling the temperature of the molten metal in the holding furnace 2 via the heater 3 are provided.

上記構造の鋳造装置により.例えば砂型の鋳型10でア
ル宅合金鋳物を鋳造するに当たっては圧力容器1の上部
を中央部で分離し.フック掛けl3を利用してクレーン
等で吊り揚げて取り除き,圧力容器1の下部に鋳型10
を載置する。
By using a casting device with the above structure. For example, when casting aluminum alloy castings using a sand mold 10, the upper part of the pressure vessel 1 is separated at the center. The mold 10 is lifted and removed using a crane or the like using the hook l3, and the mold 10 is placed at the bottom of the pressure vessel 1.
Place.

次に,外側にヒーター3を有する保持炉2を鋳型10上
に設置する(予め鋳型lO上に保持炉2を設置しておき
,鋳型10を載置するとき同時に設置しても良い)。な
おごの際2 ス1・ンバー4とこれを操作するレハー装
置4aも同時に設置する。
Next, a holding furnace 2 having a heater 3 on the outside is installed on the mold 10 (the holding furnace 2 may be installed on the mold 10 in advance and installed at the same time as the mold 10 is placed). At the same time, the switch 1/bar 4 and the rehearsing device 4a to operate it are also installed at the same time.

ついで,別途溶解したアルミ合金の溶湯を保持炉2内に
注入し,温度制御装置6を介して所定の温度に溶湯を保
持せしめるとともに,取り除いた圧力容器lの上部を再
び被せて下部と強固に結合する。
Next, a separately melted molten aluminum alloy is poured into the holding furnace 2, and the molten metal is maintained at a predetermined temperature via the temperature control device 6, and the upper part of the pressure vessel l that was removed is again covered and firmly connected to the lower part. Join.

次に,第2図に示すように,真空ポンプ16によりI 
O ””mmllg程度まで真空になった真空タンクl
7により.排気管12を介して圧力容器1内の空気を排
除するとともに,Arガスを20kgf/C一程度の高
圧で封入した加圧タンク18から,給気管11を介して
圧力容器l内に供給し.圧力13 容器1の内部容積の80%程度を高圧のArガスと置換
する。その後,このArガスの圧力を圧力制御装置5に
より所定の圧力に制御しつつストッパー4を上昇させて
保持炉2の下方の出湯口を開き,鋳型10に注湯する。
Next, as shown in FIG. 2, the vacuum pump 16
Vacuum tank l that has become evacuated to about O ””mmllg
By 7. The air inside the pressure vessel 1 is removed through the exhaust pipe 12, and Ar gas is supplied into the pressure vessel 1 through the air supply pipe 11 from the pressurized tank 18 filled with Ar gas at a high pressure of approximately 20 kgf/C. Pressure 13: About 80% of the internal volume of the container 1 is replaced with high pressure Ar gas. Thereafter, the pressure of the Ar gas is controlled to a predetermined pressure by the pressure control device 5, and the stopper 4 is raised to open the outlet at the bottom of the holding furnace 2, and the melt is poured into the mold 10.

その後.凝固の進行とともに必要に応じて圧力を高めて
行く。なお,この状況は圧力容器1の上部に設けた照明
用窓14から照明し.観察用窓l5から観察できるよう
になっている(しかしこれらの窓はなくても良い)。
after that. The pressure is increased as necessary as coagulation progresses. Note that this situation is illuminated through the lighting window 14 provided at the top of the pressure vessel 1. It is possible to observe through the observation window l5 (however, these windows may not be provided).

上記のようにして鋳造したアルミ合金鋳物は検査の結果
,後述のように酸化物の巻き込みやピンホールあるいは
シュリンケージ等の欠陥がなく,品質の優れたものであ
った。
The aluminum alloy castings cast as described above were inspected and were found to be of excellent quality, with no defects such as oxide entrainment, pinholes, or shrinkage, as described below.

なお,本実施例では圧力容器1を上・下2個に分離可能
なものにした例について説明したが,これは3個以上に
分離できるようにしてもよく,以下の実施例についても
同様である。また,注湯量の制御はストッパー4により
行なう例について示したが.これはスライド式のゲート
を用いたりあるいは保持炉2を傾転したりする等,他の
手段l4 によっても良いことは勿論であり,以下の実施例につい
ても同様である。
In addition, in this embodiment, an example in which the pressure vessel 1 is separable into two parts, an upper and a lower part, has been described, but this may be made so that it can be separated into three or more parts, and the same applies to the following embodiments. be. In addition, an example was shown in which the amount of poured molten metal is controlled by the stopper 4. Of course, this may be done by other means l4, such as using a sliding gate or tilting the holding furnace 2, and the same applies to the following embodiments.

さらに,保持炉2は別途溶解した溶湯を受湯して所定の
温度に保持するものについて説明したが,この保持炉2
は溶解炉を兼ねたもの(逆に言えば保持炉を兼ねた溶解
炉)でも良い。すなわち,例えばヒーター3の代わりに
誘導加熱炉としてアルミ合金を溶解し.その後所定の温
度に溶湯を保持するものでも良い。そしてこれは以下の
実施例についても同様であり5また本明細書における「
保持炉」は全てこのこと,すなわち「溶解炉または保持
炉」を意味するものである。
Furthermore, although the holding furnace 2 has been described as one that receives separately melted molten metal and holds it at a predetermined temperature, this holding furnace 2
may be a melting furnace that also serves as a melting furnace (or conversely, a melting furnace that also serves as a holding furnace). That is, for example, instead of the heater 3, an induction heating furnace may be used to melt the aluminum alloy. The molten metal may be maintained at a predetermined temperature thereafter. This also applies to the following examples, 5 and in this specification.
All references to ``holding furnace'' refer to this, ie, ``melting furnace or holding furnace.''

次に上記鋳造装置を使用してアルミ合金鋳物を鋳造し.
鋳造欠陥5機械的性質その他について評価した結果につ
いて詳細に記述する。
Next, aluminum alloy castings were cast using the above casting equipment.
The results of evaluation of casting defect 5 mechanical properties and others will be described in detail.

