[go: up one dir, main page]

JPH03146730A - Production of heater - Google Patents

Production of heater

Info

Publication number
JPH03146730A
JPH03146730A JP2279373A JP27937390A JPH03146730A JP H03146730 A JPH03146730 A JP H03146730A JP 2279373 A JP2279373 A JP 2279373A JP 27937390 A JP27937390 A JP 27937390A JP H03146730 A JPH03146730 A JP H03146730A
Authority
JP
Japan
Prior art keywords
fibers
conductive
bundle
heating element
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2279373A
Other languages
Japanese (ja)
Other versions
JPH076104B2 (en
Inventor
Yoshiyuki Sasaki
佐々木 良幸
Mitsuo Matsumoto
三男 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2279373A priority Critical patent/JPH076104B2/en
Publication of JPH03146730A publication Critical patent/JPH03146730A/en
Publication of JPH076104B2 publication Critical patent/JPH076104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/12Threads containing metallic filaments or strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Resistance Heating (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Abstract

PURPOSE:To produce a heater with a material which can be easily formed to a fiber, on an industrial scale at a low cost, by supplying an electrically conductive and non-conductive continuous fibers to a stretch-breaking zone to form a mixed discontinuous fiber bundle, including a specific number of the electrically conductive fibers in said fiber bundle and arranging the conductive fibers in a state contacting with each other. CONSTITUTION:A bundle of electrically conductive continuous fibers 1 having an electrical resistance of the order of e.g. 10<-5>-10<-6>OMEGA/cm and a diameter of <=60mum (preferably stainless steel fibers) and a bundle of non-conductive fibers 5 (e.g. synthetic fibers) are supplied in a superposed state to the stretch-breaking zone of rollers 2, 3 and subjected to stretch-breaking to obtain discontinuous fibers of 100-800mm long. The discontinuous fibers are combined with each other by a compressed air nozzle 4 to obtain a mixed fiber bundle to be used as the objective heater. The average number of the electrically conductive fibers in arbitrary cross section of the fiber bundle is >=10 and the electrically conductive fibers are made to be contacted with each other.

Description

【発明の詳細な説明】 (発明の分野〉 本発明は!I雑束に電流を流して効果的に発熱させる新
規な発熱体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a method for manufacturing a novel heating element that effectively generates heat by passing a current through a !I bundle.

(従来技術) 従来から、適当な抵抗値を持つ金属、例えばニクロム線
の様な抵抗体に電流を流して発熱させる事は良く知られ
ている。黙しながらこれらの低抗体合金は延性に欠ける
ので、細い繊維状にする事は出来ず、可撓性がなくゴワ
ゴワしたものであった。一方、延性に優れ細い繊維状に
する事が出来る金属は必ず抵抗値が低い為(銅やアルミ
、鉄など)、これに電流を流すと過大な電流が流れ発熱
体としては用い難い。このためl!雑の様に可撓性のあ
るしなやかな発熱体を作る試みがなされた。
(Prior Art) It has been well known to generate heat by passing a current through a resistor such as a metal having an appropriate resistance value, such as a nichrome wire. However, these low-antibody alloys lack ductility, so they cannot be made into thin fibers, which are inflexible and stiff. On the other hand, metals that have excellent ductility and can be made into thin fibers always have a low resistance value (copper, aluminum, iron, etc.), so when current is passed through them, an excessive current flows, making them difficult to use as heating elements. For this reason! Attempts have been made to create flexible and pliable heating elements.

