JP2720550B2 - Highly conductive carbon and its composition - Google Patents
Highly conductive carbon and its compositionInfo
- Publication number
- JP2720550B2 JP2720550B2 JP1292561A JP29256189A JP2720550B2 JP 2720550 B2 JP2720550 B2 JP 2720550B2 JP 1292561 A JP1292561 A JP 1292561A JP 29256189 A JP29256189 A JP 29256189A JP 2720550 B2 JP2720550 B2 JP 2720550B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- treatment
- film
- highly conductive
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は高導電性炭素およびドーパントとの高導電性
組成物に関する。The present invention relates to a highly conductive composition with highly conductive carbon and a dopant.
<従来の技術> 近年、天然もしくは人工の高純度のグラファイトと電
子受容体もしくは電子供与体(以下ドーパントと称す
る)との錯化合物が金属並の高い電導度を示すことが発
見され、炭素系材料が高導電性材料として着目されるよ
うになってきた。この種の高導電性炭素材料はグラファ
イト構造が高度に発達したものであり、ドーパントとの
錯化合物の形成によりさらに高導電性を発現するもので
ある。<Related Art> In recent years, it has been discovered that a complex compound of natural or artificial high-purity graphite and an electron acceptor or an electron donor (hereinafter referred to as a dopant) exhibits a conductivity as high as that of a metal. Has come to attract attention as a highly conductive material. This type of highly conductive carbon material has a highly developed graphite structure, and exhibits higher conductivity by forming a complex compound with a dopant.
一方、この観点から、高分子の熱処理により炭化、さ
らにグラファイト化した高導電性炭素材料を得ようとす
る試みがなされてている。On the other hand, from this viewpoint, attempts have been made to obtain a highly conductive carbon material which has been carbonized and further graphitized by heat treatment of a polymer.
ポリ−p−フェニレンビニレン(特開昭60−11215、
特開昭61−10016号公報)、芳香族ポイミド(特開昭60
−181129号公報)を不活性雰囲気下2000℃以上で熱処理
するとグラファイト化が容易に進行し、3000℃の処理で
104S/cmを越える高導電材料となり、しかもドーピング
によりさらに105S/cmを越える高導電性を示すことなど
が知られている。Poly-p-phenylene vinylene (JP-A-60-11215,
JP-A-61-10016), aromatic poimide (JP-A-60-100)
-181129) is heat-treated at 2000 ° C or higher in an inert atmosphere, and the graphitization proceeds easily.
It is known that it becomes a highly conductive material exceeding 10 4 S / cm, and further shows high conductivity exceeding 10 5 S / cm by doping.
以上のようにこれまでグラファイト化することが知ら
れている高分子は炭化水素、酸素、窒素を含有している
もののみであった。これらの元素はグラファイト化の際
に焼成物から脱離するのみで、その作用にはついては知
られていない。また、グラファイト化には3000℃程度の
処理が必要である。As described above, only polymers containing hydrocarbon, oxygen, and nitrogen have been known to be graphitized. These elements only desorb from the fired material during graphitization, and their actions are not known. In addition, treatment at about 3000 ° C. is required for graphitization.
<発明が解決しようとする課題> グラファイト化の触媒作用を有する硫黄を含有する高
分子のグラファイト化については知られていなかった。
特にポリチエニレンビニレンについては導電性高分子と
して知られているが、炭化、グラファイト化物について
はまったく知られていなかった。<Problems to be Solved by the Invention> Graphitization of a sulfur-containing polymer having a catalytic action for graphitization has not been known.
In particular, polythienylenevinylene is known as a conductive polymer, but carbonization and graphitization are not known at all.
すなわち、本発明はポリチエニレンビニレンおよびそ
の誘導体の炭化、グラファイト化を鋭意検討し、ポリチ
エニレンビニレンとその誘導体がグラファイト化するこ
とを見い出し、本発明に到達した。That is, the present invention diligently studied carbonization and graphitization of polythienylenevinylene and its derivative, and found that polythienylenevinylene and its derivative were graphitized, and reached the present invention.