第3図は試験片の模型を示す平面図,第4図は第3図の
D方向矢視側面図である。両図において21ないし24
は夫々試験片であり,平面形状において1 0 0mm
X 1 0 0mmの正方形に形戒すると共に,厚さを
夫々順に3mm.  1 0mm,  1 5mm,3
0mmに形威し,湯口25から湯道26を経て堰27に
よって接続する鋳造方案とした。すなわち試験片21は
アルミ合金鋳物の最小肉厚3mm,試験片24は同最大
肉厚30mmを.試験片22.23は各々中庸の肉厚1
 0mm,  1 5mmを想定したものである。次に
28ないし33は夫々ボスであり,例えば自動車用鋳物
に頻繁に使用される形状を模したものであり,夫々表に
示す寸法に形威した。また34ないし37は夫々押湯で
あり,試験片2lないし24の凝固時における収縮によ
るシュリンケージ防止のために設けたものであり,夫々
表に示す寸法に形威した。
3 is a plan view showing a model of the test piece, and FIG. 4 is a side view taken in the direction of arrow D in FIG. 3. 21 to 24 in both figures
are test pieces, each having a planar shape of 100 mm.
Shape it into a square of 100 mm x 3 mm in thickness. 1 0mm, 1 5mm, 3
A casting method was used in which the sprue 25 was connected via a runner 26 and a weir 27. That is, the test piece 21 is an aluminum alloy casting with a minimum wall thickness of 3 mm, and the test piece 24 is an aluminum alloy casting with a maximum wall thickness of 30 mm. Specimens 22 and 23 each have a medium wall thickness of 1
This assumes 0mm and 15mm. Next, numerals 28 to 33 are bosses, each of which has a shape that is often used, for example, in automobile castings, and each has the dimensions shown in the table. Further, numerals 34 to 37 are feeders, respectively, which were provided to prevent shrinkage due to shrinkage during solidification of the test specimens 2l to 24, and each had the dimensions shown in the table.

上記試験片の模型により, CO2鋳型を造型し アルξ合金溶湯を注湯した。この場合押湯34ないし3
7の外周に断熱材を設けて押湯効果を助長するようにし
た。なおアルご合金としてはAC1Bを使用した。この
合金はA 12 − Cu系合金であり,熱処理により
強度を高め得るが,鋳造性が極めて悪いために,従来に
おいては健全な鋳物ができなかった難鋳造材料である。
A CO2 mold was made using the model of the above test piece, and molten aluminum alloy was poured into it. In this case, the riser 34 or 3
A heat insulating material was provided around the outer circumference of 7 to promote the feeder effect. Note that AC1B was used as the aluminum alloy. This alloy is an A12-Cu alloy, and although its strength can be increased by heat treatment, it has extremely poor castability, making it a difficult-to-cast material that has not been able to produce sound castings in the past.

鋳造後押湯部およびボス部を縦断した後,それらの破面
について浸透探傷試験によりピンホールその他の欠陥を
調査した。
After casting, the riser and boss sections were longitudinally sectioned, and the fractured surfaces were investigated for pinholes and other defects by penetrant testing.

第5図ないし第7図は夫々試験片の破面の浸透深傷試験
結果を模式的に示す図であり,第5図に示すものは大気
圧下で鋳造したもの,第6図および第7図は各々6 k
gf/cm2および9 kgf/cm”の加圧状態で鋳
造したものに対応する。まず第5図において,試験片2
1〜24にはすべてピンホールないし巣が発生している
ことが認められ,特にボス28〜33内には多数の欠陥
が発生しており,到底鋳物製品としては使用に耐えない
状態である。これはACIB材が前記のように難鋳造材
1 7ー であり,大気圧下の鋳造すなわち従来の鋳造方法によっ
ては健全な鋳物を鋳造することが全く不可能であるとい
うことを如実に示している。次に第6図においては,6
 kgf/cm”の加圧状態で鋳造したものであり,肉
薄の試験片21においては,平板部には殆どビンホール
の発生が認められず,僅かにボス28.29の頂部近傍
にピンホールの発生が認められる。試験片22.23に
おいては,ピンホールの存在は認められるものの,押湯
35,36に比較的大なる引け巣が認められ,試験片2
2.23への溶湯補給作用が良好に行なわれていると解
される。なお肉厚を略極限に形威した試験片24内には
依然として多数のピンホールないしは巣が認められるも
のの,前記第5図に示すものより面積率が減少している
。このことから,鋳造時において圧力を印加することが
ピンホール若しくはポロシティの減少に有効であると解
される。
Figures 5 to 7 are diagrams schematically showing the results of penetration deep damage tests on the fracture surface of test pieces, respectively; the one shown in Figure 5 is the one cast under atmospheric pressure, Each figure is 6k
This corresponds to the one cast under pressure of 9 kgf/cm2 and 9 kgf/cm2.First, in Fig. 5, test piece 2
All of the bosses 28 to 33 are found to have pinholes or cavities, and in particular, a large number of defects have occurred in the bosses 28 to 33, making them completely unusable as a cast product. This clearly shows that ACIB material is a difficult-to-cast material as mentioned above, and it is completely impossible to cast a sound casting by casting under atmospheric pressure, that is, by conventional casting methods. There is. Next, in Figure 6, 6
In the thin test piece 21, there were almost no pinholes in the flat plate part, and only a few pinholes were found near the tops of the bosses 28 and 29. In test specimens 22 and 23, the presence of pinholes was recognized, but relatively large shrinkage cavities were found in feeders 35 and 36, and test specimen 2
It is understood that the molten metal replenishment action to 2.23 is being carried out well. Although a large number of pinholes or nests are still observed in the test piece 24 where the wall thickness has been reduced to almost the maximum, the area ratio is smaller than that shown in FIG. 5. From this, it is understood that applying pressure during casting is effective in reducing pinholes or porosity.

更に第7図に示すものは印加圧力を9 kgf/cm”
に増大させたものであり,全体的にビンホール若しくは
ポロシティが大幅に減少していることが認18 められる。特に試験片21.22.23においては微細
なピンホールが若干認められるのみに留まる。試験片2
4内には依然としてピンホールが多数存在するが,前記
第5図および第6図に示すものと比較すると面積率が激
減していることが認められる。このような現象は難鋳造
材であるACIBの従来の鋳造においては全く経験され
なかったことであり.鋳造時における圧力印加が鋳物の
健全化に大きく貢献しているものと解される。すなわち
鋳造時における鋳型およびアルご合金溶湯への圧力印加
若しくは加圧付加がピンホール,巣若しくはポロシティ
の発生を抑制し.若しくは圧潰し,更には収縮時におけ
る押湯からの溶湯補給を助長する作用があると推定され
る。
Furthermore, in the case shown in Fig. 7, the applied pressure is 9 kgf/cm"
It can be seen that the number of bin holes and porosity has been significantly reduced overall18. In particular, only a few fine pinholes were observed in test pieces 21, 22, and 23. Test piece 2
Although there are still a large number of pinholes in 4, it can be seen that the area ratio has been drastically reduced compared to those shown in FIGS. 5 and 6. Such a phenomenon has never been experienced in conventional casting of ACIB, which is a difficult-to-cast material. It is understood that the pressure applied during casting greatly contributes to the soundness of the casting. In other words, the application of pressure to the mold and molten aluminum alloy during casting suppresses the formation of pinholes, cavities, and porosity. It is presumed that the molten metal has the effect of promoting the replenishment of molten metal from the riser during collapse and contraction.