例えば実開昭51−99829号公報や実開昭51−1
15653弓公報には、短く切った多数のステンレス[
を用いて平行状態に並べ集束してひも状とし、太細のむ
らを修正しつつ引き伸ばしたものを発熱体として用いる
ことが記載され、さらに、該ステンレス繊維と一緒に、
ポリアミド、ポリエステルなどの合Ii樹脂からなる短
い繊維を約1:4の割合で均一に混ぜ合せた後、それら
を引揃えて混紡糸とし、該混紡糸の中で該ステンレス繊
維を互に接触させて発熱体としたものが開示されている
。しかしこれらの発熱体は、ステンレスamと合成il
Nとを均一に混ぜ合せた後、引1消えて混紡糸とするも
のであるため糸軸方向に沿って均一な抵抗値とすること
が困難であり、工業的には製造することが出来ないもの
であった。すなわち、ステンレス繊維l維と合成繊維と
では、繊維物性を著しく異にするため均一に混ぜ合わせ
るのが困難であり、特に、両名の表面摩擦係数が相違す
るため、引き揃えて細くする際に摩擦係数が高いステン
レス繊維が集まり塊を作るため、該ステンレスm帷を均
一に糸軸方向に沿って配置することは出来なかった。特
に、ステンレス繊維の接触点、又は接触回数を物化する
ためには、長い繊維長のものを使用することが好ましい
が、この様な長いステンレス繊維を用いた発熱体を得る
ことは全く不可能であった。
For example, Utility Model Application Publication No. 51-99829 and Utility Model Application No. 51-1
The 15653 bow publication contains a large number of short stainless steel [
It is described that the stainless steel fibers are used as a heating element by arranging them in a parallel state and converging them into a string shape, stretching them while correcting thick and thin unevenness, and furthermore, together with the stainless steel fibers,
After uniformly mixing short fibers made of synthetic resin such as polyamide and polyester at a ratio of about 1:4, they are pulled together to form a blended yarn, and the stainless steel fibers are brought into contact with each other in the blended yarn. A heating element is disclosed. However, these heating elements are made of stainless steel AM and synthetic IL.
After being uniformly mixed with N, the 1st layer disappears to form a blended yarn, so it is difficult to achieve a uniform resistance value along the yarn axis direction, and it cannot be manufactured industrially. It was something. In other words, stainless steel fibers and synthetic fibers have significantly different fiber properties, making it difficult to mix them uniformly. In particular, since the surface friction coefficients of both fibers are different, it is difficult to mix them uniformly when pulling them together to make them thinner. Since the stainless steel fibers having a high coefficient of friction gather together to form a lump, it was not possible to arrange the stainless steel thread uniformly along the yarn axis direction. In particular, in order to quantify the contact points or the number of contacts between stainless steel fibers, it is preferable to use long fiber lengths, but it is completely impossible to obtain a heating element using such long stainless steel fibers. there were.

(発明の目的〉 本発明の目的は繊維化し易い酋通の金属t41iift
を使って、しかもこれ等を適当な抵抗値を有するものに
変える事により、柔軟で可撓性があり、且つ大電流が流
れる事なく適当な発熱状態が得られる発熱体を工業的に
製造する方法を提案するものである。
(Object of the invention) The object of the present invention is to use a metal t41iift that is easily turned into fibers.
By using these materials and changing them to something with an appropriate resistance value, we can industrially manufacture a heating element that is soft and flexible, and that can provide an appropriate heat generation state without flowing a large current. This paper proposes a method.

〈発明の構成および作用〉 即ち、本発明は、導電性を有する連続繊維と導電性を有
しない連続!1紺を同時に牽切域に供給して牽切し不連
続繊維とすることにより、該導電性を有する不連続繊維
と導電性を有しない不連続繊維とが混合されたiIN束
となし、該混合tIN束の任意の断面における該11電
性を有する不連続!!雑の本数が平均10本以上含まれ
るようにして該導電性を有する不連続tilliを相互
に接触させるようにしたことを特徴とする発熱体の製造
方法にある。
<Structure and operation of the invention> That is, the present invention provides continuous fibers that have conductivity and continuous fibers that do not have conductivity! By supplying 1 navy blue simultaneously to the tension-cutting area and tension-cutting it into discontinuous fibers, an iIN bundle is formed in which the conductive discontinuous fibers and the non-conductive discontinuous fibers are mixed. The 11 discontinuities with electric properties in any cross section of the mixed tIN bundle! ! A method for producing a heat generating element characterized in that the discontinuous tilli having conductivity are brought into contact with each other so that the number of discontinuous tilli is on average 10 or more.

図により、本発明の詳細な説明する。The present invention will be explained in detail with reference to the figures.

