[go: up one dir, main page]

JPH0315943B2 - - Google Patents

Info

Publication number
JPH0315943B2
JPH0315943B2 JP58117124A JP11712483A JPH0315943B2 JP H0315943 B2 JPH0315943 B2 JP H0315943B2 JP 58117124 A JP58117124 A JP 58117124A JP 11712483 A JP11712483 A JP 11712483A JP H0315943 B2 JPH0315943 B2 JP H0315943B2
Authority
JP
Japan
Prior art keywords
firing
film
phenylene group
fired
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58117124A
Other languages
Japanese (ja)
Other versions
JPS6011215A (en
Inventor
Kazumoto Murase
Toshihiro Oonishi
Masanobu Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58117124A priority Critical patent/JPS6011215A/en
Priority to US06/622,582 priority patent/US4599193A/en
Publication of JPS6011215A publication Critical patent/JPS6011215A/en
Publication of JPH0315943B2 publication Critical patent/JPH0315943B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 本発明は高い電気伝導度を有する炭素系材料及
びその組成物に関するさらに詳しくは共役系高分
子を焼成することを特徴とする高導電性炭素系材
料及び組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to carbon-based materials and compositions thereof having high electrical conductivity, and more particularly to highly conductive carbon-based materials and compositions characterized by firing a conjugated polymer.

近年、天然もしくは人工の高純度のグラフアイ
ト電子受容体もしくは電子共与体(以下ドーパン
トと称する)との錯化合物が金属並みの高い電導
度を示すことが発見され、高導電性材料として注
目されるようになつてきた。この種の高導電性炭
素材料として、炭化水素化合物を高温で気相熱分
解し、熱分解炭素とし、さらに超高温で熱処理し
て得られる熱分解グラフアイトが知られている。
この炭素材料はグラフアイト構造が高度に発達し
たものであり、ドーパントとの錯化合物の形成よ
り、さらに高導電性を発現するものであつた。
In recent years, it has been discovered that complex compounds with natural or artificial high-purity graphite electron acceptors or electron donors (hereinafter referred to as dopants) exhibit high conductivity comparable to that of metals, and have attracted attention as highly conductive materials. It's starting to feel like this. As this type of highly conductive carbon material, pyrolytic graphite is known, which is obtained by subjecting a hydrocarbon compound to gas phase pyrolysis at high temperature to produce pyrolytic carbon, which is then heat-treated at an ultra-high temperature.
This carbon material has a highly developed graphite structure, and exhibits even higher conductivity due to the formation of a complex compound with a dopant.

一方、高分子の焼成より炭素化、さらにグラフ
アイト化した炭素系材料を得ようとする試みもな
されている。例えばポリアクリロニトリル、レー
ヨン等の有機物繊維を焼成し、炭素繊維とする方
法がある。しかしながら得られる炭素繊維の電導
度は低く、3000℃で焼成を行なつた後でも103s/
cm以下であり、またドーパントの錯化合物形成よ
る電導度の向上効果はわずかにしか見られないな
ど充分にグラフアイト化した材料は得られない。
このように高分子の焼成により得た炭素材料は高
温焼成することにより必らずしもグラフアイト構
造になるとは限らないのである。また、数少ない
例として焼成によりグラフアイト化しやすい高分
子材料は特殊なフエノール樹脂などが知られてい
る。(炭素、1975年(No.82)102頁)しかしこれら
は焼成炭素化過程で溶融や軟化するために元の形
態は保持されない。
On the other hand, attempts have also been made to obtain carbon-based materials that are carbonized and further graphitized by firing polymers. For example, there is a method of firing organic fibers such as polyacrylonitrile and rayon to make carbon fibers. However, the electrical conductivity of the obtained carbon fibers is low, and even after firing at 3000°C, the electrical conductivity is 10 3 s/
cm or less, and the effect of improving conductivity due to the formation of a dopant complex compound is only slight, making it impossible to obtain a sufficiently graphitized material.
In this way, carbon materials obtained by firing polymers do not necessarily have a graphite structure when fired at high temperatures. In addition, a special phenolic resin is one of the few examples of polymeric materials that are easily converted into graphite by firing. (Carbon, 1975 (No. 82) p. 102) However, these do not retain their original form because they melt and soften during the firing carbonization process.