第8図(a)(b)は各々AC4Bについての加圧圧力
と引張り強さおよび伸びとの関係を示す図第9図(a)
(b)は各々AC4C}{についての加圧圧力と引張り
強さおよび伸びとの関係を示す図第lO図(a)(b)
は各々ACIBについての加圧圧力と引張り強さおよび
伸びとの関係を示す図でl9 あり,前記第3図および第4図に示す試験片23,24
の平板部から採取したテストビースによる値を示してい
る。これらの図においてFは鋳放しT6は熱処理したも
のについての値,()内は試験片23.24の平板部の
厚さ(単位mm)である。これらの図において,熱処理
したものT6は第9図(b)に示す伸びを除いて何れも
鋳放しのものFよりも数値が上回っており,溶体化処理
および時効処理によるMgzSi の析出硬化等による
当然の結果を示している。また厚さ30mmのものより
厚さ15mmのものの方が何れも高い数値を示している
が.肉厚の小なるものの方が凝固冷却速度が比較的大で
あるため,結晶粒径が比較的微細になる結果と認められ
る。次に鋳造時に圧力を印加することにより,またその
加圧圧力が大である程引張り強さおよび伸びが増大する
傾向が認められる。第8図(a)(b)および第9図(
a)(b)に示すAC4B,AC4CHにおいては増大
の傾向が比較的緩やかであるが.これは上記両合金が本
来的に鋳造性の良好な合金であり.大気圧20 下の鋳造によっても所定の機械的性質を得られるもので
あることによる。これに対して第10図(a)(b)に
示すACIBにおいては,加圧圧力の影響が極めて顕著
である。これはACIBが前述のように難鋳造材であり
,大気圧下における鋳造によっては前記第5図に示すよ
うに多数の巣,ピンホール,ポロシティを内在するため
である。しかしながら圧力印加および加圧圧力の増大に
より前記のような内部欠陥が大幅に減少し(第6図およ
び第7図参照).健全性を増大するものと認められ.圧
力の印加が多大に貢献するものと解される。
Figures 8(a) and 9(b) are diagrams showing the relationship between pressurizing pressure, tensile strength, and elongation for AC4B, respectively.Figure 9(a)
(b) are diagrams (a) and (b) showing the relationship between pressurizing pressure, tensile strength, and elongation for AC4C, respectively.
are diagrams showing the relationship between pressurizing pressure, tensile strength, and elongation for ACIB, respectively, and the test pieces 23 and 24 shown in FIGS. 3 and 4 above are
The values shown are based on test beads taken from the flat plate part of. In these figures, F is the value for the as-cast T6 and the heat-treated one, and the value in parentheses is the thickness (unit: mm) of the flat plate portion of the test piece 23.24. In these figures, the heat-treated T6 has higher values than the as-cast F, except for the elongation shown in Figure 9(b), which is due to precipitation hardening of MgzSi due to solution treatment and aging treatment. It shows a natural result. Also, the values for the 15mm thick ones are higher than those for the 30mm thick ones. This is believed to be the result of a relatively fine crystal grain size because the solidification cooling rate is relatively high in the case of smaller wall thicknesses. Next, there is a tendency for tensile strength and elongation to increase as pressure is applied during casting, and as the pressure increases. Figures 8(a)(b) and 9(
In AC4B and AC4CH shown in a) and (b), the increasing tendency is relatively gradual. This is because both of the above alloys inherently have good castability. This is because predetermined mechanical properties can be obtained even by casting under atmospheric pressure of 20%. On the other hand, in the ACIB shown in FIGS. 10(a) and 10(b), the influence of pressurizing pressure is extremely significant. This is because, as mentioned above, ACIB is a difficult-to-cast material, and when cast under atmospheric pressure, it contains many cavities, pinholes, and porosity as shown in FIG. 5 above. However, by applying pressure and increasing the applied pressure, the above-mentioned internal defects are significantly reduced (see Figures 6 and 7). Recognized as increasing health. It is understood that the application of pressure contributes greatly.

第11図(aHb>は各々加圧圧力とポロシティ面積率
との関係を示す図であり,前記第3図および第4図に示
す試験片24の平板部(肉厚301llI)から採取し
たテストビースによるものである。
FIG. 11 (aHb> is a diagram showing the relationship between the applied pressure and the porosity area ratio, respectively. The test bead taken from the flat plate part (wall thickness 301llI) of the test piece 24 shown in FIGS. 3 and 4 above. This is due to

なお第11図(a)は大気圧下で注湯して急速加圧した
もの,第11図(b)は一定加圧圧力に到達後において
鋳造したものに各々対応する。両図から明らかなように
,圧力の印加および加圧圧力の増大に伴ってボロシティ
面積率の減少が認められ 加圧圧力9kgf/cm2の
印加によりポロシティ面積率は0.5%を下回る値を示
し7健全性が大幅に向上している。比較的鋳造性が良好
であるとされているAC4B,AC4CHにおいても圧
力の印加および加圧圧力の増大が有効であることが認め
られる。圧力の印加態様については,ACIBについて
は一定加圧圧力に到達後に鋳造した場合(第11図(b
)参照)の方がポロシティ面積率減少のために有効であ
ると認められるが,AC4B,AC4CHについては第
11図(a)(b)間において顕著な相違が認められな
い。
Note that FIG. 11(a) corresponds to a case in which the metal was poured under atmospheric pressure and rapidly pressurized, and FIG. 11(b) corresponds to a case in which the metal was cast after reaching a constant pressure. As is clear from both figures, the porosity area ratio decreases with the application of pressure and an increase in the applied pressure, and the porosity area ratio shows a value below 0.5% by applying the applied pressure of 9 kgf/cm2. 7. Soundness has improved significantly. Even in AC4B and AC4CH, which are said to have relatively good castability, it is recognized that applying pressure and increasing the pressurizing pressure is effective. Regarding the manner of applying pressure, for ACIB, when casting is performed after reaching a certain pressure (Fig. 11 (b)
) is recognized to be more effective for reducing the porosity area ratio, but no significant difference is observed between FIGS. 11(a) and (b) for AC4B and AC4CH.