<課題を解決するための手段> 本発明は、一般式(1) (R1、R2:水素または炭素数1〜21の炭化水素基)で示
される繰り返し単位を有する共役系高分子を不活性雰囲
気下、400℃以上の温度で焼成して得られる高導電性炭
素、さらには該高導電性炭素とドーパントを必須成分と
する高導電性組成物を提供する。<Means for Solving the Problems> The present invention provides a compound represented by the general formula (1): (R 1 , R 2 : hydrogen or a hydrocarbon group having 1 to 21 carbon atoms) High conductivity obtained by baking a conjugated polymer having a repeating unit represented by the formula below at a temperature of 400 ° C. or more in an inert atmosphere. Provided is a highly conductive composition containing carbon, and the highly conductive carbon and a dopant as essential components.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明において使用される一般式(1)で示されるポ
リチエリレンビニレン誘導体の合成方法には特に限定さ
れないが、フィルムや繊維状など有用な形態に賦形でき
る合成方法であるスルホニウム塩高分子中間体かあるい
はアルコキシ基高分子中間体を経由する方法が好まし
い。スルホニウム塩高分子中間体を経由する方法では、
一般式(2) R3,R4:水素または炭素数1〜20の炭化水素基、 R5:炭素数4〜20の二官能の炭化水素基、 X1 -:対イオン、 で表わされるジスルホニウム塩モノマーをアルカリで重
合して、一般式(3) で表わされる中間体高分子が得られる。さらに、アルコ
キシ基高分子中間体を経由する方法では一般式(3)で
示されるスルホニウム塩高分子中間体をアルコール(R6
OH)と反応させ、一般式(4) で示されるアルコキシ基高分子中間体を得る。得られた
高分子中間体を不活性雰囲気化で脱スルホニウム塩処
理、あるいは脱アルコール処理を行なうことにより、ポ
リチエニレンビニレン誘導体を得ることができる。The method for synthesizing the polythierylenevinylene derivative represented by the general formula (1) used in the present invention is not particularly limited, but a sulfonium salt polymer intermediate which is a synthetic method capable of shaping into a useful form such as a film or a fiber. It is preferable to use a compound or via an intermediate of an alkoxy group polymer. In the method via a sulfonium salt polymer intermediate,
General formula (2) R 3 , R 4 : hydrogen or a hydrocarbon group having 1 to 20 carbon atoms, R 5 : a bifunctional hydrocarbon group having 4 to 20 carbon atoms, X 1 − : a counter ion, and a disulfonium salt monomer represented by the following formula: Polymerized by the general formula (3) An intermediate polymer represented by the following formula is obtained. Further, in the method via an alkoxy group polymer intermediate, the sulfonium salt polymer intermediate represented by the general formula (3) is converted to an alcohol (R 6
OH), and reacted with the general formula (4) To obtain an alkoxy group polymer intermediate represented by the formula: By subjecting the obtained polymer intermediate to desulfonium salt treatment or dealcoholation treatment in an inert atmosphere, a polythienylenevinylene derivative can be obtained.
式中、R1、R2は水素または炭素数1〜20の炭化水素基
で好ましくは水素または炭素数1〜6のアルキル基であ
り、具体的には水素、メチル、エチル基等が好ましい。In the formula, R 1 and R 2 are hydrogen or a hydrocarbon group having 1 to 20 carbon atoms, preferably hydrogen or an alkyl group having 1 to 6 carbon atoms, and specifically, hydrogen, methyl, ethyl and the like are preferable.
R3、R4は炭素数1〜10の炭化水素基、例えばメチル、
エチル、プロピル、イソプロプル、n−ブチル、2−エ
チルヘキシル、フェニル、シクロヘキシル、ベンジル基
等があげられるが、炭素数1〜6の炭化水素基、特にメ
チル、エチル基が好ましい。R 3 and R 4 are a hydrocarbon group having 1 to 10 carbon atoms, for example, methyl,
Ethyl, propyl, isopropyl, n-butyl, 2-ethylhexyl, phenyl, cyclohexyl, benzyl and the like are exemplified, and a hydrocarbon group having 1 to 6 carbon atoms, particularly methyl and ethyl, is preferred.