一般にフイルム状、繊維状等の工業的に有用な
形態を有する炭素材料を得るには焼成時空気によ
る酸化架橋反応等の不溶化処理が必須である。し
かしこの処理は高電導度の材料を得る目的には不
向きであり、これまで形態を保持したまま焼成が
でき、かつ高導電性の炭素材料を得ることは極め
て困難なことであつた。
Generally, in order to obtain a carbon material having an industrially useful form such as a film or fiber, an insolubilization treatment such as an oxidative crosslinking reaction using air during firing is essential. However, this treatment is not suitable for obtaining a highly conductive material, and it has been extremely difficult to obtain a highly conductive carbon material that can be fired while retaining its shape.

本発明者らは共役系高分子の焼成を広く検討し
た結果、新らしい事実を発明し、本発明に到つ
た。すなわち、p−フエニレンビニレン系ポリマ
ーのフイルムや繊維を不活性雰囲気で400℃を越
える温度で焼成しても、溶融することなく形状を
保持したまま炭素化できるだけでなく、高温では
グラフアイト化し、高導電性材料となり、しかも
ドーピングによつてさらに高導電性を示すことを
見い出した。
The present inventors extensively studied the firing of conjugated polymers, and as a result, discovered a new fact and arrived at the present invention. In other words, even when p-phenylene vinylene polymer films and fibers are fired in an inert atmosphere at temperatures exceeding 400°C, they not only retain their shape and become carbonized without melting, but also turn into graphite at high temperatures. It has been found that this material can be highly conductive, and that it can be made even more conductive by doping.

すなわち、本発明は、 一般式 (−R−CH=CH)−o (Rはp−フエニレン基、2,5−ジメチル−p
−フエニレン基または2,5−ジメトキシ−p−
フエニレン基を表し、nは2以上の整数を表す。) で表される共役系高分子を不活性雰囲気下、800
〜3500℃の温度で焼成して得られる高導電性炭素
系焼成物および(2)該高導電性炭素系焼成物と該焼
成物の重量当たり0.1〜150%のドーパントよりな
る高導電性組成物を提供することにある。
That is, the present invention is based on the general formula (-R-CH=CH) -o (R is p-phenylene group, 2,5-dimethyl-p
-phenylene group or 2,5-dimethoxy-p-
It represents a phenylene group, and n represents an integer of 2 or more. ) in an inert atmosphere at 800
A highly conductive carbon-based fired product obtained by firing at a temperature of ~3500°C, and (2) a highly conductive composition comprising the highly conductive carbon-based fired product and a dopant in an amount of 0.1 to 150% based on the weight of the fired product. Our goal is to provide the following.

本発明に用いられる共役系高分子()の合成
法に特に制限はなく、種々の方法が使用できる
が、好ましくはJ.Amer.Chem.Soc.,82,4669
(1960)記載のwittig 反応法、Makromol.
Chem.131,105(1970)記載の脱塩酸反応法、及
びJ.Polymer Sci.,A−1,,1058(1968)記
載のスニウム塩分解法が例示され、特にスルホニ
ウム塩分解法により得られる共役系高分子は均質
なフイルム状、糸状の成形物とすることができ好
適に用いることができる。
There is no particular restriction on the method of synthesizing the conjugated polymer () used in the present invention, and various methods can be used, but preferably J.Amer.Chem.Soc., 82 , 4669
(1960) described the wittig reaction method, Makromol.
Chem. 131 , 105 (1970) and the snium salt decomposition method described in J. Polymer Sci., A-1, 6 , 1058 (1968) are exemplified. The polymer can be formed into a homogeneous film-like or thread-like molded product and can be suitably used.

本発明に用い共役系高分子(1)のR基は対称性の
よいp−フエニレン基、2,5−ジメチル−p−
フエニレン基または2,5−ジメトキシp−フエ
ニレン基は焼成過程の形状保持が良好であるため
好ましい。
The R group of the conjugated polymer (1) used in the present invention is a p-phenylene group with good symmetry, 2,5-dimethyl-p-
A phenylene group or a 2,5-dimethoxy p-phenylene group is preferable because it retains its shape well during the firing process.