第12図(a)(b)は各々加圧圧力と密度との関係を
示す図であり,前記第11図(a)(b)と各々対応す
る。すなわち第12図(a)は大気圧下で注湯して急速
加圧したもの.第l2図(b)は一定加圧圧力に到達後
において鋳造したものに各々対応する。両図から明らか
なように.圧力の印加および加圧圧力の増大により,大
気圧下において鋳造したものより密度が向上することが
認められる。なおACIBおよびAC4CHについて2
2 は,一定加圧圧力に到達後において鋳造したものの方が
密度が若干大であると認められるが,AC4Bについて
は顕著な相違が認められない。溶湯注人後加圧開始まで
に若干の時間が経過し2鋳型キャビティと接触する部位
においては凝固が開始し,皮膜を形戊することを勘案す
れば,肉厚の小なる鋳物に対しては第12図(b)に示
す態様,すなわち一定加圧圧力に到達してから鋳造する
方が好ましいと解される。
FIGS. 12(a) and 12(b) are diagrams showing the relationship between pressurizing pressure and density, and correspond to FIGS. 11(a) and (b), respectively. In other words, Figure 12(a) shows the case where the metal was poured under atmospheric pressure and rapidly pressurized. FIG. 12(b) corresponds to those cast after reaching a constant pressurization pressure. As is clear from both figures. It is observed that by applying pressure and increasing the pressurizing pressure, the density is improved compared to that cast under atmospheric pressure. Regarding ACIB and AC4CH2
For AC4B, it is recognized that the density is slightly higher for those cast after reaching a certain pressure, but no significant difference is observed for AC4B. After pouring the molten metal, some time elapses before pressurization starts, and solidification begins in the area that comes into contact with the two mold cavities, forming a film. It is understood that the mode shown in FIG. 12(b), that is, the casting after reaching a constant pressurizing pressure is preferable.

次に第13図(aHb)(c)は夫々AC4BAC4C
HおよびACIBに対する加圧時期と密度との関係を示
す図,第13図((1)は熔湯の冷却曲線を示す図であ
る。まず第13図(L)においてT.,T.,T3,T
.は夫々注湯時,溶湯の成固開始時,固液50%時およ
び凝固終了時を表わし−.第13図(a)(b)(c)
における横軸上の符号と対応じ5何れも厚さ30mmの
試験片から採取したテストピースによる値である。まず
第13図(a)に示すAC4Bにおいては2注湯時T1
において加圧すると.大気圧下のものより密23 度が大となり,加圧時期が以後に遅延するに従って密度
が低下して行く。第13図(b)に示すAC4CHにお
いても第13図(a)に示すものと同様な傾向である。
Next, Figure 13 (aHb) and (c) are AC4BAC4C, respectively.
A diagram showing the relationship between pressurization timing and density for H and ACIB, Figure 13 ((1) is a diagram showing the cooling curve of molten metal. First, in Figure 13 (L), T., T., T3 ,T
.. -. represents the time of pouring, the start of solidification of molten metal, the time of 50% solid/liquid, and the end of solidification, respectively. Figure 13(a)(b)(c)
5, which corresponds to the symbol on the horizontal axis, are values based on test pieces taken from test pieces with a thickness of 30 mm. First, in AC4B shown in Fig. 13(a), T1 at the time of 2 pouring
When pressurized at . The density of 23 degrees is higher than that under atmospheric pressure, and the density decreases as the pressurization period is delayed. The AC4CH shown in FIG. 13(b) has a similar tendency to that shown in FIG. 13(a).

次に第13図(c)に示す難鋳造材であるACIBにつ
いても,圧力印加によって密度の向上が期待できるが.
時期T4すなわち溶湯の凝固終了時に圧力印加した場合
には密度の向上が期待できない。第13図(a)(b)
(c)を総して圧力の印加時期は注湯時とするのが密度
向上のために好ましいと認められる。
Next, for ACIB, which is a difficult-to-cast material shown in Figure 13(c), it is expected that the density will improve by applying pressure.
If pressure is applied at time T4, that is, at the end of solidification of the molten metal, no improvement in density can be expected. Figure 13(a)(b)
Overall, it is recognized that it is preferable to apply pressure at the time of pouring in order to improve density.

第14図(a)(b)(c)は夫々AC4B  AC4
CHおよびACIBに対する加圧時期とポロシティ面積
率との関係を示す図であり,何れも厚さ30InlI1
の試験片を加圧圧力9 kgf/cm2で鋳造したもの
から採取したテストビースによる値である。
Figure 14 (a), (b), and (c) are AC4B and AC4, respectively.
It is a figure showing the relationship between the pressurization timing and the porosity area ratio for CH and ACIB, both of which have a thickness of 30InlI1.
This value is based on a test bead taken from a test piece cast at a pressure of 9 kgf/cm2.

これらの図から明らかなように加圧時期が遅延するにつ
れてポロシティ面積率が増大し,鋳物の健全性を阻害す
ることがわかる。特に第14図(c)に示すACIBに
ついては圧力印加が注湯時T1である場合には0.5%
であるのに対し.凝24 固終了時T4である場合には3%を超える値に増大する
。従って圧力印加によるポロシティ防止作用を期待する
ためには,加圧時期を注湯時とすることが好ましいと認
められる。
As is clear from these figures, as the pressurization period is delayed, the porosity area ratio increases, which impedes the soundness of the casting. In particular, for ACIB shown in Fig. 14(c), when the pressure is applied at T1 during pouring, 0.5%
Whereas. Coagulation 24 At T4 at the end of coagulation, the value increases to more than 3%. Therefore, in order to expect the porosity prevention effect due to pressure application, it is recognized that it is preferable to apply pressure at the time of pouring.

(実施例2) 第15図および第16図は各々本発明の第2実施例を示
す断面図である。
(Embodiment 2) FIG. 15 and FIG. 16 are sectional views each showing a second embodiment of the present invention.