R5は炭素数4〜10の二官能の炭化水素基、例えばテト
ラメチレン、ペンタメチレン、ヘキサメチレン基等があ
げられるが、炭素数4〜6の炭化水素基、特にテトラメ
チレン、ヘキサメチレン基が好ましい。R 5 is a bifunctional hydrocarbon group having 4 to 10 carbon atoms, for example, tetramethylene, pentamethylene, hexamethylene group and the like, and a hydrocarbon group having 4 to 6 carbon atoms, particularly tetramethylene, hexamethylene group is preferable. preferable.
スルホニウム塩の対イオンX1 -は常法により任意のも
のを用いることができる。たとえば、ハロゲン、水酸
基、4弗化ホウ素、過塩素酸、カルボン酸、スルホン酸
イオン等を使用することができ、なかでも塩素、臭素、
ヨウ素などのハロゲンイオンが好ましい。Counterion X 1 of sulfonium salts - can be used any of the conventional methods. For example, halogen, hydroxyl group, boron tetrafluoride, perchloric acid, carboxylic acid, sulfonic acid ion and the like can be used. Among them, chlorine, bromine,
Halogen ions such as iodine are preferred.
スルホニウム塩高分子中間体からアルコキシ基高分子
中間体への変換に用いるアルコールR6OHのR6としては炭
素数1〜10の炭化水素基が例示され、好ましくは炭素数
1〜4の炭化水素基である。Examples of R 6 of alcohol R 6 OH used for converting the sulfonium salt polymer intermediate to the alkoxy group polymer intermediate include hydrocarbon groups having 1 to 10 carbon atoms, preferably hydrocarbons having 1 to 4 carbon atoms. Group.
このようにして得られた高分子中間体を後処理するこ
とによりポリチエニレンビニレン誘導体が製造できる。
ここでいう高分子中間体の後処理は熱、光、紫外線、強
い塩基または酸処理などの条件を適用することにより、
スルホニウム塩側鎖または求核置換基で置換された側鎖
を脱離させ、共役構造とすることをいうが、特に加熱処
理が好ましい。By post-treating the polymer intermediate thus obtained, a polythienylenevinylene derivative can be produced.
The post-treatment of the polymer intermediate here is performed by applying conditions such as heat, light, ultraviolet light, strong base or acid treatment,
It means that a sulfonium salt side chain or a side chain substituted with a nucleophilic substituent is eliminated to form a conjugated structure, and heat treatment is particularly preferable.
また、高分子中間体の処理は不活性雰囲気で行うこと
が好ましい。ここでいう不活性雰囲気とは処理中に高分
子の変質を起こさない雰囲気をいい、一般には窒素、ア
ルゴン、ヘリウムなどの不活性ガスを用いて行われる
が、真空下あるいは不活性媒体中でこれを行ってもよ
い。The treatment of the polymer intermediate is preferably performed in an inert atmosphere. The term "inert atmosphere" used herein refers to an atmosphere that does not cause deterioration of the polymer during the treatment, and is generally performed using an inert gas such as nitrogen, argon, or helium. May be performed.
熱により高分子中間体の後処理を行う場合、余りの高
温での処理は生成する共役系高分子の分解をもたらし、
低温では生成反応が遅く実際的でないので、通常熱処理
温度は0〜400℃、好ましくは100〜320℃が適する。ま
た、処理時間は処理温度とのかねあいで適宜時間を選ぶ
ことができるが、1分〜10時間がの範囲が工業上実際的
である。When performing post-treatment of the polymer intermediate by heat, treatment at an excessively high temperature results in decomposition of the conjugated polymer produced,
Since the formation reaction is slow and impractical at low temperatures, the heat treatment temperature is usually 0 to 400 ° C, preferably 100 to 320 ° C. The processing time can be appropriately selected depending on the processing temperature, but the range of 1 minute to 10 hours is industrially practical.