本発明に用いられる共役系高分子量が充分大き
いことが好ましく、nが2以上好ましくは5以上
50000で、たとえば分子量分画3500の透析膜によ
る透析処理で透析されない分子量を有するような
ものが効果的に用いられる。
It is preferable that the conjugated polymer used in the present invention has a sufficiently large molecular weight, and n is 2 or more, preferably 5 or more.
For example, a substance having a molecular weight of 50,000 and which cannot be dialyzed by dialysis treatment with a dialysis membrane with a molecular weight fraction of 3,500 is effectively used.

本発明の焼成に供する共役系高分子の形態は粉
末、シート状、フイルム状、糸状、その他の成形
品いずれもよいが、スルホニウム塩分解法により
作られるフイルム状、糸状物でかつ延伸配向され
た成形品はより高電導度となり特に好ましい。
The form of the conjugated polymer to be subjected to the firing of the present invention may be powder, sheet, film, thread, or other molded products, but it may be a film or thread-like product made by the sulfonium salt decomposition method and stretched and oriented. The product has higher conductivity and is particularly preferable.

本発明では焼成温度は400℃を越える温度が好
ましく、温度上限は炭素の蒸発温度で制限され
る。加圧系で焼成することによりさらに高温とす
ることができる。経済的でない。高導電性材料と
するには高温で焼成されるほど良い。実際的には
好ましくは400℃を越え3500℃以下であり、さら
に好ましくは800℃以上3300℃以下である。
In the present invention, the firing temperature is preferably higher than 400°C, and the upper temperature limit is limited by the evaporation temperature of carbon. By firing in a pressurized system, the temperature can be further increased. Not economical. In order to obtain a highly conductive material, the higher the firing temperature, the better. Practically speaking, the temperature is preferably higher than 400°C and lower than 3500°C, and more preferably higher than 800°C and lower than 3300°C.

また1000℃以上での高温での焼成は1000℃以下
で仮焼成を行ない続いて1000℃以上で焼成しても
よい。
Furthermore, when firing at a high temperature of 1000°C or higher, temporary firing may be performed at 1000°C or lower, followed by firing at 1000°C or higher.

本発明では不活性雰囲気は窒素ガス、アルゴン
ガス及び真空中などが効果的であり、2000℃以上
ではアルゴンガスがより好ましい。
In the present invention, effective inert atmospheres are nitrogen gas, argon gas, vacuum, etc., and argon gas is more preferable at 2000° C. or higher.

焼成時の加熱方法には特に制限はないが、焼成
温度によつて、発熱方法が異なる。すなわち、
1500℃以下では抵抗線炉やシリコニツト炉など
1500℃以上では黒鉛発熱体タンマン炉や高周波誘
導加熱炉が効果的に用いられる。
There are no particular restrictions on the heating method during firing, but the heating method differs depending on the firing temperature. That is,
At temperatures below 1500℃, use resistance wire furnaces, siliconite furnaces, etc.
At temperatures above 1500℃, graphite heating element Tammann furnaces and high-frequency induction heating furnaces are effectively used.

この様にして得られる共役系高分子()の焼
成物は多くの場合102〜104s/cmの電導度を示す。
The fired product of the conjugated polymer () obtained in this manner often exhibits an electrical conductivity of 10 2 to 10 4 s/cm.

さらに重要なことは、この焼成物の電子受容体
もしくは電子供与体によるドーピング処理によ
り、電導度がさらに向上し、103〜105s/cmまた
はそれ以上に達することである。ドーパントにつ
いては特に限定しないが、従来グラフアイトある
いはポリアセチレン、ポリピロールなどの共役系
高分子において高導電性が見出されている化合物
を効果的に用いることができる。
More importantly, the conductivity of the fired product is further improved by doping with an electron acceptor or an electron donor, reaching 10 3 to 10 5 s/cm or more. The dopant is not particularly limited, but compounds that have been found to have high conductivity in conjugated polymers such as graphite, polyacetylene, and polypyrrole can be effectively used.