第一図は本発明の方法を実施するための好ましい工程の
一例を示す図である。即も、第一図(G)の1は細く繊
維状に形成された銅、スチール、アルミ等の電気良導体
の束であって、このままでは電気抵抗値が10−5〜1
010−6O−オーダーという低い抵抗値の為、電流が
流れ過ぎて発熱体としては使えない。これを、第一図(
ロ)に示すように回転する一対のローラー2及びこれよ
り数倍〜数10倍速く回転する一対のローラー3の間(
牽切域〉で強引に引き伸ばすと該電気良導体の束を構成
する![は悉く引き千切られて、短く切られた〈牽切さ
れた〉IJ&維の集まりとなる。このままではバラバラ
になり易いので、圧空ノズル4などで抱合して繊維束と
する。この様に導体を短く切って不連続繊維としたもの
はこれに電流を流してもダイレクトに流れず、接触抵抗
を介して流れるのでその抵抗値は元の数倍〜数10倍と
なって発熱体としての好ましい抵抗値の範囲に変化させ
ることができる。従って、この場合糸軸に沿って均一に
発熱させる為には各所での接触抵抗にあまり変化が無い
事が望ましいが、これは繊維の本数さえ多ければ接触点
が増加する為大数の法則で各所の接触点は予想外に平均
化され、温度のバラツキは実用上殆んど問題が無くなる
。これを期待するには4ja雑束の各部分に於いて、少
くとも10本以上出来れば25本以上の構成Ifi維本
数を有する事が接触点を平均化する上で望ましい。
FIG. 1 is a diagram showing an example of a preferred process for carrying out the method of the present invention. 1 in Figure 1 (G) is a bundle of fine electrical conductors such as copper, steel, and aluminum formed into thin fibers, and as it is, the electrical resistance value is 10-5 to 1.
Due to its low resistance value of 0.010-6O-order, too much current flows through it, making it unusable as a heating element. This is shown in Figure 1 (
As shown in b), between a pair of rotating rollers 2 and a pair of rollers 3 rotating several times to several tens of times faster than this (
If it is forcibly stretched in the tension cutting region, it will form a bundle of electrically good conductors! [was torn to shreds and became a collection of IJ & I that were cut into short pieces. Since they tend to fall apart as they are, they are combined using a compressed air nozzle 4 or the like to form a fiber bundle. When a conductor is cut short and made into discontinuous fibers, even if a current is applied to it, it does not flow directly, but instead flows through contact resistance, so the resistance value increases from several to several tens of times the original value and generates heat. The resistance value can be changed within a range that is preferable for the body. Therefore, in this case, in order to generate heat uniformly along the yarn axis, it is desirable that the contact resistance at various points does not change much, but this is due to the law of large numbers because as the number of fibers increases, the number of contact points increases. The contact points at various locations are unexpectedly averaged out, and temperature variations become virtually no problem in practice. In order to expect this, it is desirable to have at least 10 or more Ifi fibers in each part of the 4ja miscellaneous bundle, preferably 25 or more, in order to average out the contact points.

本発明においては、前記導電性不連続繊維と導電性を有
しない不連続IINとが混合された複合繊維束とする必
要がある。
In the present invention, it is necessary to form a composite fiber bundle in which the conductive discontinuous fibers and non-conductive discontinuous IIN are mixed.

この様な複合繊維束は、例えば第二図の工程図に示す様
な方法によって作る事が出来る。即ち、導電性の素材1
に加えて電気絶縁性の連続長m紐束5を重ね合わせる様
にしてローラー2に供給し、第一図に示す原理により両
者を一緒に引き千切るのである。この様にする事により
両繊維は牽切されると同時に入り混り、よく混繊された
複合!l維束を形成する。
Such a composite fiber bundle can be made, for example, by a method as shown in the process diagram of FIG. That is, conductive material 1
In addition, an electrically insulating string bundle 5 having a continuous length of m is supplied to the roller 2 in an overlapping manner, and both are torn off together according to the principle shown in FIG. By doing this, both fibers are cut and mixed at the same time, resulting in a well-mixed composite! Forms l fibers.

さらに、複数の素材1と複数の電気絶縁性の連続長繊維
束5とを、それぞれ交互に配置し、第二図のローラー2
に供給して重ね切りを行うことも可能である。また、不
連続繊維の繊維長はローラー2とローラー3の間の距離
により決定することが出来、さらにローラー2とO−ラ
ー3の間の距離により決定することが出来、さらにロー
ラー2とローラー3の周速度の比によりえられる複合繊
維束の太さを決定することができる。
Furthermore, a plurality of raw materials 1 and a plurality of electrically insulating continuous long fiber bundles 5 are arranged alternately, and the roller 2 shown in FIG.
It is also possible to perform overlapping cutting by supplying the same. Further, the fiber length of the discontinuous fiber can be determined by the distance between roller 2 and roller 3, further determined by the distance between roller 2 and O-roller 3, and further determined by the distance between roller 2 and roller 3. The thickness of the composite fiber bundle obtained can be determined by the ratio of the peripheral speeds of .