得られたポリチエニレンビニレン誘導体を不活性雰囲
気下で400℃以上で焼成すれば高誘導性炭素材料とな
る。ポリチエニレンビニレン誘導体の形態は粉末、シー
ト状、フィルム状、糸状、その他成形品でもよいが、フ
ィルム状、糸状物が好ましい。また、これら高分子成形
体では配向処理、より好ましくは面配向処理の施された
配向物がよく、実質的に二軸延伸処理が行われた高分子
フィルムが特に好ましい。これらの高分子フィルムの厚
みは特に限定されないが通常50μm以下、より好ましく
は30μm以下である。When the obtained polythienylenevinylene derivative is calcined at 400 ° C. or higher in an inert atmosphere, a highly inductive carbon material is obtained. The form of the polythienylenevinylene derivative may be a powder, a sheet, a film, a thread, or another molded product, but a film or a thread is preferred. Further, in these polymer molded articles, an oriented product subjected to an orientation treatment, more preferably a plane orientation treatment is preferred, and a polymer film substantially subjected to a biaxial stretching treatment is particularly preferred. The thickness of these polymer films is not particularly limited, but is usually 50 μm or less, more preferably 30 μm or less.
本発明において熱処理は400℃以上で行われる。好ま
しくは400〜3500℃であり、より好ましくは400〜3300℃
である。グラファイト化には2000〜3300℃処理が好まし
い。In the present invention, the heat treatment is performed at 400 ° C. or higher. Preferably 400 ~ 3500 ℃, more preferably 400 ~ 3300 ℃
It is. For graphitization, treatment at 2000 to 3300 ° C is preferred.
処理時間は特に限定されないが、熱処理温度を考慮し
てポリチエニレンビニレン誘導体の炭化、グラファイト
化が十分達成されるように適宜選択するのが好ましく、
通常は5分〜10時間が例示されるが、5分から2時間が
工業的には好ましい。Although the treatment time is not particularly limited, it is preferable to appropriately select such that the carbonization of the polythienylenevinylene derivative and graphitization are sufficiently achieved in consideration of the heat treatment temperature,
Usually, 5 minutes to 10 hours are exemplified, but 5 minutes to 2 hours are industrially preferable.
これらのポリチエニレンビニレン誘導体はそのまま熱
処理に供することもできるが、1500℃以上の熱処理では
その前に特定の条件で予め熱処理(以下前処理と称す
る)を行ってもよい。前処理はポリチエニレンビニレン
を窒素、アルゴン等の不活性雰囲気または真空中、500
〜1500℃、より好ましくは700〜1500℃の温度で行われ
る。These polythienylenevinylene derivatives can be subjected to heat treatment as they are, but before heat treatment at 1500 ° C. or higher, heat treatment (hereinafter referred to as pretreatment) may be performed in advance under specific conditions. The pretreatment is performed by heating polythienylenevinylene in an inert atmosphere such as nitrogen or argon
It is carried out at a temperature of 11500 ° C., more preferably 700-1500 ° C.
また、前処理においてはポリチエニレンビニレンを前
処理の温度に昇温する際、該高分子が分解し始める温度
以上、例えば約400℃以上においては1℃/分以上、好
ましくは5℃/分以上の速い速度で前処理の温度にまで
昇温するのが好ましく、1℃/分以下の昇温では焼成物
の発泡の原因となり易い。Further, in the pretreatment, when the temperature of the polythienylenevinylene is raised to the temperature of the pretreatment, the temperature is higher than the temperature at which the polymer starts to decompose, for example, at about 400 ° C or higher, 1 ° C / minute or higher, preferably 5 ° C / minute. Preferably, the temperature is raised to the temperature of the pretreatment at the above-mentioned high speed, and if the temperature is raised at a rate of 1 ° C./min or less, the fired product is likely to be foamed.
本発明で言う不活性雰囲気とは炭化、グラファイト化
の過程で焼成物と反応しない雰囲気を言い、窒素、アル
ゴン、ヘリウム等のガスや真空が例示される。好ましく
は1500℃以下では窒素あるいは真空であり、1500℃以上
ではアルゴンガスである。The inert atmosphere referred to in the present invention refers to an atmosphere that does not react with the fired material in the process of carbonization and graphitization, and examples thereof include a gas such as nitrogen, argon, and helium and a vacuum. Preferably, nitrogen or vacuum is used at 1500 ° C or lower, and argon gas is used at 1500 ° C or higher.