両図において,上下に分離可能な圧力容器1の中央部に
遮断部材7を設け,−・方を高圧室1a(第15図は上
部,第16図は下部)とし,他を低圧室lb(第l5図
は下部,第16図は上部)としてそれぞれ加圧源と減圧
源とに必要に応じ連通ずる。そして高圧室la内に温度
制御された保持炉2を設置し,低圧室lb内には鋳型1
0を収容して載置できるようになっている。また,図示
を省略したが温度と圧力との制御装置が実施例1と同様
に設けられている。鋳造を行なうときは,低圧室ib内
の空気を排除して減圧するとともに高圧室la内に高圧
のArガスを供給して加圧し2実施例lと同様に保持炉
2内の溶湯の温度と各室25 la,lb内の圧力を制御しつつ,スライド式ゲート4
′を開き.第16図のように保持炉2を下部に設置した
場合はストーク8を介して加圧力により注湯を行なう。
In both figures, a blocking member 7 is provided in the center of a pressure vessel 1 that can be separated into upper and lower parts, and the - side is a high pressure chamber 1a (the upper part in Fig. 15 and the lower part in Fig. 16), and the other part is a low pressure chamber lb ( The lower part in FIG. 15 and the upper part in FIG. 16 communicate with the pressurizing source and the depressurizing source, respectively, as necessary. A temperature-controlled holding furnace 2 is installed in the high pressure chamber la, and a mold 1 is placed in the low pressure chamber lb.
0 can be accommodated and placed. Further, although not shown, a temperature and pressure control device is provided in the same manner as in the first embodiment. When casting, the air in the low pressure chamber ib is removed to reduce the pressure, and the high pressure chamber la is pressurized by supplying high pressure Ar gas to maintain the temperature of the molten metal in the holding furnace 2 as in Example 2. While controlling the pressure inside each chamber 25 la, lb, the sliding gate 4
Open ′. When the holding furnace 2 is installed in the lower part as shown in FIG. 16, pouring is performed by pressurizing force through the stalk 8.

その後,凝固の進行とともに必要に応じて低圧室lb側
の圧力を高めていく。
Thereafter, as the solidification progresses, the pressure on the low pressure chamber lb side is increased as necessary.

本実施例においても,鋳造後のアルミ合金鋳物は実施例
lと同様の高品質のものが得られた。
In this example as well, the aluminum alloy casting after casting was of the same high quality as in Example 1.

(実施例3) 第17図は本発明の第3実施例を示す断面図である。本
実施例のものは高圧側圧力容器IAと低圧側圧力容器I
Bとを併設し,加圧源と減圧源にそれぞれ必要に応じ連
通させ.高圧側圧力容器IA内に温度制御された保持炉
2を設置するとともに,低圧側圧力容器IB内は鋳型1
0の収容載置ができるようになっている。さらに,保持
炉2の炉底部近傍と鋳型10の湯口との間を連通ずるセ
ラξツク製の注湯管9を設けている。また,図示を省略
したが温度と圧力の制御装置が実施例1と同様に設けら
れている。鋳造を行なうときは.実施例1と同様に保持
炉2内の溶湯の温度を制御しつつ,低圧側圧力容器IB
内の減圧と高圧側圧力容器IA内のArガスによる加圧
とを,圧力を制御しながら行ない2注湯管9を介して保
持炉2内の溶湯を鋳型10に注湯する。その後.スライ
ド式ゲート4′を閉して凝固の進行とともに必要に応じ
低圧側圧力容器IB側の圧力を高めていく。
(Embodiment 3) FIG. 17 is a sectional view showing a third embodiment of the present invention. In this example, the high-pressure side pressure vessel IA and the low-pressure side pressure vessel I
B, and communicate with the pressurization source and depressurization source as necessary. A temperature-controlled holding furnace 2 is installed in the high-pressure side pressure vessel IA, and a mold 1 is installed in the low-pressure side pressure vessel IB.
0 can be accommodated and placed. Further, a pouring pipe 9 made of ceramic material is provided which communicates between the vicinity of the bottom of the holding furnace 2 and the sprue of the mold 10. Further, although not shown, temperature and pressure control devices are provided in the same manner as in the first embodiment. When performing casting. While controlling the temperature of the molten metal in the holding furnace 2 as in Example 1, the pressure vessel IB on the low pressure side
The molten metal in the holding furnace 2 is poured into the mold 10 via the 2 pouring pipes 9 by reducing the pressure inside the holding furnace 2 and pressurizing it with Ar gas in the high-pressure side pressure vessel IA while controlling the pressure. after that. The sliding gate 4' is closed, and as the solidification progresses, the pressure on the low-pressure side pressure vessel IB side is increased as necessary.

本実施例においても,鋳造後のアルミ合金鋳物は吏施例
lと同様の高品質のものが得られた。
In this example as well, the aluminum alloy casting after casting was of the same high quality as in Example 1.

(実施例4) 第18図は本発明の第4実施例を示す断面図である。本
実施例のものは第18図に示すように,遮断部材7によ
って圧力容器1内に上部が高圧室1aになり,下部が低
圧室1bになるように分割しており.加圧源と減圧源と
にそれぞれ連通する。
(Embodiment 4) FIG. 18 is a sectional view showing a fourth embodiment of the present invention. In this embodiment, as shown in FIG. 18, the pressure vessel 1 is divided by a blocking member 7 into a high pressure chamber 1a in the upper part and a low pressure chamber 1b in the lower part. It communicates with a pressurization source and a depressurization source, respectively.

しかし遮断部材7は,中心部が下方に下がって鋳型10
を載置するようになっており,鋳型10を載置した時こ
の鋳型10を通し,また鋳枠10aの底の孔10bを通
して,高圧室Ia内のガス体が矢印方向に通過できるよ
うな開口7aが設けられている。また,図示を省略した
が温度と圧力の制御装置が実施例lと同様に設けられて
いる。
However, the center of the blocking member 7 is lowered and the mold 10
When the mold 10 is placed, there is an opening through which the gas in the high pressure chamber Ia can pass in the direction of the arrow through the mold 10 and through the hole 10b at the bottom of the flask 10a. 7a is provided. Further, although not shown, a temperature and pressure control device is provided in the same manner as in Embodiment 1.