この様に電気絶縁性iagを混合することにより該導電
性繊維同士の接触するチャンスを適宜、増減させること
ができ好ましい接触抵抗にすることができ、良好な発熱
体が得られる。また複合繊維束を形成したものでは、繊
維本数が増すので、相対的に少い導電性nu1本数でも
繊維束の形態が安定に保たれ、抵抗値も安定する。勿論
、染色性の良い繊維と複合して色を付けたり柔軟なi&
i維や感触の良い繊維と複合して金属の硬い感触を改良
したりする等の特徴も目的に応じて利用出来る事は云う
迄もない。これ等の複合効果を明持するには、絶縁性繊
維を全体の70〜95%ぐらい混ぜると特に効果的であ
るが、これに限定されるものではない。
By mixing the electrically insulating IAG in this manner, the chance of contact between the conductive fibers can be increased or decreased as appropriate, and a preferable contact resistance can be achieved, resulting in a good heating element. Furthermore, in the case of forming a composite fiber bundle, the number of fibers increases, so even if the number of conductive nu is relatively small, the shape of the fiber bundle is kept stable and the resistance value is also stabilized. Of course, it can be combined with fibers that have good dyeability to add color or create flexible i&
Needless to say, it can be used depending on the purpose, such as improving the hard feel of metal by combining it with i-fibers or fibers with a good feel. In order to clearly maintain these combined effects, it is particularly effective to mix 70 to 95% of the total amount of insulating fibers, but the invention is not limited to this.

この様に絶縁性の繊維との混用により更に電気抵抗値の
一桁高い発熱体を作る事が出来る。
In this way, by mixing it with insulating fibers, it is possible to create a heating element with an electrical resistance that is an order of magnitude higher.

該複合繊維束を構成する導電性の不連続繊維は全部有限
長の不連続繊維にされていなければならないが、eRM
長があまり極端に短くなると一本の不連続繊維当りの接
触点が少くなって不安定記なるので、出来れば平均10
0ffl1以上あった方が良い。
All of the conductive discontinuous fibers constituting the composite fiber bundle must be made into finite length discontinuous fibers, but eRM
If the length is too short, there will be fewer contact points per discontinuous fiber, resulting in instability, so if possible, the average length is 10.
It is better to have 0ffl1 or more.

この様に長くする事により数多くの繊維との接触が増え
、安定になる。但し、あまり長くなると繊維の中をダイ
レクトに流れる成分が増えるので、長くても平均800
■以下にした方が良い。また、1!雑が適当な接触状態
を保つには、繊維を単に束ねるだけでなく、第一図、又
は第二図の4に示すように圧空ノズル等で絡めたり、又
は通常の方法により撚ったりするなど、適当な抱合状態
にするのが望ましい。
By increasing the length in this way, contact with many fibers increases and becomes stable. However, if the length is too long, the amount of components flowing directly through the fibers will increase, so even if it is long, the average
■It is better to do the following. Also, 1! In order to maintain proper contact between the fibers, the fibers should not only be bundled, but also entwined with a compressed air nozzle, etc., as shown in Figure 1 or 4 in Figure 2, or twisted using a normal method. , it is desirable to bring it into a suitable conjugated state.

該圧空ノズルとしては、旋回流を発生させるものや、繊
維同士を相互に交絡させるものが使用出来、具体的には
公知の圧空ノズルが使用出来る。
As the compressed air nozzle, one that generates a swirling flow or one that entangles fibers with each other can be used, and specifically, a known compressed air nozzle can be used.

本発明において、該複合繊維束に使用する導電性繊維は
、電気抵抗値として、10う〜10−6Ω−amオーダ
ー位のものが望ましい。これよりも抵抗値の高いものは
延伸して細い繊維状にする事が難しくなる。細さの目安
としては直径60ミクロン以下、好ましくは16ミクロ
ン以下のものが柔軟性があって好ましい。材料としては
銅、アルミ、スチール等の金属を用いるのが便利である
が、中でもステンレススチールは発熱しても酸化しない
ので好ましい。その外、金属をメツキした繊維、或いは
ポリアセチレン、ポリピロール等の導電性高分子でも良
い。また電気絶縁性繊維と複合する場合は絶縁性va維
としては通常の合成1!雑、再生繊維、天然繊維を用い
らればその電気抵抗値は導電性!I帷のそれに比べては
るかに高く、いずれでもその目的を達する事が出来るが
、中でも全芳香族ポリアミドを用いればその耐熱性が高
いので導電性繊維が発熱して温度が上っても劣化したり
発火したりする事なく好ましい結果が得られる。この外
ポリベンズイミダゾール、ポリイミド、ポリエーテルエ
ーテルケトンなどの耐熱性高分子も好適である。
In the present invention, the electrical resistance of the conductive fibers used in the composite fiber bundle is preferably on the order of 10 Ω to 10 −6 Ω-am. If the resistance value is higher than this, it will be difficult to draw it into a thin fiber. As a guideline for thinness, a diameter of 60 microns or less, preferably 16 microns or less is preferable because of its flexibility. It is convenient to use metals such as copper, aluminum, and steel as materials, but stainless steel is particularly preferred because it does not oxidize even when it generates heat. In addition, metal-plated fibers or conductive polymers such as polyacetylene and polypyrrole may also be used. Also, when composited with electrically insulating fibers, the insulating VA fibers are the usual synthetic 1! If you use miscellaneous, recycled fibers, or natural fibers, the electrical resistance value will be conductive! It is much higher than that of I-cloth, and any of these can achieve the purpose, but in particular, fully aromatic polyamide has high heat resistance, so it will not deteriorate even if the conductive fibers generate heat and the temperature rises. Favorable results can be obtained without burning or igniting. In addition, heat-resistant polymers such as polybenzimidazole, polyimide, and polyetheretherketone are also suitable.