この焼成物は電子受容体もしくは電子供与体によるド
ーピング処理により、導電度がさらに向上し、103〜105
S/cmまたはそれ以上に達する。ドーパントについては特
に限定されないが、従来グラファイトあるいはポリアセ
チレン、ポリピロールなどの共役系高分子において高導
電性が見い出されている化合物を効果的に用いることが
できる。The conductivity of the calcined product is further improved by doping treatment with an electron acceptor or an electron donor, and 10 3 to 10 5
Reaches S / cm or more. The dopant is not particularly limited, but a compound in which high conductivity has been found in conventional conjugated polymers such as graphite or polyacetylene or polypyrrole can be used effectively.
そのドーピングの方法は、公知の方法、すなわちドー
パントと直接気相もしくは液相で接触させる方法、電気
化学的な方法、イオンインプランテーション等に実施す
ることができる。The doping method can be implemented by a known method, that is, a method of directly contacting a dopant with a dopant in a gas phase or a liquid phase, an electrochemical method, ion implantation, or the like.
具体的には電子受容体としては臭素、沃素等のハロゲ
ン、三塩化鉄、五フッ化砒素、五フッ化アンチモン、三
フッ化ホウ素、三酸化硫黄、三塩化アルミニウム、五塩
化アンチモン等のルイス酸類、硝酸、硫酸、クロルスル
ホン酸等のプロトン酸類が、また電子受容体としてはリ
チウム、カリウム、ルビジウム、セシウム等のアルカリ
金属類、カルシウム、ストロンチウム、バリウム等のア
ルカリ土類金属類、その他希土類金属(Sm,Eu,Yb)、カ
リウムアミド、カルシウムアミド等の金属アミド類が例
示される。ドーピント量は特に制限はないが、好ましい
含有量は、熱処理物の重量当り、0.1%〜150%、特に10
%〜100%である。Specifically, examples of electron acceptors include halogens such as bromine and iodine, and Lewis acids such as iron trichloride, arsenic pentafluoride, antimony pentafluoride, boron trifluoride, sulfur trioxide, aluminum trichloride, and antimony pentachloride. , Nitric acid, sulfuric acid, chlorosulfonic acid and other protic acids, and electron acceptors such as alkali metals such as lithium, potassium, rubidium and cesium; alkaline earth metals such as calcium, strontium and barium; and other rare earth metals ( Sm, Eu, Yb), metal amides such as potassium amide and calcium amide. Although the amount of doping is not particularly limited, a preferable content is 0.1% to 150%, particularly 10% by weight of the heat-treated product.
% To 100%.
<発明の効果> 以上説明したように、本発明によれば良質な高導電性
炭素材料を得ることができ、また本発明により電気、電
子材料への応用が可能な種々の形状を有する高導電性炭
素材料が提供される。<Effect of the Invention> As described above, according to the present invention, a high-quality high-conductivity carbon material can be obtained, and according to the present invention, a high-conductivity high-conductivity carbon material having various shapes applicable to electric and electronic materials. A carbonaceous material is provided.
<実施例> 以下の実施例において更に詳細に本発明を説明する
が、本発明はこれに限定されるものではない。<Examples> The present invention will be described in more detail in the following examples, but the present invention is not limited thereto.