鋳造を行うときは,遮断部材7の下がった部分に鋳型1
0を載置し,その上に保持炉2を設置する。そしてこの
保持炉2内の溶湯の温度を制御しつつ,低圧室lb内の
減圧と高圧室la内の加圧とを行ない,さらにこれらの
圧力の制御を行ないつつスライド式ゲート4′を開いて
保持炉2内の溶湯を鋳型10に注湯する。この時高圧室
la内のArガスおよび鋳造により発生したガスは鋳型
10を通り.さらに鋳枠10aの底の孔10bを通って
遮断部材70開口7aから低圧室lb内に抜ける。その
後,鋳物の凝固の進行とともに必要に応じて高圧室la
側の圧力を高めて行く。
When casting, place the mold 1 on the lowered part of the blocking member 7.
0 is placed, and the holding furnace 2 is installed on top of it. Then, while controlling the temperature of the molten metal in the holding furnace 2, the pressure in the low pressure chamber lb is reduced and the pressure in the high pressure chamber la is increased.Furthermore, while controlling these pressures, the sliding gate 4' is opened. The molten metal in the holding furnace 2 is poured into the mold 10. At this time, the Ar gas in the high pressure chamber la and the gas generated during casting pass through the mold 10. Furthermore, it passes through the hole 10b in the bottom of the flask 10a and exits from the opening 7a of the blocking member 70 into the low pressure chamber lb. After that, as the solidification of the casting progresses, the high pressure chamber la is installed as necessary.
Increase the pressure on the side.

本実施例により得られたアルご合金鋳物も,実施例lと
同様の高品質のものであった。
The algo alloy casting obtained in this example also had the same high quality as in Example 1.

(実施例5) 第19図は上記実施例l〜4で説明した鋳造装置を用い
て鋳造を行うときの圧力制御パターンの一例を示す図で
ある。金属の鋳造番こ際しては.圧力容器内の空気を所
要の時間L1をかけて減圧源を介して排除し5内部の圧
力を大気圧以下(本実施例では−1  kgf/cm2
)の真空にして,この状態を適当な時間t2保持した後
.A点において,大気あるいはArガスまたはN2ガス
等の不活性ガスと置換し,次に加圧源を介して所定の圧
力(本実施例では4 kgf/cm” )まで所要の時
間L,をかけて加圧し,若干の時間内にB点にて注湯を
行う。その後は,時間の経過とともに,鋳型内の冫容渇
の凝固が進行するので,この進行にともなって鋳型を載
置した圧力容器内の圧力を第19図中の矢印CIまたは
C2で示すように必要に応じて適当な時間t4をかけて
高めていく(本実施例では約1 0 kgf/cn+2
まで)か.あるいは矢印C4で示すように注湯時の圧力
を維持する。
(Example 5) FIG. 19 is a diagram showing an example of a pressure control pattern when casting is performed using the casting apparatus described in Examples 1 to 4 above. On this occasion of metal casting. The air inside the pressure vessel is removed via a decompression source over the required time L1, and the pressure inside 5 is reduced to below atmospheric pressure (in this example, -1 kgf/cm2).
) and maintain this state for an appropriate time t2. At point A, the atmosphere is replaced with the atmosphere or an inert gas such as Ar gas or N2 gas, and then a predetermined pressure (4 kgf/cm'' in this example) is applied for the required time L via a pressurizing source. Pressure is applied to the mold, and pouring is carried out at point B within a certain period of time.After that, as time passes, the solidification of the liquid in the mold progresses, and as this progresses, the pressure at which the mold is placed increases. The pressure inside the container is increased as indicated by arrow CI or C2 in FIG. 19 over an appropriate time t4 (in this example, approximately 10 kgf/cn+2).
)? Alternatively, the pressure during pouring is maintained as shown by arrow C4.

なお.注湯時の加圧力は,第19図中に点線で示すよう
に,  2 kgf/cm2程度と比較的低くても良く
,またllkgf/cm2のようにかなり高くても良い
。また図示していないが,大気圧以下の負圧下あるいは
大気圧下でもよい。
In addition. The pressurizing force during pouring may be relatively low, such as about 2 kgf/cm2, as shown by the dotted line in FIG. 19, or it may be quite high, such as 11 kgf/cm2. Although not shown, it may be under negative pressure below atmospheric pressure or under atmospheric pressure.

しかして,例えば第19図に示すようなパクー29 ンによる圧力の制御は,使用材料や鋳造しようとする鋳
物の形状.寸法,方案等により決定する。
For example, the control of pressure using the Pacoon shown in Figure 19 depends on the material used and the shape of the casting to be cast. Determined based on dimensions, plan, etc.