この様にして出来た発熱体の見掛抵抗値としては、10
−4〜1O−20−CIオーダーぐらいにする事が望ま
しい。即ら、10−4Ω−craオーダーより低くなる
と電流が流れ過ぎて過熱したり、低電圧第電流の電源を
必昔としてコントロールが難しくなったりする。逆に1
0−2Ω−0111以上の高抵抗になれば、電流が少な
過ぎて十分温度が上らなかったり、無理に流そうとして
高い電圧を加え危険性が増したりするおそれがある。
The apparent resistance value of the heating element made in this way is 10
It is desirable to set it to about -4 to 1O-20-CI order. That is, if it is lower than the order of 10-4 Ω-cra, too much current will flow, causing overheating, or it will become difficult to control the current by requiring a low-voltage current power source. On the contrary, 1
If the resistance becomes high, such as 0-2Ω-0111 or more, the current may be too small to raise the temperature sufficiently, or a high voltage may be applied to force the current to flow, increasing the danger.

また、従来の金属粉やカーボン粉をポリマーに練り込ん
だり表面に塗ったりする発熱体では、粉体がお互いにく
っついていないと電流が流れないので相当混率を上げな
いと発熱体にならないが、本発明の場合には長い1li
ii状であり、中でも100〜800IIIllの様な
長い繊維長の場合など特にそうであるが、接触個所が非
常に増えるので僅かの混率でも発熱体になるという大き
な特長がある。例えば粉体の場合50%以上混入しない
と発熱するほどの電流が流れないが、本発明では5〜3
0%でも十分発熱に必要な電流を極めて安定に流す事が
可能である。
In addition, with conventional heating elements in which metal powder or carbon powder is kneaded into polymers or applied to the surface, current will not flow unless the powders stick together, so the heating element will not work unless the mixing ratio is increased considerably. In the case of the present invention, the long 1li
This is especially the case when the fiber length is long, such as 100 to 800 IIIll, and has the great advantage that even a small mixing ratio can become a heating element because the number of contact points increases greatly. For example, in the case of powder, if it is not mixed with 50% or more, the current that generates heat will not flow, but in the present invention, 5 to 3
Even at 0%, it is possible to flow the current necessary for sufficient heat generation extremely stably.

第三図は、本発明の方法により得られる発熱体の作用を
説明する図である。
FIG. 3 is a diagram illustrating the action of the heating element obtained by the method of the present invention.

第三図(A)はニクロム線などの従来の針金状の抵抗体
を示す。これ等の低抗体は電流を流すと適度に発熱する
程度の適当な抵抗値を有している。
Figure 3 (A) shows a conventional wire-like resistor such as a nichrome wire. These low antibodies have an appropriate resistance value that generates a moderate amount of heat when a current is passed through them.

然しながら、この様な針金をしなやかにする為、これを
細くし、さらにマルチ化しようとすると、一般にこの様
な低抗体合金は延性がなく細く引き伸ばすには限界があ
るので、(B)の如くあまり細いものは出来ない。一方
、銅やアルミ、鉄などの金属は延性が良く(C)の如く
細くてマルチ化された繊維状にする事が出来るが、一般
に延性の良い金属は抵抗値が極めて低い電気良導体であ
るので、これに電流を通じると過大な電流が流れ過ぎて
発熱体としては使い難い。
However, in order to make this type of wire flexible, we try to make it thinner and make it more multi-layered. Generally speaking, such low-antibody alloys are not ductile and there is a limit to how thin they can be drawn, so it is difficult to make them thin as shown in (B). I can't do thin ones. On the other hand, metals such as copper, aluminum, and iron have good ductility and can be made into thin, mulched fibers as shown in (C), but metals with good ductility are generally good electrical conductors with extremely low resistance. When a current is passed through it, too much current flows, making it difficult to use as a heating element.

これに対して(D)は本発明の発熱体を模型的に示すも
のであって、金属線は引き千切るなどして悉く短く切っ
てあり、−本として全体を通して連続するものはない。
On the other hand, (D) schematically shows the heating element of the present invention, in which the metal wires are all cut into short pieces by tearing them into strips, and none of them are continuous throughout.

その為従来の発熱体では(E)の如く構成金属にダイレ
クトに電流が流れるのに対し、本発明の発熱体の場合に
は不連続であるので電流は(F)の如く必ず接触面49
口。
Therefore, in the conventional heating element, the current flows directly through the constituent metals as shown in (E), whereas in the case of the heating element of the present invention, the current flows discontinuously, so the current always flows through the contact surface 49 as shown in (F).
mouth.

ハ、二、ホを伝って流れる。ところが接触面では接触抵
抗を生じる(自由電子が移る為)ので発熱体全体として
はダイレクトに電流が流れ場合よりも大きな抵抗値を有
する様になる。
It flows through Ha, 2, and Ho. However, since contact resistance occurs at the contact surface (due to the transfer of free electrons), the heating element as a whole has a larger resistance value than when current flows directly.

従って、抵抗値の低い電気良導体の素材でも高抵抗合金
の様な抵抗値となり、電流を通じても過大電流が流れる
事なく適度な発熱を生ずる。従って、細く引き伸ばし得
る抵抗値の低い一般的な金属〈銅、鉄、アルミ等)でも
発熱体に出来るので、今迄に無かった非常に柔軟で可撓
性のある発熱体が可能となる。
Therefore, even a material that is a good electrical conductor with a low resistance value has a resistance value similar to that of a high resistance alloy, and even when current is passed through it, an appropriate amount of heat is generated without excessive current flowing. Therefore, a heating element can be made of a general metal (copper, iron, aluminum, etc.) with a low resistance value that can be stretched thinly, making it possible to create a heating element that is extremely soft and flexible, which has not been possible until now.

さらに、電気絶縁性繊維を混合することにより該導電性
繊維同士の接触するチャンスを適宜、増減させることが
でき好ましい接触抵抗にすることができ、良好な発熱体
が得られる。また複合tlN束を形成したものでは11
911本数が増すので、相対的に少い導電性繊維本数で
も繊維束の形態が安定に保たれ、抵抗値も安定する発熱
体が得られることは前記に述べたとおりである。
Furthermore, by mixing electrically insulating fibers, the chance of contact between the electrically conductive fibers can be increased or decreased, resulting in a preferable contact resistance and a good heating element. In addition, in the case of forming a composite tlN bundle, 11
As described above, since the number of conductive fibers increases, the shape of the fiber bundle can be kept stable even with a relatively small number of conductive fibers, and a heating element with a stable resistance value can be obtained, as described above.

(実施例1) 体積固有抵抗が10″5Ω−cmオーダーを有し、直径
8ミクロンの細さに延ばされたスチール連続長繊維を1
500本束ねたものに、ポリメタフェニレンイソフタル
アシド長繊維(単糸デニール2de)を約2700本束
ねたものを重ね合わせて第二図に示すローラー2から牽
切域に供給する。ローラー2とローラー3によりなる牽
切域は、両ローラー間の距離を1000mmに設定して
、さらに両ローラー間で20倍に引き千切って平均繊維
長が約31011110.ポリメタフェニレンイソフタ
ルアミドQiltの混率が50%、平均スチール繊維の
本数約15本の不連続tl維束とし、これを更に5k(
1/cdの圧力を右する空気旋回ノズルに通して抱合し
て捲取った。この時の見掛体積固有抵抗は10−4Ω−
cmオーダーであった。
(Example 1) One continuous steel fiber having a volume resistivity on the order of 10"5 Ω-cm and stretched to a thin diameter of 8 microns was
A bundle of about 2,700 polymetaphenylene isophthalic acid long fibers (single yarn denier 2 de) was superimposed on the bundle of 500 fibers and fed to the tension cutting area from the roller 2 shown in FIG. In the stretch cutting area formed by rollers 2 and 3, the distance between both rollers is set to 1000 mm, and the average fiber length is about 31011110 mm by cutting 20 times between the two rollers. The polymetaphenylene isophthalamide Qilt blending rate is 50%, the average number of steel fibers is approximately 15, and this is further made into a discontinuous TL fiber bundle of 5k (
A pressure of 1/cd was passed through the right air swirl nozzle to bind and wind up. The apparent volume resistivity at this time is 10-4Ω-
It was on the order of cm.

次いで、この繊維束を平織物に織り、この織物の両端か
ら交流電流を流した時の電圧(E)とその時に流れる電
流(1)との関係を第四図に、またその時の織物の表面
温度(T)との関係を第五図に示す。出来た発熱体は柔
軟性は勿論風合は全〈従来の繊維のままのふんわりした
感触とバルキー性を有しており一般衣料に全く問題なく
使えるという今迄に無い画期的な発熱体が得られた。
Next, this fiber bundle is woven into a plain woven fabric, and the relationship between the voltage (E) and the current flowing at that time (1) when an alternating current is passed through both ends of the woven fabric is shown in Figure 4, and the surface of the woven fabric at that time is shown. The relationship with temperature (T) is shown in Figure 5. The resulting heating element is not only flexible but also has the same texture as conventional fibers.It has the fluffy feel and bulkiness of conventional fibers, making it an unprecedented, revolutionary heating element that can be used in general clothing without any problems. Obtained.

(発明の効果) 本発明で得られるこの様な発熱体の用途としては、柔軟
性があるので、硬くては困る所、押せば曲がる事が要求
される所、常に動いている所、凹凸のある面に沿わせた
い所などに適している。又複合発熱体にした場合には上
記特長に加え、触れてもソフト、バルキーがある1色が
付けられる。
(Effects of the Invention) Due to its flexibility, the heating element obtained by the present invention can be used in places where it is difficult to be rigid, where it is required to bend when pressed, where it is constantly moving, and where uneven surfaces are required. Suitable for places where you want to follow a certain surface. Moreover, when a composite heating element is used, in addition to the above-mentioned features, it can be provided with one color that is soft and bulky to the touch.

&1編物にもし易い、などの特長があり従来困難であっ
た発熱体100%の衣料やインテリアも可能となる。例
えば部屋の壁や床に用いこれを発熱させる暖房具、トイ
レ便座を暖める暖房具、ベツド表面あるいは椅子等をカ
バリングしこれを発熱させる暖房家具、身体の一部に着
用し局部的に温める医療器具1手袋、靴下、腹巻、ベス
ト、上着、ズボン等の衣料など各種暖房具の基材などに
使用するとその特徴が発揮される。
&1 It has features such as being easy to knit, making it possible to create clothing and interiors that are 100% heating elements, which was previously difficult. For example, heating equipment that is used on the walls and floor of a room to generate heat, heating equipment that warms the toilet seat, heating furniture that covers the surface of a bed or chair and generates heat, and medical equipment that is worn on a part of the body and heats it locally. 1. Its characteristics are demonstrated when used as base materials for various heating devices such as gloves, socks, belly wraps, vests, jackets, pants, and other clothing.

【図面の簡単な説明】[Brief explanation of the drawing]

第一図は本発明の詳細な説明する図、第二図は本発明方
法を実施するための工程の例を示す図。 第三図は本発明の方法により得られる発熱体の作用を説
明する図、第四図は本発明の実111!態様の発熱体の
電圧と電流の関係を示す図、第五図は本発明の実WA態
様の発熱体の電圧と表面温度の関係を示す図である。 (D)・・・発熱体 1 ・・・導電性を有する繊維 5 ・・・不導電性!l紺 イ9ロ、ハ、二、ホ ・・・接触面
FIG. 1 is a diagram explaining the present invention in detail, and FIG. 2 is a diagram showing an example of steps for carrying out the method of the present invention. The third figure is a diagram explaining the action of the heating element obtained by the method of the present invention, and the fourth figure is a diagram illustrating the effect of the present invention! FIG. 5 is a diagram showing the relationship between the voltage and the surface temperature of the heating element in the actual WA embodiment of the present invention. (D)... Heating element 1... Conductive fiber 5... Non-conductive! l Navy blue 9 ro, ha, 2, ho...contact surface

Claims (1)

【特許請求の範囲】[Claims] 導電性を有する連続繊維と導電性を有しない連続繊維を
同時に牽切域に供給して牽切し不連続繊維とすることに
より、該導電性を有する不連続繊維と導電性を有しない
不連続繊維とが混合された繊維束となし、該混合繊維束
の任意の断面における該導電性を有する不連続繊維の本
数が平均10本以上含まれるようにして該導電性を有す
る不連続繊維を相互に接触させるようにしたことを特徴
とする発熱体の製造方法。
By simultaneously supplying conductive continuous fibers and non-conductive continuous fibers to a tension-cutting area and tension-cutting them into discontinuous fibers, the conductive discontinuous fibers and non-conductive discontinuous fibers are separated. The conductive discontinuous fibers are mixed with each other so that the number of conductive discontinuous fibers in any cross section of the mixed fiber bundle is 10 or more on average. A method for manufacturing a heating element, characterized in that the heating element is brought into contact with the heating element.
JP2279373A 1990-10-19 1990-10-19 Method of manufacturing heating element Expired - Lifetime JPH076104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2279373A JPH076104B2 (en) 1990-10-19 1990-10-19 Method of manufacturing heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2279373A JPH076104B2 (en) 1990-10-19 1990-10-19 Method of manufacturing heating element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60160116A Division JPS6222386A (en) 1985-07-22 1985-07-22 Heat generating body and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH03146730A true JPH03146730A (en) 1991-06-21
JPH076104B2 JPH076104B2 (en) 1995-01-25

Family

ID=17610247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2279373A Expired - Lifetime JPH076104B2 (en) 1990-10-19 1990-10-19 Method of manufacturing heating element

Country Status (1)

Country Link
JP (1) JPH076104B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193484A (en) * 2011-03-18 2012-10-11 Teijin Fibers Ltd Method for producing heat-generating machine sewing thread
ITBS20130157A1 (en) * 2013-10-31 2015-05-01 Filtes Internat S R L Con Soc Io Unico YARN FOR PROTECTIVE FABRICS, AND MANUFACTURING PROCEDURE
CN110387621A (en) * 2019-06-24 2019-10-29 江苏大学 Stretchable elastic conductive wire harness at room temperature and its preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024384A (en) * 1973-01-31 1975-03-15
JPS51115653U (en) * 1975-03-15 1976-09-20
JPS5237099A (en) * 1975-09-18 1977-03-22 Nippon Signal Co Ltd:The Device for magnetically issuing ticket

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024384A (en) * 1973-01-31 1975-03-15
JPS51115653U (en) * 1975-03-15 1976-09-20
JPS5237099A (en) * 1975-09-18 1977-03-22 Nippon Signal Co Ltd:The Device for magnetically issuing ticket

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193484A (en) * 2011-03-18 2012-10-11 Teijin Fibers Ltd Method for producing heat-generating machine sewing thread
ITBS20130157A1 (en) * 2013-10-31 2015-05-01 Filtes Internat S R L Con Soc Io Unico YARN FOR PROTECTIVE FABRICS, AND MANUFACTURING PROCEDURE
EP2868787A1 (en) * 2013-10-31 2015-05-06 Filtes International S.r.l. Con Socio Unico Yarn for protective textiles, and manufacturing process thereof
US9856584B2 (en) 2013-10-31 2018-01-02 FILTES INTERNATIONAL S.r.l. CON SOCIO UNICO Yarns for protective textiles, and manufacturing methods thereof
CN110387621A (en) * 2019-06-24 2019-10-29 江苏大学 Stretchable elastic conductive wire harness at room temperature and its preparation method and application
CN110387621B (en) * 2019-06-24 2022-04-26 江苏大学 A room temperature stretchable elastic conductive wire bundle and its preparation method and application

Also Published As

Publication number Publication date
JPH076104B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US4983814A (en) Fibrous heating element
US6720539B2 (en) Woven thermal textile
KR101681819B1 (en) Fabric heater
JP2020133094A (en) Spacer fabric part, method to form heater equipment consisting of spacer fabric part, and heatable interior component for motor vehicle
WO2017010234A1 (en) Electroconductive stretchable knitted fabric endowed with invariant property of electrical resistance
JPH03146730A (en) Production of heater
JP2644369B2 (en) Exothermic cord yarn
JP2960843B2 (en) Fever sheet
JPH0578157B2 (en)
JP5615656B2 (en) Planar heating element
JP5845038B2 (en) Planar heating element
JP2541215B2 (en) Filiform heating element and manufacturing method thereof
JPH0311585A (en) Hat generating cloth
CN101026909A (en) Flexible heating element
JP2009191398A (en) Polyester fiber and fiber product produced by using the same
JP4774174B2 (en) Cord-like resistor and seat heater using the same
RU2187907C1 (en) Electric heating fabric
JP2606402Y2 (en) Heat generation knitting
Xie et al. Fabrication and infrared thermograms of heating fabrics woven by CNT coated yarns
KR102590089B1 (en) Attachment-type physical therapy device and method for using the same
JPS58120809A (en) Heat generating yarn
IT201800010666A1 (en) Thermal mattress cover or thermal blanket
WO2021100532A1 (en) Heating element
JP7295555B2 (en) Fabric containing soldered parts
JPH04352802A (en) Glove

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term