実施例 1 2,5−チエニレン−ビス(メチレンジメチルスホニウ
ムブロミド)75gをイオン交換水とメタノール混合溶媒
(容量比1:1)1600mlに溶解せしめた後、1規定のNaOH
110mlとメタノール800mlとの混合溶液を−40℃〜−30℃
で8分かけて滴下し、滴下後−40℃〜−30℃で90分間攪
拌を続けた。この反応液を中和した後,素早く透析膜
(セロチューブ 、分子量分画8000、ユニオンカーバイ
ド社製)に入れ、氷冷した水−メタノール混合溶媒(1:
0.2)に浸して1日間透析処理を行ったところ、透析膜
内に黄色の沈澱が生じた。この沈澱物を分離し,ジメチ
ルアセトアミドに溶解した後、キャストし、窒素気流下
で乾燥し、前駆体フィルムを得た。これを4cm×4cmに切
取り、金枠に固定し、横型管状電気炉で窒素ガスの雰囲
気中、250℃で2時間熱処理した。得られたフィルム構
造は赤外吸収スペクトルより、ポリ−2,5−チエニレン
ビニレンであることを確認した。Example 1 2,5-thienylene-bis (methylenedimethylsulfonium)
75 g of ion-exchanged water and methanol mixed solvent
(Volume ratio 1: 1) After dissolving in 1600 ml, 1N NaOH
A mixed solution of 110 ml and methanol 800 ml is −40 ° C. to −30 ° C.
At -40 ° C to -30 ° C for 90 minutes.
Stirring was continued. After neutralizing the reaction solution, quickly dialyze
(Cello tube , Molecular weight fractionation 8000, union carbide
Ice-cooled water-methanol mixed solvent (1:
0.2) dialysis treatment for 1 day
A yellow precipitate formed within. The precipitate is separated and
After dissolving in luacetamide, cast and under a nitrogen stream
To obtain a precursor film. Cut this into 4cm x 4cm
And fix it to a metal frame, and use a horizontal tubular electric furnace in an atmosphere of nitrogen gas.
Heat treatment was performed in the air at 250 ° C. for 2 hours. The resulting film structure
From the infrared absorption spectrum, poly-2,5-thienylene
It was confirmed to be vinylene.
得られたポリ−2,5−チエニレンビニレンフィルムを
横型管状電気炉で窒素ガスの雰囲気中、10℃/分の昇温
速度で950℃まで昇温し、1時間前焼成を行った。室温
まで冷却後、黒鉛発熱体タンマン炉を用いて、アルゴン
ガス雰囲気中で室温から2900℃まで1.5時間かけて昇温
し、2900℃に30分間保ち、熱処理を行った。得られた熱
処理物は厚みが約9μmのフィルムであり、表面は金属
光沢をしていた。このフィルムをアルゴンレーザー(波
長514.5nm)を光源として日本分光R−800型ラマン分光
光度計を用いてラマンスペクトルを測定した。このフィ
ルムのラマンスペクトルには1590cm-1に黒鉛構造による
散乱が強く現れていた。得られた熱処理フィルムの電気
伝道度は7×103S/cmであった。これに硝酸をドーピン
グすると1.1×105S/cmの電導度を示した。The obtained poly-2,5-thienylene vinylene film was heated to 950 ° C. at a rate of 10 ° C./min in a nitrogen gas atmosphere in a horizontal tubular electric furnace, and pre-baked for one hour. After cooling to room temperature, the temperature was raised from room temperature to 2900 ° C. over 1.5 hours in an argon gas atmosphere using a graphite heating element Tamman furnace, and kept at 2900 ° C. for 30 minutes to perform heat treatment. The resulting heat-treated product was a film having a thickness of about 9 μm, and the surface had a metallic luster. The Raman spectrum of this film was measured using an argon laser (wavelength: 514.5 nm) as a light source and a JASCO R-800 type Raman spectrophotometer. The Raman spectrum of this film showed strong scattering at 1590 cm -1 due to the graphite structure. The electric conductivity of the obtained heat-treated film was 7 × 10 3 S / cm. Doping with nitric acid showed an electrical conductivity of 1.1 × 10 5 S / cm.
実施例 2 実施例1で得られた熱処理フィルムに、SO3を常法に
より気相からドーピングすると1.0×105S/cmの電導度を
示した。Example 2 When the heat-treated film obtained in Example 1 was doped with SO 3 from a gas phase by a conventional method, an electric conductivity of 1.0 × 10 5 S / cm was exhibited.