そのドーピングの方法は、公知の方法すなわ
ち、ドーパントと直接気相もしくは液相で接触さ
せる方法、電気化学的な方法、イオンインプラン
テーシヨン等により実施することができる。
The doping method can be carried out by a known method, ie, a method of direct contact with a dopant in a gas phase or liquid phase, an electrochemical method, an ion implantation method, or the like.

具体的には電子受容体としてはハロゲン化合物
類:臭素等、ルイス酸類:三塩化鉄、五フツ化砒
素、五フツ化アンチモン、三フツ化ホウ素、三酸
化硫黄、三塩化アルミ、五塩化アンチモン等、プ
ロトン酸類:硝酸、硫酸、クロルスルホン酸等、 電子供与体としては、アルカリ金属類:リチウ
ム、カリウム、ルビジウム、セシウム等、アルカ
リ土類金属類:カルシウム、ストロンチウム、バ
リウム等、その他希土類金属:(Sm,Eu,Yb)、
金属アミド類:カリウムアミド、カルシウムアミ
ド等が例示される。ドーピング量は特に制限はな
いが、好ましい含有量は熱処理物の重量当り0.1
%〜150%、特には10%〜100%である。
Specifically, electron acceptors include halogen compounds: bromine, etc., Lewis acids: iron trichloride, arsenic pentafluoride, antimony pentafluoride, boron trifluoride, sulfur trioxide, aluminum trichloride, antimony pentachloride, etc. , protonic acids: nitric acid, sulfuric acid, chlorosulfonic acid, etc., electron donors: alkali metals: lithium, potassium, rubidium, cesium, etc., alkaline earth metals: calcium, strontium, barium, etc., other rare earth metals: ( Sm, Eu, Yb),
Metal amides: potassium amide, calcium amide, etc. are exemplified. There is no particular restriction on the amount of doping, but the preferred content is 0.1 per weight of the heat-treated product.
% to 150%, especially 10% to 100%.

本発明における共役系高分子()の焼成物
は、従来のグラフアイト化材料とは異なり高導電
性でかつ任意の賦形された焼成物にできるところ
に特徴があり、高導電性の必要な各種の用途に用
いることができる。
The fired product of the conjugated polymer () according to the present invention is characterized in that, unlike conventional graphitized materials, it has high conductivity and can be made into any shaped fired product. It can be used for various purposes.

以下に実施例によつて本発明をさらに詳しく述
べるが本発明はこれに限定されるものではない。
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto.

実施例 1 P−キシリレンビス(ジエチルスルホニウムブ
ロミド)と苛性ソーダの水溶液を作用させ、スル
ホニウム塩を側鎖に有する高分子スルホニウム塩
水溶液を得た。続いて透析後、キヤストし、フイ
ルムに成形した。
Example 1 P-xylylene bis(diethylsulfonium bromide) was allowed to react with an aqueous solution of caustic soda to obtain an aqueous solution of a polymeric sulfonium salt having a sulfonium salt in its side chain. Subsequently, after dialysis, it was cast and formed into a film.

このフイルム(長さ5cm、巾10cm)を窒素雰囲
気で、横型管状炉を用い200℃、2時間で静置加
熱処理をおこなつた。このものはポリ−p−フエ
ニレンビニレン構造を有し、その電気伝導度は、
10-10s/cm以下であつた。
This film (length: 5 cm, width: 10 cm) was subjected to static heat treatment at 200° C. for 2 hours in a nitrogen atmosphere using a horizontal tube furnace. This material has a poly-p-phenylene vinylene structure, and its electrical conductivity is
It was less than 10 -10 s/cm.