上記の通り圧力制御することにより,高品質の鋳物を製
造することができた。
By controlling the pressure as described above, we were able to produce high-quality castings.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によると,使用材質に制限されるこ
となく,それぞれの材質に対応じて酸化物の巻き込み,
ビンホール,シュリンケージ等の鋳造欠陥の発生を抑制
することができ.例えば自動車用の重要保安部品として
軽量で信頼性の高い優れた品質を有し.かつ高精度のも
のを能率よく製造できうるものである。なお,本発明は
アルミ合金に限らずマグネシウム合金,チタン合金等の
鋳造に用いても上記同様の効果を達或することができる
As described above, according to the present invention, oxides can be incorporated and processed in accordance with each material without being limited to the materials used.
The occurrence of casting defects such as bottle holes and shrinkage can be suppressed. For example, it is lightweight, highly reliable, and of excellent quality as an important safety component for automobiles. Moreover, high-precision products can be manufactured efficiently. Note that the present invention is not limited to aluminum alloys, but can also be used for casting magnesium alloys, titanium alloys, etc., and can achieve the same effects as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す断面図.第2図は制
御系統図,第3図は試験片の模型を示す3 0一 平面図,第4図は第3図のD方向矢視側面図,第5図な
いし第7図は夫々試験片の破面の浸透深傷試験結果を模
式的に示す図,第8図(a)(b)は各々AC4Bにつ
いての加圧圧力と引張り強さおよび伸びとの関係を示す
図,第9図(a)(b)は各々A C 4 C Hにつ
いての加圧圧力と引張り強さおよび伸びとの関係を示す
図,第lO図(a)(b)は各々ACIBについての加
圧圧力と引張り強さおよび伸びとの関係を示す図,第l
1図(a)(b)は各々加圧圧力とボロシティ面積率と
の関係を示す図,第12図(a)(b)は各々加圧圧力
と密度との関係を示す図.第13図(a)(b)(C)
は夫々AC4B,AC4CHおよびACIBに対する加
圧時期と密度との関係を示す図,第13図(d)は溶湯
の冷却曲線を示す図,第14図(a)(b)(c)は夫
々AC4B,AC4CHおよびAC1Bに対する加圧時
期とボロシティ面積率との関係を示す図,第15図およ
び第16図は各々本発明の第2実施例を示す断面図,第
17図は本発明の第3実施例を示す断面図,第18図は
本発明の第31 4実施例を示す断面図,第19図は本発明の鋳造装置を
用いて鋳造を行うときの圧力制御パターンの一例を示す
図である。 1:圧力容器     IA:高圧側圧力容器1B:低
圧側圧力容器 1a:高圧室 1b=低圧室     2:保持炉 3:ヒーター      4:スI・ツパー4′:スラ
イド式ゲート 5:圧力制御装置6:温度制御装W  
 7:遮断部材 7a:開口      8:ストーク 9:注湯管      lO:鋳型 11:給気管     l2:排気管 16:真空ポンプ   17:真空タンクl8:加圧タ
ンク
FIG. 1 is a sectional view showing the first embodiment of the present invention. Fig. 2 is a control system diagram, Fig. 3 is a plan view showing a model of the test piece, Fig. 4 is a side view taken in the direction of arrow D in Fig. 3, and Figs. 5 to 7 are each a test piece. Figures 8 (a) and 8 (b) are diagrams schematically showing the results of penetration deep damage tests on the fracture surface of AC4B, respectively. Figure 9 ( Figures a) and (b) are diagrams showing the relationship between the applied pressure and tensile strength and elongation for ACIB, respectively. Diagram showing the relationship between strength and elongation, Part I
Figures 1 (a) and (b) are diagrams showing the relationship between pressurization pressure and volocity area ratio, respectively, and Figures 12 (a) and (b) are diagrams showing the relationship between pressurization pressure and density, respectively. Figure 13(a)(b)(C)
are diagrams showing the relationship between pressurization timing and density for AC4B, AC4CH, and ACIB, respectively, Figure 13 (d) is a diagram showing the cooling curve of molten metal, and Figure 14 (a), (b), and (c) are diagrams for AC4B, respectively. , FIG. 15 and FIG. 16 are cross-sectional views showing the second embodiment of the present invention, and FIG. 17 is a cross-sectional view showing the third embodiment of the present invention. FIG. 18 is a cross-sectional view showing an example of the 31st embodiment of the present invention, and FIG. 19 is a view showing an example of a pressure control pattern when casting using the casting apparatus of the present invention. . 1: Pressure vessel IA: High pressure side pressure vessel 1B: Low pressure side pressure vessel 1a: High pressure chamber 1b = low pressure chamber 2: Holding furnace 3: Heater 4: Sliding gate 4': Sliding gate 5: Pressure control device 6: Temperature control device W
7: Blocking member 7a: Opening 8: Stoke 9: Molten pouring pipe lO: Mold 11: Air supply pipe l2: Exhaust pipe 16: Vacuum pump 17: Vacuum tank l8: Pressure tank

Claims (6)

【特許請求の範囲】[Claims] (1)圧力容器内に溶解炉または保持炉および鋳型を設
け、前記圧力容器内で鋳造し、鋳物の凝固の進行に連動
せしめて圧力制御を行うことを特徴とする加圧付加鋳造
方法。
(1) A pressurized addition casting method, characterized in that a melting furnace or a holding furnace and a mold are provided in a pressure vessel, casting is performed in the pressure vessel, and pressure is controlled in conjunction with the progress of solidification of the casting.
(2)複数個に分離可能で加圧源と減圧源とにそれぞれ
必要に応じ連通する圧力容器内に、鋳型への注湯量の制
御手段および加熱・保温手段を有する溶解炉または保持
炉を設け、かつ前記圧力容器内の圧力を制御する圧力制
御手段と、前記溶解炉または保持炉内の溶湯の温度を前
記加熱・保温手段を介して制御する温度制御手段を設け
たことを特徴とする加圧付加鋳造装置。
(2) A melting furnace or a holding furnace having a means for controlling the amount of molten metal poured into the mold and a means for heating and insulating the mold is installed in a pressure vessel that can be separated into multiple parts and communicates with a pressure source and a depressurization source as necessary. and a pressure control means for controlling the pressure in the pressure vessel, and a temperature control means for controlling the temperature of the molten metal in the melting furnace or the holding furnace via the heating/warming means. Pressure addition casting equipment.
(3)複数個に分離可能な圧力容器内を、注湯口を有す
る遮断部材を介して加圧源に必要に応じ連通する高圧室
と減圧源に必要に応じ連通する低圧室とに分割し、高圧
室内に注湯量の制御手段および加熱・保温手段を有する
溶解炉または保持炉を設けるとともに、低圧室内への鋳
型の収容を可能にし、かつ前記高圧室および低圧室の圧
力を制御する圧力制御手段と、前記溶解炉または保持炉
内の溶湯の温度を前記加熱・保温手段を介して制御する
温度制御手段を設けたことを特徴とする加圧付加鋳造装
置。
(3) The interior of the pressure vessel, which can be separated into a plurality of parts, is divided into a high-pressure chamber that communicates with a pressure source as necessary and a low-pressure chamber that communicates with a reduced pressure source as necessary via a blocking member having a pouring port, A melting furnace or a holding furnace having means for controlling the amount of molten metal poured into the chamber and heating and heat-insulating means is provided in the high-pressure chamber, and a pressure control means that enables the mold to be accommodated in the low-pressure chamber and controls the pressures in the high-pressure chamber and the low-pressure chamber. A pressurized addition casting apparatus comprising: a temperature control means for controlling the temperature of the molten metal in the melting furnace or the holding furnace via the heating/warming means.
(4)複数個に分離可能で加圧源に必要に応じ連通する
高圧側圧力容器と、複数個に分離可能で減圧源に必要に
応じ連通する低圧側圧力容器とを併設し、前記高圧側圧
力容器内に加熱・保温手段を有する溶解炉または保持炉
を設けるとともに、前記低圧側圧力容器内への鋳型の収
容を可能にして、前記溶解炉または保持炉の炉底部の近
傍と前記鋳型の湯口の間を連通する注湯管を設け、かつ
前記高圧側圧力容器内および低圧側圧力容器内の圧力を
制御する圧力制御手段と、前記溶解炉または保持炉内の
溶湯の温度を前記加熱・保温手段を介して制御する温度
制御手段を設けたことを特徴とする加圧付加鋳造装置。
(4) A high-pressure side pressure vessel that can be separated into a plurality of pieces and communicates with a pressure source as necessary, and a low-pressure side pressure vessel that can be separated into a plurality of pieces and communicates with a reduced pressure source as necessary, are installed together, and the high-pressure side A melting furnace or a holding furnace having heating and heat-insulating means is provided in the pressure vessel, and a mold can be accommodated in the low-pressure side pressure vessel, so that the vicinity of the bottom of the melting furnace or holding furnace and the mold are a pressure control means that includes a pouring pipe that communicates between the sprues and controls the pressure in the high-pressure side pressure vessel and the low-pressure side pressure vessel; A pressurized addition casting apparatus characterized by being provided with a temperature control means controlled via a heat retention means.
(5)複数個に分離可能な圧力容器内を、鋳型の載置可
能な遮断部材によって、加圧源に必要に応じ連通する上
部高圧室と減圧源に必要に応じ連通する下部低圧室とに
分割し、前記遮断部材に鋳型を載置したとき該鋳型を通
してガス体の通過可能な開口を前記遮断部材に設けると
ともに、前記上部高圧室内に注湯量の制御手段および加
熱・保温手段を有する溶解炉または保持炉を設け、かつ
前記上部高圧室内および下部低圧室内の圧力を制御する
圧力制御手段と、前記溶解炉または保持炉内の溶湯の温
度を前記加熱・保温手段を介して制御する温度制御手段
を設けたことを特徴とする加圧付加鋳造装置。
(5) The interior of the pressure vessel, which can be separated into multiple parts, is divided into an upper high-pressure chamber that communicates with a pressure source as necessary and a lower low-pressure chamber that communicates with a reduced pressure source as necessary, using a blocking member on which a mold can be placed. A melting furnace that is divided into parts, and has an opening in the blocking member that allows a gas to pass through the mold when the mold is placed on the blocking member, and has a means for controlling the amount of molten metal poured into the upper high-pressure chamber and a means for heating and keeping warm. Alternatively, a holding furnace is provided, and a pressure control means for controlling the pressure in the upper high pressure chamber and the lower low pressure chamber, and a temperature control means for controlling the temperature of the molten metal in the melting furnace or the holding furnace via the heating/warming means. A pressurized addition casting device characterized by being provided with.
(6)請求項の2ないし5のいずれかに記載の加圧付加
鋳造装置を用いて金属を鋳造するに際し、注湯時は鋳型
内の圧力を減圧下または加圧下の状態とし、時間経過と
ともに該鋳型内の圧力を高めて行くことを特徴とする加
圧付加鋳造方法。
(6) When casting metal using the pressurized addition casting apparatus according to any one of claims 2 to 5, the pressure in the mold is reduced or increased during pouring, and as time passes, A pressurized addition casting method characterized by increasing the pressure within the mold.
JP4524990A 1989-08-02 1990-02-26 Method and apparatus for casting with pressurizing Pending JPH03165961A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-199324 1989-08-02
JP19932489 1989-08-02

Publications (1)

Publication Number Publication Date
JPH03165961A true JPH03165961A (en) 1991-07-17

Family

ID=16405904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4524990A Pending JPH03165961A (en) 1989-08-02 1990-02-26 Method and apparatus for casting with pressurizing

Country Status (1)

Country Link
JP (1) JPH03165961A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875318A1 (en) * 1997-05-01 1998-11-04 Ykk Corporation Method and apparatus for production of amorphous alloy article by metal mold casting under pressure
CN100360263C (en) * 2005-07-28 2008-01-09 中国科学院金属研究所 A horizontal semi-continuous vacuum suction casting furnace
CN102836988A (en) * 2012-09-21 2012-12-26 西北工业大学 Aluminium alloy casting device
CN103418772A (en) * 2012-05-18 2013-12-04 无锡蠡湖叶轮制造有限公司 Full-automatic multi-stage metal-mold aluminum alloy injection compression method and machine
JP2017512138A (en) * 2014-02-28 2017-05-18 キャスティング テクノロジー インターナショナル リミテッドCastings Technology International Limited Formation of composite components

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875318A1 (en) * 1997-05-01 1998-11-04 Ykk Corporation Method and apparatus for production of amorphous alloy article by metal mold casting under pressure
US6044893A (en) * 1997-05-01 2000-04-04 Ykk Corporation Method and apparatus for production of amorphous alloy article formed by metal mold casting under pressure
CN100360263C (en) * 2005-07-28 2008-01-09 中国科学院金属研究所 A horizontal semi-continuous vacuum suction casting furnace
CN103418772A (en) * 2012-05-18 2013-12-04 无锡蠡湖叶轮制造有限公司 Full-automatic multi-stage metal-mold aluminum alloy injection compression method and machine
CN102836988A (en) * 2012-09-21 2012-12-26 西北工业大学 Aluminium alloy casting device
JP2017512138A (en) * 2014-02-28 2017-05-18 キャスティング テクノロジー インターナショナル リミテッドCastings Technology International Limited Formation of composite components

Similar Documents

Publication Publication Date Title
CN104475693B (en) The Reduction casting complex method of a kind of large-scale steel ingot and device thereof
US4832105A (en) Investment casting method and apparatus, and cast article produced thereby
CN100484659C (en) Incorporated device for vacuum steel ladle degassing and vacuum casting a plurality of steel ingots
CN104785757B (en) A kind of multicore many bags of reduction water the method and device of composite casting large-scale steel ingot altogether
US8870999B2 (en) Apparatus and method for degassing cast aluminum alloys
JP3247265B2 (en) Metal casting method and apparatus
CN110976814B (en) A kind of semi-continuous anti-gravity casting method of aluminum alloy automobile frame
CN110421144B (en) A pressure-regulated precision casting method for superalloy floating wall tiles under the action of an external electromagnetic field
JPH03165961A (en) Method and apparatus for casting with pressurizing
JPH05505147A (en) Manufacturing method of composite casting cylinder head
CN104249142B (en) The pressure casting processes of the sublimate homogeneous densification big strand of grain refining iron and steel
JPH0146226B2 (en)
Archer et al. Counter-gravity sand casting of steel with pressurization during solidification
JPH09174198A (en) Metallic cast billet for plastic working
CN102284694A (en) Sand-casting molding method of airplane cabin door
JPH04313457A (en) Method and apparatus for pressurized vibration casting
JPH0718464Y2 (en) Differential pressure casting equipment
CN1321765C (en) Reduction casting method
JP2870360B2 (en) Casting method of large structure made of aluminum alloy
Campbell Counter gravity casting
JPH0890205A (en) Method and apparatus for reduced pressure suction casting
Campbell The ten casting rules
JPS58125360A (en) Method and device for vacuum casting
Kampova et al. Stages of technological control in foundries
CN117226076A (en) Compression solidification device and compression solidification method suitable for vacuum pouring casting