実施例 3 実施例1で得られたポリ−2,5−チエニレンビニレン
フィルムを横型管状電気炉で窒素ガスの雰囲気中、10℃
/分の昇温速度で730℃に昇げ、その温度で10分間仮焼
成した。室温まで冷却後、黒鉛発熱体タンマン炉を用い
て、アルゴンガス雰囲気中で室温から55分で1050℃、80
分で2200℃、90分で2800℃、20分で2900℃まで昇温、引
続き2900℃で30分焼成した。得られた熱処理物は厚みが
約8μmのフィルムであり、表面は金属光沢をしてい
た。得られた熱処理フィルムの電気伝導度は7.8×103S/
cmであった。これに硝酸をドーピングすると1.1×105S/
cmの電導度を示した。Example 3 The poly-2,5-thienylenevinylene film obtained in Example 1 was placed in a horizontal tubular electric furnace at 10 ° C. in an atmosphere of nitrogen gas.
The temperature was raised to 730 ° C. at a heating rate of / min, and calcination was performed at that temperature for 10 minutes. After cooling to room temperature, using a graphite heating element Tamman furnace, 1050 ° C, 80
The temperature was raised to 2200 ° C. for 2 minutes, 2800 ° C. for 90 minutes, and 2900 ° C. for 20 minutes, followed by baking at 2900 ° C. for 30 minutes. The obtained heat-treated product was a film having a thickness of about 8 μm, and the surface had a metallic luster. The electric conductivity of the obtained heat-treated film is 7.8 × 10 3 S /
cm. When this is doped with nitric acid, 1.1 × 10 5 S /
cm conductivity.
実施例 4 実施例1で得られたポリ−2,5−チエニレンビニレン
フィルムを横型管状電気炉で窒素ガスの雰囲気中、10℃
/分の昇温速度で910℃まで昇温、引続き910℃で10分間
焼成した。得られた熱処理物は厚みが約5μmのフィル
ムであり、表面は金属光沢をしていた。得られた熱処理
フィルムの電気伝導度は4.1×101S/cmであった。Example 4 The poly-2,5-thienylenevinylene film obtained in Example 1 was placed in a horizontal tubular electric furnace at 10 ° C. in an atmosphere of nitrogen gas.
The temperature was raised to 910 ° C. at a heating rate of / min, followed by firing at 910 ° C. for 10 minutes. The resulting heat-treated product was a film having a thickness of about 5 μm, and the surface had a metallic luster. The electric conductivity of the obtained heat-treated film was 4.1 × 10 1 S / cm.
実施例 5 実施例1で得られたポリ−2,5−チエニレンビニレン
前駆体フィルムを横型管状電気炉で窒素ガスの雰囲気
中、10℃/分の昇温速度まで昇温、引続き730℃で10分
間仮焼成した。室温まで冷却後、黒鉛発熱体タンマン炉
を用いて、アルゴンガス雰囲気中で室温から55分で1050
℃、80分で2200℃、90分で2800℃、20分で2900℃まで昇
温、引続き2900℃で30分焼成した。得られた熱処理物は
厚みが約120μmのフィルムであり、表面は金属光沢を
していた。得られた熱処理フィルムの電気伝導度は3.1
×102S/cmであった。Example 5 The poly-2,5-thienylenevinylene precursor film obtained in Example 1 was heated in a horizontal tubular electric furnace in a nitrogen gas atmosphere to a heating rate of 10 ° C./min, and then heated at 730 ° C. Pre-baked for 10 minutes. After cooling to room temperature, using a graphite heating element Tamman furnace, 1050 from room temperature in 55 minutes in an argon gas atmosphere.
The temperature was raised to 2200 ° C. for 80 minutes, 2800 ° C. for 90 minutes, and 2900 ° C. for 20 minutes, followed by baking at 2900 ° C. for 30 minutes. The obtained heat-treated product was a film having a thickness of about 120 μm, and the surface had a metallic luster. The electrical conductivity of the obtained heat-treated film was 3.1.
× 10 2 S / cm.
Claims (2)
される繰り返し単位を有する共役系高分子を不活性雰囲
気下、400℃以上の温度で焼成して得られる高導電性炭
素。(1) General formula (R 1 , R 2 : hydrogen or a hydrocarbon group having 1 to 21 carbon atoms) High conductivity obtained by baking a conjugated polymer having a repeating unit represented by the formula below at a temperature of 400 ° C. or more in an inert atmosphere. carbon.