抵抗線加熱式横型管状電気炉(450mmL)に石
英ガラス製炉芯管(30mmφ×700mmL)を挿入
し、不活性ガスが導入できるように装置を組立て
た。電気炉中央の炉芯管内に上記のフイルム(20
×50mm)を入れ、窒素ガスを毎分100ml流通させ
電気炉内を950℃に昇温した。2時間、950℃で焼
成したのち、室温まで冷却し焼成物を取り出し
た。焼成物はフイルムは室温で90s/cmの高導度
を示した。さらにこのフイルムに電子受容体化合
物として無水硫酸を使用し、常法により室温で気
相からのドーピングをおこなつたところ、24時間
で136s/cm、の電導度を示した。
A quartz glass furnace core tube (30 mmφ x 700 mm L) was inserted into a resistance wire heating horizontal tubular electric furnace (450 mm L), and the device was assembled so that inert gas could be introduced. Place the above film (20
x 50 mm) and passed 100 ml of nitrogen gas per minute to raise the temperature inside the electric furnace to 950°C. After firing at 950°C for 2 hours, the fired product was cooled to room temperature and taken out. The fired film showed a high conductivity of 90 s/cm at room temperature. Furthermore, when this film was doped from the gas phase at room temperature using an ordinary method using sulfuric anhydride as an electron acceptor compound, it showed an electrical conductivity of 136 s/cm in 24 hours.

電導度の測定は4端子法または2端子法で行な
つた。
The electrical conductivity was measured using a four-terminal method or a two-terminal method.

実施例 2 実施例1で得た焼成フイルムをさらに3000℃で
焼成した。焼成は黒鉛管発熱体を用い、アルゴン
気流中で20分間行なつた。焼成物はフイルム形状
を保つていた。このフイルムは室温で8×103s/
cmの電導度を示した。さらに無水硫酸でドーピン
グしたところ、1.1×104s/cmの電導度を示した。
Example 2 The fired film obtained in Example 1 was further fired at 3000°C. Firing was performed for 20 minutes in an argon stream using a graphite tube heating element. The fired product maintained its film shape. This film is 8×10 3 s/at room temperature.
It showed a conductivity of cm. When it was further doped with anhydrous sulfuric acid, it showed an electrical conductivity of 1.1×10 4 s/cm.

実施例 3 実施例1で得たキヤストフイルムを150℃迄10
mm/分の延伸速度で一軸延伸しながら昇温加熱し
た後、200℃、定長アニーリングを30分おこない
10.8倍に延伸されたフイルムを得た。このフイル
ムを窒素ガス気流中で950℃で焼成した。延伸フ
イルムはフイルム状を保持した。得られたフイル
ムは120s/cmの、又無水硫酸のドーピングで
150s/cmの電導度を示した。
Example 3 The cast film obtained in Example 1 was heated to 150°C.
After heating while uniaxially stretching at a stretching speed of mm/min, constant length annealing was performed at 200℃ for 30 minutes.
A film stretched 10.8 times was obtained. This film was fired at 950°C in a nitrogen gas stream. The stretched film maintained its film shape. The obtained film was doped at 120s/cm and with sulfuric anhydride.
It showed an electrical conductivity of 150s/cm.

実施例 4 実施例1で得られた原液を80℃の50パーセント
の苛性ソーダ水溶液中に押しだし紡糸した。生成
した糸状物を150℃で延伸し6倍に延伸された糸
を得た。この糸をアルゴン気流中で室温から3000
℃まで2時間で昇温し、3000℃で20分間焼成し
た。焼成物は糸状を保持していた。
Example 4 The stock solution obtained in Example 1 was extruded into a 50% caustic soda aqueous solution at 80°C and spun. The produced filament was drawn at 150°C to obtain a thread drawn six times. This thread was heated from room temperature to 3000 in an argon stream.
The temperature was raised to ℃ over 2 hours and baked at 3000℃ for 20 minutes. The fired product retained its filamentous shape.

この焼成糸は室温で1.2×104s/cmの、又は無
水硫酸でドーピングすると1.1×105s/cmの電導
度を示した。
The fired yarn exhibited an electrical conductivity of 1.2×10 4 s/cm at room temperature or 1.1×10 5 s/cm when doped with anhydrous sulfuric acid.

実施例 5 2,5−ジメチル−p−キシリレンビス(ジエ
チルスルホニウムブロミド)を用いたほかは実施
例1と同様に重合、フイルム成形した。
Example 5 Polymerization and film molding were carried out in the same manner as in Example 1 except that 2,5-dimethyl-p-xylylene bis(diethylsulfonium bromide) was used.

このフイルムを長さ5cm、巾1cmをアルゴンガ
ス雰囲気下で200で2時間、加熱処理をおこない
ポリ−2,5−ジメチル−p−フエニレンビニレ
ンとした後、さらにそのまま3000℃まで2時間で
昇温し、3000℃で20分間焼成した。
This film was heated to 5 cm in length and 1 cm in width for 2 hours at 200℃ under an argon gas atmosphere to form poly-2,5-dimethyl-p-phenylene vinylene, and then heated to 3000℃ for 2 hours. It was heated and baked at 3000°C for 20 minutes.

焼成物はフイルム状態を保持してした。得られ
たフイルムは室温で5.2×103s/cmの、又硝酸で
ドーピングすると8.6×103s/cmの電導度を示し
た。
The fired product retained its film state. The resulting film exhibited an electrical conductivity of 5.2×10 3 s/cm at room temperature and 8.6×10 3 s/cm when doped with nitric acid.

実施例 6 2,5−ジメトキシ−p−キシリレンビス(ジ
エチルスルホニウムブロミド)を用いたほかは実
施例1と同様に重合、フイルム成形した。
Example 6 Polymerization and film molding were carried out in the same manner as in Example 1 except that 2,5-dimethoxy-p-xylylene bis(diethylsulfonium bromide) was used.

得られた高分子スルホニウム塩フイルムを窒素
流通下、200℃迄の加熱処理を行ないポリ−2,
5−ジメトキシ−p−フエニレンビニレンとした
後、得られたフイルムをアルゴン中3000で焼成し
た。焼成物はフイルム状態を保持していた。得ら
れたフイルムは室温で5.5×103s/cmの、又硝酸
をドーピングすると7.2×103s/cmの電導度を示
した。
The obtained polymer sulfonium salt film was heat-treated at up to 200°C under nitrogen flow to form poly-2,
After converting into 5-dimethoxy-p-phenylenevinylene, the resulting film was fired at 3000 °C in argon. The fired product maintained a film state. The resulting film exhibited an electrical conductivity of 5.5×10 3 s/cm at room temperature and 7.2×10 3 s/cm when doped with nitric acid.

Claims (1)

【特許請求の範囲】 1 一般式 (−R−CH=CH)−o (Rはp−フエニレン基、2,5−ジメチル−
p−フエニレン基または2,5−ジメトキシ−p
−フエニレン基を表し、nは2以上の整数を表
す。) で表される共役系高分子を不活性雰囲気下、800
〜3500℃の温度で焼成して得られる高導電性炭素
系焼成物 2 一般式 (−R−CH=CH)−o (Rはp−フエニレン基、2,5−ジメチル−
p−フエニレン基または2,5−ジメトキシ−p
−フエニレン基を表し、nは2以上の整数を表
す。) で表される共役系高分子を不活性雰囲気下、800
〜3500℃の温度で焼成して得られる高導電性炭素
系焼成物および該焼成重量当たり0.1〜150%のド
ーパントよりなる高導電性組成物
[Claims] 1 General formula (-R-CH=CH)- o (R is p-phenylene group, 2,5-dimethyl-
p-phenylene group or 2,5-dimethoxy-p
- represents a phenylene group, and n represents an integer of 2 or more. ) in an inert atmosphere at 800
Highly conductive carbon-based fired product 2 obtained by firing at a temperature of ~3500°C General formula (-R-CH=CH)- o (R is p-phenylene group, 2,5-dimethyl-
p-phenylene group or 2,5-dimethoxy-p
- represents a phenylene group, and n represents an integer of 2 or more. ) in an inert atmosphere at 800
A highly conductive carbon-based fired product obtained by firing at a temperature of ~3500°C and a highly conductive composition comprising a dopant of 0.1 to 150% based on the fired weight
JP58117124A 1983-06-30 1983-06-30 Carbonaceous material having high electric conductivity and its composition Granted JPS6011215A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58117124A JPS6011215A (en) 1983-06-30 1983-06-30 Carbonaceous material having high electric conductivity and its composition
US06/622,582 US4599193A (en) 1983-06-30 1984-06-20 Highly electroconductive pyrolyzed product retaining its original shape and composition formed therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117124A JPS6011215A (en) 1983-06-30 1983-06-30 Carbonaceous material having high electric conductivity and its composition

Publications (2)

Publication Number Publication Date
JPS6011215A JPS6011215A (en) 1985-01-21
JPH0315943B2 true JPH0315943B2 (en) 1991-03-04

Family

ID=14704023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117124A Granted JPS6011215A (en) 1983-06-30 1983-06-30 Carbonaceous material having high electric conductivity and its composition

Country Status (1)

Country Link
JP (1) JPS6011215A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226405A (en) * 1984-04-24 1985-11-11 Japan Synthetic Rubber Co Ltd Production of electrically conductive material
JPS62112641A (en) * 1985-11-11 1987-05-23 Nitta Kk Pressure-sensitive, electrically conductive elastomer composition
JP3267194B2 (en) * 1997-06-24 2002-03-18 松下電器産業株式会社 Method of manufacturing electromagnetic wave shielding material, electromagnetic wave shielding material, and electromagnetic wave source using the shielding material
JP2008075971A (en) * 2006-09-21 2008-04-03 Nidec Sankyo Corp Damper device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730604A (en) * 1980-03-28 1982-02-18 Sumitomo Rubber Ind Ltd Tyre
JPS5734704A (en) * 1980-08-11 1982-02-25 Hitachi Ltd Pattern controlling device for motor
JPS57207329A (en) * 1981-06-15 1982-12-20 Kanebo Ltd Organic type semiconductor and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730604A (en) * 1980-03-28 1982-02-18 Sumitomo Rubber Ind Ltd Tyre
JPS5734704A (en) * 1980-08-11 1982-02-25 Hitachi Ltd Pattern controlling device for motor
JPS57207329A (en) * 1981-06-15 1982-12-20 Kanebo Ltd Organic type semiconductor and manufacture thereof

Also Published As

Publication number Publication date
JPS6011215A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
Moulton et al. Electrical and mechanical properties of oriented poly (3-alkylthiophenes): 2. Effect of side-chain length
Kang et al. Structural studies of poly (p-phenyleneamine) and its oxidation
Andreatta et al. Processing of high-performance conducting polymers
EP0314311B1 (en) Conductive articles of intractable polymers and methods for making the same
JPH02500288A (en) Conductive polymer/polyimide mixture and its manufacturing method
CA1193850A (en) Stable electrically conducting polymers and method of making
US4599193A (en) Highly electroconductive pyrolyzed product retaining its original shape and composition formed therefrom
US4362680A (en) Process for production of molded articles of acetylene polymer
EP0026234A1 (en) Process for preparing highly conductive acetylene high polymer
Tokito et al. Highly conductive and stiff fibres of poly (2, 5-dimethoxy-p-phenylenevinylene) prepared from soluble precursor polymer
US4791177A (en) Conjugated polymer film and pyrolyzed product thereof
JPH0359089B2 (en)
JPH0315943B2 (en)
Gin et al. Synthesis and processing of poly (p-phenylene) via the phosphoric acid-catalyzed pyrolysis of a stereoregular precursor polymer: a characterization study
Tabata et al. Electrical and optical properties of poly (p-phenylene) film and their doping effect
JPH0148204B2 (en)
JPH06172028A (en) Highly conductive carbon-based fired body and composition thereof
JP3764485B2 (en) Conductive fiber
JP2720550B2 (en) Highly conductive carbon and its composition
JPH0393106A (en) Electric conductor and its manufacture
JPH0147405B2 (en)
JPH03153512A (en) Production of high-conductivity graphite
Doroshenko " Ladder" and" parquet" polymers
Andreatta et al. Fibers of Conducting Polymers: High Electrical Conductivity Combined with Attractive Mechanical Properties
JP2667210B2 (en) Method for producing polystyrene composite or polyvinyl chloride composite