される繰り返し単位を有する共役系高分子を不活性雰囲
気下、400℃以上の温度で焼成して得られる高導電性炭
素とドーパントを必須成分とする高導電性組成物。2. The general formula (R 1 , R 2 : hydrogen or a hydrocarbon group having 1 to 21 carbon atoms) High conductivity obtained by baking a conjugated polymer having a repeating unit represented by the formula below at a temperature of 400 ° C. or more in an inert atmosphere. A highly conductive composition containing carbon and a dopant as essential components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1292561A JP2720550B2 (en) | 1989-11-09 | 1989-11-09 | Highly conductive carbon and its composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1292561A JP2720550B2 (en) | 1989-11-09 | 1989-11-09 | Highly conductive carbon and its composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03153510A JPH03153510A (en) | 1991-07-01 |
JP2720550B2 true JP2720550B2 (en) | 1998-03-04 |
Family
ID=17783362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1292561A Expired - Lifetime JP2720550B2 (en) | 1989-11-09 | 1989-11-09 | Highly conductive carbon and its composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2720550B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW562849B (en) | 1999-12-27 | 2003-11-21 | Sumitomo Chemical Co | Method for making a polymeric fluorescent element and polymeric fluorescent light emitting element |
JP4482994B2 (en) * | 1999-12-27 | 2010-06-16 | 住友化学株式会社 | Polymer phosphor manufacturing method and polymer light emitting device |
US6982514B1 (en) * | 2000-05-22 | 2006-01-03 | Santa Fe Science And Technology, Inc. | Electrochemical devices incorporating high-conductivity conjugated polymers |
CN112745484A (en) * | 2020-12-29 | 2021-05-04 | 华南理工大学 | Method for narrowing molecular weight of electroluminescent polymer |
-
1989
- 1989-11-09 JP JP1292561A patent/JP2720550B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03153510A (en) | 1991-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102449526B1 (en) | Method for preparing high-purity bisfluorosulfonylimide salt | |
US4528118A (en) | Highly electroconductive conjugated polymer composition and process for producing the same | |
JP2720550B2 (en) | Highly conductive carbon and its composition | |
JPH04331235A (en) | Production of polysilane | |
US4868284A (en) | Process for producing stretched molded articles of conjugated polymers and highly conductive compositions of said polymers | |
US4599193A (en) | Highly electroconductive pyrolyzed product retaining its original shape and composition formed therefrom | |
JPH09231833A (en) | Bis(phenyl sulfonyl) imide, manufacture thereof, and ion conductive material containing it | |
US5064572A (en) | Poly (long-chain nuclear substituted phenylene vinylene), precursor therefor and highly conductive composition thereof | |
Farah et al. | Synthesis and characterization of partially crosslinked poly (N-vinylcarbazole-vinylalcohol) copolymers with polypyridyl Ru (II) luminophores: Potential materials for electroluminescence | |
JPH0723205B2 (en) | Method for producing highly conductive graphite | |
JPH04321509A (en) | Method for producing highly conductive carbon-based heat-treated material | |
JP3218928B2 (en) | Method for producing conductive polymer | |
JPH0725869B2 (en) | Method for producing poly-p-phenylene vinylene | |
JPH048446B2 (en) | ||
JPS612728A (en) | Pyrrole polymer powder | |
JPH0371453B2 (en) | ||
JPH0588855B2 (en) | ||
JP4214333B2 (en) | Carbon material manufacturing method | |
JP2959075B2 (en) | Method for producing polyarylenevinylene-based polymer composition | |
JPH0315943B2 (en) | ||
JP5240698B2 (en) | Bicyclo-substituted pyrrole polymers and uses thereof | |
JPS6011528A (en) | Substituted polyphenylenevinylene and highly electroconductive composition | |
JPH01234418A (en) | New polymer compound, method for producing the same, and method for producing conjugated polymer from the polymer compound | |
JP2921062B2 (en) | Method for producing p-phenylene vinylene polymer intermediate | |
JPH0437090B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071121 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 11 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091121 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |