[go: up one dir, main page]

JP2012193484A - Method for producing heat-generating machine sewing thread - Google Patents

Method for producing heat-generating machine sewing thread Download PDF

Info

Publication number
JP2012193484A
JP2012193484A JP2011060322A JP2011060322A JP2012193484A JP 2012193484 A JP2012193484 A JP 2012193484A JP 2011060322 A JP2011060322 A JP 2011060322A JP 2011060322 A JP2011060322 A JP 2011060322A JP 2012193484 A JP2012193484 A JP 2012193484A
Authority
JP
Japan
Prior art keywords
fibers
fiber
long fiber
fiber bundle
sewing thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011060322A
Other languages
Japanese (ja)
Inventor
Takeshi Motogami
健 本上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2011060322A priority Critical patent/JP2012193484A/en
Publication of JP2012193484A publication Critical patent/JP2012193484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a staple fiber blended thread in which metal fibers and synthetic fibers are uniformly distributed on the order of single fibers, and thereby to provide a heat-generating machine sewing thread significantly improved in machine sewing performance as compared to a conventional one.SOLUTION: A method for producing a heat-generating machine sewing thread, in which metal staple fibers and synthetic staple fibers are blended, includes feeding a metal fiber filament bundle and a synthetic fiber filament bundle arranged in parallel with each other to a stretch-breaking apparatus. In the method, the filament bundles are each opened to form flat threads. The flat threads are superposed in the thickness direction of the flat threads and are passed through two pairs of nip rollers having different peripheral speeds in the order of a pair of low-speed nip rollers and a pair of high-speed nip rollers, during which the flat threads are held between the nip rollers of each pair in the thickness direction so as to keep the flatness. The flat threads are stretch-broken between the two pairs of nip rollers and then passed through an air injection nozzle to be conjugated.

Description

本発明は、ミシンによる縫製性能に優れた発熱性ミシン糸の製造方法に関する。本発明は、さらに詳細には、金属繊維と合成繊維が単繊維のオーダーで均一に分散した混紡短繊維糸条となすことで、従来の縫製性を大幅に改良した、発熱性ミシン糸の製造方法に関する。   The present invention relates to a method for producing an exothermic sewing thread excellent in sewing performance by a sewing machine. More specifically, the present invention provides a heat-generating sewing thread that greatly improves the conventional sewability by forming a blended short fiber yarn in which metal fibers and synthetic fibers are uniformly dispersed in the order of single fibers. Regarding the method.

発熱性ミシン糸(発熱性糸条)は、従来から、特許文献1(特開平4−352802号公報)に示された手袋や、特許文献2(WO99/026456号パンフレット)に示された面状発熱体などに使用され知られている。これらの特許文献に使用されている発熱性糸条は、導電繊維と非導電繊維の混紡糸条からなり、非導電繊維を混紡する理由として電気抵抗値の調節を挙げているが、ミシンによる縫製性能は十分とは言えず、改良が求められていた。また、その製造方法の説明においても、ミシンによる縫製性を高めるような技術的記載は一切無いほか、合成繊維を混紡することによって縫製性が改善されるという知見も全く示されていない。   Conventionally, the exothermic sewing thread (exothermic yarn) is a glove shown in Patent Document 1 (Japanese Patent Laid-Open No. 4-352802) or a planar shape shown in Patent Document 2 (WO99 / 026456 pamphlet). It is known to be used for heating elements. The exothermic yarn used in these patent documents consists of a blended yarn of conductive fibers and non-conductive fibers, and mentions the adjustment of the electric resistance value as the reason for blending the non-conductive fibers. The performance was not sufficient and improvements were required. In addition, in the explanation of the production method, there is no technical description for improving the sewing property by the sewing machine, and no knowledge that the sewing property is improved by blending synthetic fibers is not shown.

これらの特許文献に記載された製造方法に準じて実際に発熱糸条を試作し、ミシンにて普通に縫製したところ、断糸や目飛び、パッカリング、ミシン針の損傷などが頻繁に発生し、ミシン縫製上未だいろいろ問題のあることが判明した。
一方、金属繊維のみを使用して糸条を試作し、同様に縫製したところ、ミシン針の破損や断糸が多発し、とても普通に縫製出来るものではないことが判明した。
When a heat-generating yarn was actually manufactured according to the manufacturing method described in these patent documents and sewn normally with a sewing machine, thread breaks, stitch skipping, puckering, sewing needle damage, etc. frequently occurred. It has been found that there are still various problems in sewing sewing machines.
On the other hand, when a thread was prototyped using only metal fibers and sewed in the same manner, it was found that sewing needles were frequently damaged and thread breakage occurred, so that it was not possible to sew very normally.

本発明者は、これらのことから金属繊維に合成繊維を混紡すると縫製性がかなり改善されるという知見を見出した。すなわち、金属繊維は、合成繊維に比べて塑性変形し易くかつ摩擦係数が大きいためミシン針の穴を鋭角な屈曲と摩擦を受けながら高速で通過するのは極めて難しいが、摩擦係数が少なくかつ屈曲性や変形回復に優れた合成繊維を混ぜると、この問題点が大幅に軽減され、縫製が可能になることを見出した。そこで、改めてこれらの特許文献に記載された製造方法に準じて試作した発熱糸条を見たところ、金属繊維が塊状に集合した箇所が頻繁に見られ、このような箇所では金属繊維100%の場合と同じような状況に陥ることが容易に予測されたため、いかにしてこの金属繊維の塊状化を防止し分散性を向上出来るかについて製造方法をいろいろ検討した。   From these facts, the present inventor has found that when synthetic fibers are mixed with metal fibers, the sewing properties are considerably improved. In other words, metal fibers are easier to plastically deform and have a higher coefficient of friction than synthetic fibers, so it is extremely difficult to pass through the hole in the sewing needle at a high speed while receiving sharp bends and friction. It was found that when synthetic fibers excellent in property and deformation recovery are mixed, this problem is greatly reduced and sewing becomes possible. Therefore, when we looked at the exothermic yarn that was prototyped according to the manufacturing method described in these patent documents, there were frequently seen places where the metal fibers gathered together, and in such places, 100% of the metal fibers Since it was easily predicted that the situation would be the same as in the case, various manufacturing methods were examined as to how the agglomeration of the metal fibers can be prevented and the dispersibility can be improved.

例えば、特許文献2に記載された製造方法によると、「導電性金属線と非導電繊維とを引き揃えて牽切装置に供給して該金属線と非導電繊維をともに長さ100〜800mmの不連続繊維とする方法が好ましく採用される」、あるいは引き揃えた後「数倍〜数十倍に引き伸ばして牽切加工を施し、次いで加圧空気ノズルにより絡合し繊維束とすることにより形成可能」とある(同特許文献の第10頁など)。ちなみに、本発明に用いられる後記する図1の(1)の製造装置に、特許文献2の製造方法を適用すると、図1において、Aは導電性金属線、Bは非導電繊維、R1は供給ローラー、R2は牽切ローラー、N2は加圧空気ノズル、Yは発熱性糸条である。この導電性金属線Aと、非導電繊維Bとを単に引き揃えて、図1の(1)の装置(ただし、開繊ガイドG1、G2、幅調整ガイドG3は設置されていない)を用いて、牽切、抱合して得られたミシン糸の横断面模式図を、図4の(1)〜(3)に示す。図4(1)〜(3)の各上段は導電性金属線Aと非導電繊維Bとを引き揃えたときの断面形態、各下段は供給ローラーR1と牽切ローラーR2の間で牽切中の両繊維の断面形態を示したものである。なお、各図において、黒丸は導電性金属線の単繊維を、白丸は非導電繊維の単繊維を示す。図4の(1)〜(3)から明らかのように、導電性金属線Aと非導電繊維Bの引き揃え方によって、牽切中の両繊維の分散形態が変るなど、単に引き揃えるだけで両繊維を単繊維のオーダーで均一に分散させるのはかなり難しいのはもちろん、金属繊維の塊状化を防止することすら難しいことが容易に判る。   For example, according to the manufacturing method described in Patent Document 2, “the conductive metal wire and the nonconductive fiber are aligned and supplied to the check device, and the metal wire and the nonconductive fiber are both 100 to 800 mm in length. The method of making discontinuous fibers is preferably adopted ", or after being aligned," spanning several times to several tens of times, performing checkout processing, then entangled with a pressurized air nozzle to form a fiber bundle Is possible ”(page 10 of the patent document, etc.). By the way, when the manufacturing method of Patent Document 2 is applied to the manufacturing apparatus of FIG. 1 (1) described later used in the present invention, in FIG. 1, A is a conductive metal wire, B is a non-conductive fiber, and R1 is a supply A roller, R2 is a check roller, N2 is a pressurized air nozzle, and Y is an exothermic yarn. The conductive metal wire A and the non-conductive fiber B are simply aligned, and the apparatus shown in (1) of FIG. 1 (however, the opening guides G1 and G2 and the width adjusting guide G3 are not installed) is used. 4, cross-sectional schematic views of the sewing thread obtained by checking and tying are shown in (1) to (3) of FIG. 4 (1) to 4 (3) is a cross-sectional form when the conductive metal wire A and the non-conductive fiber B are aligned, and each lower row is being checked between the supply roller R1 and the check roller R2. The cross-sectional form of both fibers is shown. In each figure, black circles indicate single fibers of conductive metal wires, and white circles indicate single fibers of non-conductive fibers. As is clear from (1) to (3) in FIG. 4, both the conductive metal wire A and the non-conductive fiber B are arranged by simply aligning them, for example, the dispersion form of both fibers being checked changes depending on the alignment method. It can be easily understood that it is difficult to uniformly disperse the fibers in the order of single fibers, and it is also difficult to prevent the metal fibers from being agglomerated.

このように、上記特許文献においては、その製造方法の説明において、ミシンによる縫製性を高めるようとする知見や、合成繊維を混紡することによって縫製性が高まると言うような知見、いわんや金属繊維と合成繊維の混紡時の分散性を単繊維のオーダーまで高めて縫製性を高めようとするような知見などは全く示されていない。
従来の発熱性ミシン糸のミシンによる縫製性を高めるには、先ず金属繊維の塊状化を防止し、更に単繊維のオーダーまで分散性を均一に向上することが重要であり、それを達成出来る製造方法を見出すことが課題である。
Thus, in the above-mentioned patent document, in the description of the manufacturing method, the knowledge to increase the sewing property by the sewing machine, the knowledge that the sewing property is increased by blending the synthetic fiber, the so-called metal fiber and so on No knowledge has been shown to increase the dispersibility at the time of blending synthetic fibers to the order of single fibers to improve the sewing properties.
In order to improve the sewing properties of conventional exothermic sewing threads with sewing machines, it is important to first prevent the agglomeration of metal fibers, and to improve the dispersibility evenly up to the order of single fibers. Finding a method is a challenge.

特開平4−352802号公報JP-A-4-352802 WO 99/026456号パンフレットWO 99/026456 pamphlet

本発明は、金属繊維と合成繊維が単繊維のオーダーで均一に分散した混紡短繊維糸条が得られ、従来に比べてミシンによる縫製性能が大幅に改良された発熱性ミシン糸を提供することにある。   The present invention provides a mixed spun fiber yarn in which metal fibers and synthetic fibers are uniformly dispersed in the order of a single fiber, and provides an exothermic sewing thread in which the sewing performance by the sewing machine is greatly improved as compared with the prior art. It is in.

本発明は、金属繊維の長繊維束と合成繊維の長繊維束を引き揃えて牽切装置に供給し、金属繊維と合成繊維の短繊維が混紡された発熱性ミシン糸を製造する方法において、それぞれの長繊維束を扁平に開繊して扁平糸条とし、それらを扁平の厚み方向に重ね合わせて、これを周速度の異なる2組のニップローラーを、低速のニップローラー、高速のニップローラーの順で通過させ、その際、いずれのニップローラーにおいても該扁平の状態を維持するように、該扁平糸条を厚み方向に挟んで把持し、かつ該2組のニップローラー間で該扁平糸条を牽切し、その後、空気噴射ノズルに通して抱合することを特徴とする発熱性ミシン糸の製造方法である。   The present invention is a method for producing an exothermic sewing thread in which a long fiber bundle of metal fibers and a long fiber bundle of synthetic fibers are aligned and supplied to a check device, and the metal fibers and short fibers of the synthetic fibers are mixed. Each long fiber bundle is flattened into flat yarns, and they are overlapped in the thickness direction of the flat, and these are combined into two nip rollers with different peripheral speeds, a low-speed nip roller and a high-speed nip roller. In this case, the flat yarn is sandwiched and held in the thickness direction so that the flat state is maintained in any nip roller, and the flat yarn is sandwiched between the two sets of nip rollers. A method for producing an exothermic sewing thread is characterized in that the strip is checked and then entrapped through an air injection nozzle.

本発明による発熱性ミシン糸の製造方法よれば、金属繊維と合成繊維が単繊維のオーダーで均一に分散した混紡短繊維糸条が得られ、従来に比べてミシンによる縫製性能が大幅に改良された発熱性ミシン糸が得られる。   According to the method for producing an exothermic sewing thread according to the present invention, a mixed spun fiber yarn in which metal fibers and synthetic fibers are uniformly dispersed in the order of a single fiber is obtained, and the sewing performance by the sewing machine is greatly improved as compared with the conventional method. An exothermic sewing thread is obtained.

(1)は本発明を実施するための装置の一例を示す概略図、(2)は(1)において、ガイドG3を通過後、長繊維束A,Bを開繊した各偏平糸条を重ね合わせてニップローラーR1に供給する部分の斜視図である。(1) is a schematic diagram showing an example of an apparatus for carrying out the present invention, (2) is a stack of flat yarns in which long fiber bundles A and B are opened after passing through a guide G3 in (1). FIG. 5 is a perspective view of a portion that is supplied to the nip roller R1 together. 本発明によって得られる発熱性ミシン糸の側面の一例を示した模式図である。It is the schematic diagram which showed an example of the side surface of the exothermic sewing thread | yarn obtained by this invention. (1)は本発明の実施例1によって得られた発熱性ミシン糸の横断面の一例を示す模式図、(2)は本発明の比較例1によって得られた発熱性ミシン糸の横断面の一例を示す模式図である。(1) is a schematic diagram showing an example of a cross section of an exothermic sewing thread obtained by Example 1 of the present invention, and (2) is a cross section of an exothermic sewing thread obtained by Comparative Example 1 of the present invention. It is a schematic diagram which shows an example. (1)〜(3)は、いずれも、金属繊維の長繊維束と合成繊維の長繊維束を単に引き揃えて図1の(1)の装置(ただし、開繊ガイドG1、G2、幅調整ガイドG3は設置されていない)で処理した場合に得られる従来の発熱性ミシン糸の横断面の一例を示す模式図である。In (1) to (3), the long-fiber bundle of metal fibers and the long-fiber bundle of synthetic fibers are simply drawn together, and the apparatus of (1) in FIG. 1 (however, the opening guides G1, G2, width adjustment) It is a schematic diagram which shows an example of the cross section of the conventional exothermic sewing thread | yarn obtained when processing by guide G3 is not installed).

本発明は、複数本の、金属繊維の長繊維束と合成繊維の長繊維束を用いて、両者の混繊性に優れた発熱性ミシン糸の製造方法である。
金属繊維としては、公知のステンレス繊維や銅繊維、あるいはニクロム繊維などが使用できるが、耐腐食性や強度などに優れたステンレス繊維が特に好ましい。
金属繊維の線径は、8〜15μmφが好ましい。細い方が、耐屈曲性や柔軟性あるいは牽切加工の均一性が向上するが、8μmφ未満では金属繊維の製造が難しく高価になり、一方15μmφを超えると、発熱性ミシン糸を細くし難くかつ触れたときにちくちくするなどして好ましくない。また、金属繊維の長繊維束における本数は、20〜150本程度が好ましい。
発熱性ミシン糸に占める金属繊維の比率は、30〜70重量%が電気特性と縫製性のバランスを取り易く好ましい。30重量%未満では、電気抵抗が高くなり、一方70重量%を超えると縫製性が低下し好ましくない。
The present invention is a method for producing an exothermic sewing thread having a plurality of long fiber bundles of metal fibers and long fiber bundles of synthetic fibers and excellent in both fiber mixing properties.
As the metal fiber, a known stainless fiber, copper fiber, nichrome fiber, or the like can be used, and a stainless fiber excellent in corrosion resistance and strength is particularly preferable.
The wire diameter of the metal fiber is preferably 8 to 15 μmφ. The thinner one improves the bending resistance, the flexibility or the uniformity of the checkout process. However, if it is less than 8 μmφ, it is difficult and expensive to produce metal fibers, whereas if it exceeds 15 μmφ, it is difficult to make the exothermic sewing thread thin. It is not preferable to make a tingling when touched. Further, the number of metal fibers in the long fiber bundle is preferably about 20 to 150.
The ratio of the metal fiber to the exothermic sewing thread is preferably 30 to 70% by weight because it is easy to balance electrical characteristics and sewing properties. If it is less than 30% by weight, the electrical resistance is high, whereas if it exceeds 70% by weight, the sewing properties are undesirably lowered.

一方、合成繊維の長長繊維束を構成する素材としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等の脂肪族ポリアミドや、芳香族ポリアミド、ポリエチレン、ポリプロピレン等のポリオレフィンを例示することができる。好ましくは、ポリエステルである。
合成繊維の繊維束の総繊度としては、好ましくは100〜10,000dtexであり、より好ましくは500〜5,000dtexであり、単繊維繊度としては、好ましくは0.1〜20dtexであり、より好ましくは0.5〜10dtexである。
なお、合成繊維の長繊維束のフィラメント数は、20〜20,000本程度である。
On the other hand, as a material constituting the long and long fiber bundle of synthetic fibers, polyesters such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate and polytriethylene terephthalate, aliphatic polyamides such as nylon 6 and nylon 66, and aromatic polyamides Examples thereof include polyolefins such as polyethylene and polypropylene. Polyester is preferable.
The total fineness of the fiber bundle of the synthetic fiber is preferably 100 to 10,000 dtex, more preferably 500 to 5,000 dtex, and the single fiber fineness is preferably 0.1 to 20 dtex, more preferably. Is 0.5 to 10 dtex.
In addition, the number of filaments of the long fiber bundle of the synthetic fiber is about 20 to 20,000.

なお、金属繊維、合成繊維、いずれの長繊維束も、牽切性を容易にするため、繊維束に捲縮や撚りあるいは交絡が少ないもの、また繊維油剤は収束性や摩擦、静電気の少ないものが好ましい。
すなわち、捲縮があると繊維が伸び縮みし易く牽切ローラーによる繊維端のニップが不確実になり、撚りや交絡あるいは油剤による収束性や摩擦の強いところがあるとそこに応力が集中し、静電気が発生すると牽切中の繊維が乱れ、いずれの場合も牽切斑の原因になり好ましくない。
In addition, in order to facilitate checkability, both long fibers bundles of metal fibers and synthetic fibers are less crimped, twisted or entangled in fiber bundles, and fiber oil agents have less convergence, friction and static electricity. Is preferred.
In other words, if there is crimp, the fiber tends to stretch and contract easily, and the nip of the fiber end by the check roller becomes uncertain, and if there is a place where twisting, entanglement or convergence or friction due to oil is strong, stress concentrates there, and static electricity When this occurs, the fiber during check is disturbed, and in any case, it becomes a cause of check spots, which is not preferable.

また、後記する牽切装置に長繊維束を供給する際には、例えば長繊維束がボビン等に巻かれたものであれば、解舒時に撚りが入らないようにボビンを回転させながらボビンの円周方向に解舒して供給したり、更には、これでも解舒時に長繊維束がボビン側面に擦られてS/Z交互に撚りが入ることがあるので、解除後開繊ガイドに至るまでにボビンへの巻き取り時の1トラバース分以上の伸長スペースを取ってこのS/Z撚りを打ち消すなどの工夫が必要である。   In addition, when supplying a long fiber bundle to a check device described later, for example, if the long fiber bundle is wound around a bobbin or the like, the bobbin is rotated while rotating the bobbin so that twisting does not occur during unwinding. Even after unwinding and feeding, the long fiber bundle may be rubbed against the side surface of the bobbin at the time of unwinding, and the S / Z may be twisted alternately. Thus, it is necessary to devise such as canceling the S / Z twist by taking an extension space of one traverse or more when winding the bobbin.

本発明は、金属繊維の長繊維束と合成繊維の長繊維束とを、それぞれ扁平(テープ状)に開繊して扁平糸条とし、それらを扁平の厚み方向に重ね合わせて、これを周速度の異なる2組のニップローラーを、低速のニップローラー、高速のニップローラーの順で通過させ、その際、いずれのニップローラーにおいても該扁平の状態を維持するように、該扁平糸条を厚み方向に挟んで把持し、かつ該2組のニップローラー間で該扁平糸条を牽切し、その後、空気噴射ノズルに通して抱合することを特徴とする発熱性ミシン糸の製造方法である。かかる方法によって、金属繊維と合成繊維が単繊維の水準で均一に混繊され、従来に比べてミシンによる縫製性能が大幅に改良された混繊糸からなる発熱性ミシン糸が初めて得られる。   In the present invention, a long fiber bundle of metal fibers and a long fiber bundle of synthetic fibers are each opened into a flat shape (tape shape) to form flat yarns, which are overlapped in the thickness direction of the flat shape, Two sets of nip rollers with different speeds are passed through a low-speed nip roller and a high-speed nip roller in this order, and the flat yarn is thickened so that the flat state is maintained in any nip roller. It is a method for producing an exothermic sewing thread characterized in that the flat yarn is clamped between the two sets of nip rollers, and then the flat yarn is checked between the two sets of nip rollers, and then knitted through an air jet nozzle. By this method, an exothermic sewing thread composed of a mixed fiber in which metal fibers and synthetic fibers are uniformly mixed at the level of a single fiber and the sewing performance by the sewing machine is greatly improved as compared with the prior art can be obtained for the first time.

すなわち、扁平に開繊し、繊維が平行に配列している金属繊維の長繊維束と合成繊維の長繊維束からなる複数本の長繊維束を、扁平(テープ状)の厚み方向に重ね合わせ、扁平の状態を維持するよう、扁平の厚み方向に一対の低速のニップローラーで把持することにより、それぞれの繊維が大きな塊状になることなく1本1本の繊維がばらばらに混ざり合った繊維束が得られる。
また、高速のニップローラーでも、低速のニップローラーから送り出されてくる2種(あるいは3種以上)の異なる長繊維からなる扁平糸条を、扁平の状態を維持するよう、扁平の厚み方向に把持すると共に、両ニップローラー間で、上記扁平糸条を牽切する。この際、高速のニップローラーと低速にニップローラーの周速度比に対応して、扁平糸条中に残留しているそれぞれの繊維の小繊維塊が減少する。
さらに、低速のニップローラーから送り出される扁平糸条は、高速のニップローラーに届いた順に繊維が1本ずつ把持され牽切されるので、それぞれの繊維が単繊維の水準で混ざりあった混繊状態が得られる。
本発明では、上記工程の後、高速のニップローラーから送出される繊維束を空気噴射ノズルに通して抱合するが、その際にも、空気噴射ノズルによって1本1本の繊維が撹乱され、より細かい混繊状態が得られる。
That is, a plurality of long fiber bundles composed of metal fiber long fiber bundles and synthetic fiber long fiber bundles that are flattened and arranged in parallel are overlapped in the flat (tape-shaped) thickness direction. In order to maintain a flat state, a fiber bundle in which individual fibers are mixed apart without being formed into a large lump by gripping with a pair of low-speed nip rollers in the thickness direction of the flat. Is obtained.
In addition, even with a high-speed nip roller, the flat yarn made of two (or more) different types of long fibers fed from the low-speed nip roller is gripped in the flat thickness direction so that the flat state is maintained. At the same time, the flat yarn is checked between the nip rollers. At this time, corresponding to the peripheral speed ratio of the high-speed nip roller and the low-speed nip roller, the fibril lump of each fiber remaining in the flat yarn is reduced.
Furthermore, the flat yarn fed from the low-speed nip roller is held and checked one by one in the order of arrival at the high-speed nip roller, so that each fiber is mixed at the single fiber level. Is obtained.
In the present invention, after the above process, the fiber bundle sent from the high-speed nip roller is entrapped through the air injection nozzle, and even in this case, each fiber is disturbed by the air injection nozzle, and more A fine mixed state can be obtained.

以上のように、本発明では、金属繊維の長繊維束と合成繊維の長繊維束は、それぞれを別個に開繊装置に通して繊維束を巾方向に薄くテープ状にかつ同じ巾になるように開繊した後、両者をその厚み方向に積層して牽切域に供給し、そのままの状態で均一に牽切およびドラフトを施す。
すなわち、上記のように開繊積層してから牽切域の高圧ニップローラーで把持すると、それぞれの繊維が大きな塊状になることなく単繊維に近いオーダーで交互状に混ざり合った混繊状態が得られるのである。
As described above, in the present invention, the long fiber bundle of metal fibers and the long fiber bundle of synthetic fibers are individually passed through a fiber opening device so that the fiber bundle is thinly taped in the width direction and has the same width. After being opened, both are laminated in the thickness direction and supplied to the check area, and the check and draft are uniformly applied as it is.
In other words, when the fibers are spread and laminated as described above and then gripped by the high-pressure nip roller in the checkout area, a mixed fiber state in which each fiber is mixed in an alternating manner in the order close to a single fiber is obtained without becoming a large lump. It is done.

また、このようにして得られる混繊繊維束は、上記高圧ニップローラーより周速度が10〜40倍程速いもう一対の高圧ニップローラーによって把持されると同時に引き千切られ、更に10〜40倍程度に牽伸されるので、上記混繊繊維束中に残留していたそれぞれの小繊維塊は更に10〜40分の1に縮小されるのである。
しかも、上記混繊繊維束は、高速側の高圧ニップローラーに届いた順に繊維が1本ずつ把持され牽切牽伸されるので、更に細かく分散され、単繊維オーダーの混繊状態が得られる。
更には、上記高速側の高圧ニップローラーから送出されて来る細い繊維束には高圧の空気噴射ノズルによって抱合性が付与されるので、その際にも1本1本の繊維が撹乱され、より細かく分散した混繊状態が得られる。
In addition, the mixed fiber bundle obtained in this way is gripped by another pair of high-pressure nip rollers whose peripheral speed is about 10 to 40 times faster than that of the high-pressure nip roller, and is further shredded, and further about 10 to 40 times. Therefore, each small fiber lump remaining in the mixed fiber bundle is further reduced to 10 to 40 times.
In addition, since the mixed fiber bundle is fiber-gripped one by one in the order of arrival at the high-pressure nip roller on the high-speed side, it is further finely dispersed, and a mixed fiber state of single fiber order is obtained.
Furthermore, the thin fiber bundles sent out from the high-pressure side high-pressure nip roller are conjugated by the high-pressure air jet nozzle, so that each fiber is disturbed and finer. A dispersed fiber state is obtained.

次に、図を用いて本発明の一実施形態について詳細に説明する。図1(1)は本発明を実施するための装置の一例を示す概略図、図1(2)は図1(1)において、ガイドG3通過後、金属繊維の長繊維束A、合成繊維の長繊維束Bを開繊した各扁平糸条を重ね合わせてニップローラーR1に供給する部分の斜視図を示す概略図である。
すなわち、図1において、金属繊維の長繊維束Aおよび合成繊維の長繊維束Bをそれぞれ開繊ガイドG1およびG2に通して屈曲を与えながら扁平に薄く開繊し、次いでこれらを厚み方向に重ね合わせた後、開繊した扁平糸条を低速のニップローラーR1およびこれより周速度が速い高速のニップローラーR2に通し、その際、両ニップローラーでは扁平の状態を維持するように該扁平糸条を厚み方向に挟んで把持し、さらに両ニップローラー間で長繊維束AおよびBからなる扁平糸条を牽切し、次いでニップローラーR2とニップローラーR3の間の空気噴出ノズルN1を用いて牽切した繊維束を吸引し、さらに空気噴出ノズルN2を用いて該繊維束を抱合し、ワインダーWに巻き取り、混繊糸である本発明の発熱性ミシン糸Yを製造することができる。なお、ニップローラーR3の後に、オイリング装置(図示せず)を設けて、繊維油剤を付与してもよい。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 (1) is a schematic view showing an example of an apparatus for carrying out the present invention, and FIG. 1 (2) is a long bundle of metal fibers A and synthetic fibers after passing through a guide G3 in FIG. It is the schematic which shows the perspective view of the part which piles up each flat yarn which opened the long fiber bundle B, and supplies it to nip roller R1.
That is, in FIG. 1, the long fiber bundle A of the metal fibers and the long fiber bundle B of the synthetic fibers are passed through the opening guides G1 and G2, respectively, and opened flatly and thinly, and then they are stacked in the thickness direction. After the alignment, the opened flat yarn is passed through the low-speed nip roller R1 and the high-speed nip roller R2 having a higher peripheral speed. At this time, the flat yarn is maintained so that both nip rollers maintain a flat state. Is held between the nip rollers, and the flat yarn made of the long fiber bundles A and B is checked between the nip rollers, and then checked using the air ejection nozzle N1 between the nip rollers R2 and the nip rollers R3. The cut fiber bundle is sucked, and the fiber bundle is conjugated using an air ejection nozzle N2, wound around a winder W, and the exothermic sewing thread Y of the present invention which is a mixed fiber is manufactured. Door can be. Note that an oiling device (not shown) may be provided after the nip roller R3 to apply the fiber oil.

ニップローラーR1とニップローラーR2間での牽切を容易にするためには、上記したように、ニップローラーR1に供給される糸条に、撚りや交絡が付与されていないことが好ましい。また、この糸条には、繊維油剤が付与されていてもよいが収束性や摩擦が少なくかつ静電気の起こり難い油剤が好ましい。すなわち、撚りや交絡や静電気あるいは繊維油剤の収束性や摩擦などが高いと、牽切斑が生じ易くなるため好ましくない。
また、開繊ガイドG1、G2としては、公知の円筒形あるいは中央部が膨らんだ紡錘形の棒状ガイドを数本平行に並べたもの、あるいは棒状ガイドを円弧状に曲げたガイドを数本並べたものが使用できる。開繊ガイドは、セラミック製、金属製等のものを任意に採用することができる。
なお、上記開繊ガイド後方のニップローラーR1の直前部での開繊した扁平糸条の幅を若干規制し縮小するガイドG3を設けてやると、扁平糸条端部の繊維密集度が増してニップローラーR1への繊維巻き付を防止でき、好ましい。
また、開繊ガイドG1、G2、ガイドG3などの糸道ガイドは、長繊維束の長さ方向に斜めに当てると撚りが発生することがあるので、垂直に当たるように配慮が必要である。
In order to facilitate checking between the nip roller R1 and the nip roller R2, it is preferable that the yarn supplied to the nip roller R1 is not twisted or entangled as described above. In addition, a fiber oil agent may be applied to the yarn, but an oil agent that has little convergence and friction and hardly generates static electricity is preferable. That is, twisting, entanglement, static electricity, fiber oil agent convergence, friction, and the like are not preferable because check spots are likely to occur.
Further, as the opening guides G1 and G2, a plurality of known cylindrical or spindle-shaped rod-shaped guides in which the central portion is expanded are arranged in parallel, or a plurality of guides obtained by bending the rod-shaped guide into an arc shape are arranged. Can be used. As the opening guide, ceramic, metal or the like can be arbitrarily adopted.
In addition, if the guide G3 which restricts and reduces the width | variety of the opened flat yarn in the part just before the nip roller R1 behind the said opening guide is provided, the fiber density of a flat yarn end part will increase. The fiber wrapping around the nip roller R1 can be prevented, which is preferable.
Further, since the yarn guides such as the fiber opening guides G1, G2, and G3 may be twisted when applied obliquely in the length direction of the long fiber bundle, it is necessary to pay attention so that the yarn guides hit perpendicularly.

また、金属繊維と合成繊維の長繊維束をそれぞれ巾方向に薄くテープ状に開繊してその厚み方向に積層する際、牽切域で使用されるニップローラーR1、R2をゴムローラーと金属ローラーの一対の高圧ニップローラーとし、ゴムローラーと金属ローラーからなる一対の高圧ニップローラーに対してそのゴムローラー側に金属繊維が配置されるように積層すると、合成繊維に発生した静電気が金属ローラーと金属繊維に漏洩しかつ合成繊維とゴムローラーとの接触が遮断されるため合成繊維のゴムローラーへの巻付が防止され好ましい。   In addition, when a long fiber bundle of metal fibers and synthetic fibers is thinly spread in the width direction in a tape shape and laminated in the thickness direction, the nip rollers R1 and R2 used in the checkout region are replaced with a rubber roller and a metal roller. If a pair of high-pressure nip rollers of a rubber roller and a metal roller are laminated so that metal fibers are arranged on the rubber roller side, static electricity generated in the synthetic fiber is Since it leaks into the fiber and the contact between the synthetic fiber and the rubber roller is cut off, the synthetic fiber is preferably prevented from being wound around the rubber roller.

ニップローラーR1の周速度:ニップローラーR2の周速度の比は、1:8〜1:40が好ましく、1:10〜1:30がより好ましい。すなわち、上記周速度の比が、1:8未満になると、ニップローラーR1の周速度を速める必要が生じるため牽切後の繊維端がこれに巻き付き易くなり、一方1:40を超えると牽切斑などによる牽切糸条の太細比が大きくなり、好ましくない。
また、ニップローラーR2の牽切域側には、該ローラー表面に発生する空気の随伴流がニップ点においてローラー端部方向に流れるのを遮断するガイドG4を設けることが好ましい。すなわち、この随伴流を遮断しないと、ニップローラーR1から送り出されてくる繊維の先端がニップローラーR2に安定してニップするのが難しくなる傾向があり、このため牽切斑が生じ易くなり、好ましくない。
The ratio of the peripheral speed of the nip roller R1 to the peripheral speed of the nip roller R2 is preferably 1: 8 to 1:40, and more preferably 1:10 to 1:30. That is, when the ratio of the peripheral speeds is less than 1: 8, it is necessary to increase the peripheral speed of the nip roller R1, so that the fiber end after the checkout is easily wound around the ratio. The thickness ratio of the check yarn due to spots increases, which is not preferable.
Moreover, it is preferable to provide the guide G4 which interrupts | blocks the accompanying flow of the air which generate | occur | produces on this roller surface in the nip roller R2 flow toward a roller edge part direction at a nip point. In other words, unless this accompanying flow is interrupted, the tip of the fiber sent out from the nip roller R1 tends to be difficult to stably nip with the nip roller R2, and therefore a check spot is likely to occur, Absent.

さらに、空気噴射ノズルN1としては、ニップローラーR2から搬出されてくる牽切繊維が該ローラーに捲き付かないように吸引作用を有したノズルが使用されるが、吸引作用と同時に旋回作用を有したノズルを使用すると、繊維をより有効に吸引でき好ましい。
一方、空気噴出ノズルN2としては、目的に応じて、牽切された繊維束に旋廻流によって繊維端を巻き付けて結束抱合するもの、あるいは牽切された繊維束内の繊維同士を撹乱交絡させて抱合するものが使用できる。
Further, as the air injection nozzle N1, a nozzle having a suction action is used so that the check fiber carried out from the nip roller R2 does not stick to the roller, but has a turning action simultaneously with the suction action. Use of a nozzle is preferable because fibers can be sucked more effectively.
On the other hand, as the air ejection nozzle N2, depending on the purpose, the fiber end is wound around the checked fiber bundle by a swirl flow and bound and conjugated, or the fibers in the checked fiber bundle are disturbed and entangled. Conjugates can be used.

以上に説明した製造方法によって、金属繊維の長繊維束と合成繊維の長繊維束の複数本からなる混繊糸であって、これらの繊維がいずれも長繊維束を牽切した繊維からなり、該混繊糸の断面において同じ種類の単繊維が5本以上の繊維束として存在していない混繊性に優れた、図2や図3の(1)に示すような混繊糸からなる発熱性ミシン糸を得ることができる。   By the manufacturing method described above, a mixed fiber consisting of a plurality of long fiber bundles of metal fibers and long fiber bundles of synthetic fibers, each of which consists of fibers that have been checked out from the long fiber bundles, Heat generated from the mixed yarn as shown in FIG. 2 or FIG. 3 (1), which is excellent in the fiber mixing property in which the same type of single fiber does not exist as a bundle of five or more fibers in the cross section of the mixed yarn. Sexual sewing thread can be obtained.

なお、金属繊維の長繊維束と合成繊維の長繊維束をそれぞれ巾方向に薄くテープ状に開繊してその厚み方向に積層する際、合成繊維の比率の方が高い場合は、合成繊維の長繊維束を2本使用して、その間に金属繊維の長繊維束をサンドイッチ状に挟んだ状態で牽切域に供給してやると、牽切中の金属繊維の乱れを軽減出来、牽切が均一に出来る効果が得られ好ましい。   When a long fiber bundle of metal fibers and a long fiber bundle of synthetic fibers are spread in a thin tape shape in the width direction and laminated in the thickness direction, if the ratio of synthetic fibers is higher, the synthetic fiber If two long fiber bundles are used and the long fiber bundle of metal fibers is sandwiched between them and supplied to the check area, the disturbance of the metal fibers during check can be reduced and the check can be made uniform. The effect which can be obtained is acquired and it is preferable.

このようにして得られる混繊糸(発熱性ミシン糸)中の金属繊維の牽切後の平均繊維長は300mm〜800mmが好ましい。300mm未満では金属繊維同士の接触が少なくなり、電気抵抗が高くなったり変動し易くなったりして好ましくない。一方、800mmを超えると、特に金属繊維側で牽切点の分布が乱れて牽切斑が起こり易くなり好ましくない。
また、発熱性ミシン糸を構成する合成繊維の単繊維の平均繊維長としては、5〜150cmが好ましく、10〜30cmがより好ましく、10〜25cmがさらに好ましい。平均繊維長が5cm未満では風綿が生じやすく牽切糸の成形が難しくなる傾向があり、一方150cmを超えると均一混合が難しく、発熱斑が発生しやすい。
The average fiber length after checking the metal fibers in the mixed yarn (exothermic sewing thread) obtained in this manner is preferably 300 mm to 800 mm. If it is less than 300 mm, the contact between the metal fibers decreases, and the electrical resistance becomes high or easily fluctuates, which is not preferable. On the other hand, if it exceeds 800 mm, the distribution of check points is disturbed especially on the metal fiber side, and check spots are likely to occur, which is not preferable.
Moreover, as an average fiber length of the single fiber of the synthetic fiber which comprises an exothermic sewing thread | yarn, 5-150 cm is preferable, 10-30 cm is more preferable, and 10-25 cm is further more preferable. If the average fiber length is less than 5 cm, fluff is likely to occur, and the check yarn tends to be difficult to form. On the other hand, if it exceeds 150 cm, uniform mixing is difficult and exothermic spots are likely to occur.

なお、このようにして得られる混繊糸(発熱性ミシン糸)は、例えば、この混繊糸を100〜800回/mの方向の下撚りを施し、さらにこれを2本合わせて150〜800回/mのZ方向の上撚を施し、双糸の発熱性ミシン糸として実用に供される。   In addition, the mixed yarn (exothermic sewing thread) obtained in this way is, for example, subjected to a primary twist of 100 to 800 times / m in the mixed yarn, and further, two of these are combined to 150 to 800 Twist / m in the Z direction, the yarn is put into practical use as an exothermic sewing thread of twin yarn.

以下、本発明を実施例により詳細に説明するが、本発明はこれに限定されるものではない。
〔実施例1〕
図1の(1)〜(2)に示した製造装置を用い、金属繊維の長繊維束Aとして線径8μmφ、繊維本数1,500本のステンレス繊維(山中産業株式会社製、ナスロン)を用い、合成繊維の長繊維束Bとして全繊度1,000dtex、繊維本数1,334本のポリエチレンテレフタレート繊維(帝人ファイバー(株)製、テトロン)を用い、解舒時に撚りが入らないようにボビンを回転させながらボビンの外周方向に解舒し、途中2.3mの伸長スペースを入れて撚りや絡みを軽減しながらそれぞれ開繊ガイドG1およびG2に通して薄くテープ状に8mm巾に開繊し、更にこれらを厚み方向に重ね合わせると共にガイドG3を用いて該開繊巾を約7mm巾に規制して高圧ニップローラーR1に供給した。
次に、この積層繊維束を高圧ニップローラーR1およびこれより周速度が20 倍速い高圧ニップローラーR2間で均一に牽切すると共に細く牽伸し、引き続き高圧ニップローラーR2とニップローラーR3の間で吸引空気ノズルN1および旋回流を利用した抱合空気ノズルN2を用いて該複合繊維束に抱合性を付与し、330dtexの、図2に示すような実質的に無撚の繊維束に該繊維束の端部が捲回して結束抱合した側面形態を有した、金属繊維の比率が54重量%の発熱性ミシン糸Yとして、ワインダーWに巻き取った。また、図3の(1)に、得られたミシン糸の横断面の模式図を示す。ここで、図3の(1)において、黒丸は金属繊維の単繊維、白丸は合成繊維の単繊維を示す(以下、同様)。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this.
[Example 1]
Using the manufacturing apparatus shown in FIGS. 1 (1) to (2), a stainless steel fiber (manufactured by Yamanaka Sangyo Co., Ltd., Naslon) having a wire diameter of 8 μmφ and a number of fibers of 1,500 as the long fiber bundle A of metal fibers was synthesized. As the long fiber bundle B, polyethylene terephthalate fiber (Tetron, manufactured by Teijin Fibers Ltd.) with a total fineness of 1,000dtex and 1,334 fibers is used. Unwind in the direction and pass through the opening guides G1 and G2 respectively while reducing the twist and entanglement by putting a 2.3m extension space in the middle. At the same time, the spread width was regulated to about 7 mm using the guide G3 and supplied to the high-pressure nip roller R1.
Next, the laminated fiber bundle is uniformly checked and thinly drawn between the high-pressure nip roller R1 and the high-pressure nip roller R2 whose peripheral speed is 20 times faster than this, and subsequently between the high-pressure nip roller R2 and the nip roller R3. Conjugation is imparted to the composite fiber bundle using the suction air nozzle N1 and the conjugating air nozzle N2 utilizing a swirling flow, and the substantially equal untwisted fiber bundle of 330 dtex as shown in FIG. It was wound around a winder W as an exothermic sewing thread Y having a side surface form in which the ends were wound and bound and conjugated, and the ratio of metal fibers was 54 wt%. Moreover, the schematic diagram of the cross section of the obtained sewing thread | yarn is shown to (1) of FIG. Here, in (1) of FIG. 3, black circles indicate single fibers of metal fibers, and white circles indicate single fibers of synthetic fibers (hereinafter the same).

この発熱性ミシン糸Yに500回/mのS方向の下撚を施し、更にこれを2本合わせ450回/mのZ方向の上撚を施し、双糸の発熱性ミシン糸とした。
この双糸の発熱性ミシン糸を用い、ポリエチレンナフタレート繊維からなる織物基布に手形状のパターンに刺繍を施したところ、一般の刺繍用ミシン糸に対して縫製速度を8割に落とすだけで特に問題なく縫製することが出来、かつ特に問題の無い縫い目品位が得られた。
また、この刺繍基布の表面と裏面に塩ビフィルムをラミネートし、5本の指を有した手袋の甲側の側地内に挿入固定すると共に該発熱性ミシン糸の両端に電極を設置し、電気抵抗1.3μΩmの防寒作業手袋として仕上げたところ、−15℃の冷凍室内において該防寒作業手袋を着用し、これに電圧が12Vの小型軽量の充電式バッテリーを使用して電流を流したところ、数秒で約33℃に発熱し、5本の指でかじかむことなく快適に作業することが出来た。
This exothermic sewing thread Y was subjected to a twist of 500 times / m in the S direction, and two of them were subjected to an upper twist of 450 times / m in the Z direction to obtain a double-ply exothermic sewing thread.
Using this two-ply exothermic sewing thread and embroidering a hand-shaped pattern on a textile base fabric made of polyethylene naphthalate fiber, the sewing speed can be reduced to 80% of a general embroidery sewing thread. It was possible to sew without any problems, and a seam quality without any problems was obtained.
Also, a vinyl chloride film is laminated on the front and back surfaces of this embroidery base fabric, inserted and fixed in the back side of the glove with five fingers, and electrodes are installed on both ends of the exothermic sewing thread. When finished as a cold work glove with a resistance of 1.3μΩm, when wearing a cold work glove in a -15 ° C freezer room and using a small and lightweight rechargeable battery with a voltage of 12V, a few seconds It generated heat at about 33 ° C and was able to work comfortably without biting with 5 fingers.

〔比較例1〕
実施例1において、金属繊維の長繊維束と合成繊維の長繊維束をそれぞれ伸張するスペースと開繊ガイドG1、G2、幅調整ガイドG3を取り除き、それぞれのボビンから直接供給ニップローラーR1に単に引き揃えるだけで供給した以外は、実施例1と同様にして発熱性ミシン糸を試作し、実施例1と同様にして縫製を行ったところ、縫製速度を4割まで落してやっとミシン針の破損や目飛びが治まり縫製が可能になったが、縫製品位的には未だ強いパッカリングが散見されるなどして十分な品位は得られなかった。このようにして得られた発熱性ミシン糸の横断面の模式図を図3の(2)に示す。
[Comparative Example 1]
In Example 1, the space for extending the long fiber bundle of metal fibers and the long fiber bundle of synthetic fibers, the opening guides G1 and G2, and the width adjusting guide G3 are removed, and they are simply pulled directly from the respective bobbins to the supply nip roller R1. Except that they were supplied only by aligning them, a heat-generating sewing thread was produced in the same manner as in Example 1 and sewing was performed in the same manner as in Example 1. When the sewing speed was reduced to 40%, The stitch skipped and sewing became possible, but sufficient puckering was still observed in terms of the quality of the sewing product, and sufficient quality could not be obtained. A schematic cross-sectional view of the exothermic sewing thread obtained in this way is shown in FIG.

<実施例1と比較例1の考察>
実施例1および比較例1で得た発熱性ミシン糸のそれぞれ糸の長さ方法の任意の5箇所について、図3に示すように、糸断面のほぼ中心で直行する糸の直径X−X‘、Y−Y‘上にある金属繊維束の単繊維本数を数え、その平均値Avと範囲(最大値と最小値の差)Rを算出した。その結果、実施例1による発熱性ミシン糸は、図3の(1)に示すように、Av=1.5、R=3、これに対し比較例1による発熱性ミシン糸は、図3の(2)に示すように、Av=2.8、R=6となり、本発明の製造方法による発熱性ミシン糸の金属繊維と合成繊維の分散性が従来品に対して大幅に向上し、より単繊維のオーダーで均一に分散混紡されていることが判った。
また、実施例1および比較例1で得た発熱性ミシン糸をそれぞれメリヤスに筒編みしたところ、比較例1品は筒編みの速度を実施例1品より4割以上低速にしないと編成が難しく、かつ編目の大きさのバラツキが大きいなど、ミシンによる縫製性と同様な結果が得られた他、編地を透かして見ると糸の太さ斑が目立つことから、本発明の製造方法による発熱性ミシン糸は、分散性のみならず牽切も向上して太さ斑的にも改良されていることが判明した。
<Consideration of Example 1 and Comparative Example 1>
As shown in FIG. 3, as shown in FIG. 3, the diameter XX ′ of the yarn perpendicular to the center of the cross section of each of the five exothermic sewing machine yarn length methods obtained in Example 1 and Comparative Example 1 was used. The number of single fibers of the metal fiber bundle on YY ′ was counted, and the average value Av and the range (difference between the maximum value and the minimum value) R were calculated. As a result, as shown in FIG. 3 (1), the exothermic sewing thread according to Example 1 had Av = 1.5 and R = 3, whereas the exothermic sewing thread according to Comparative Example 1 As shown in (2), Av = 2.8, R = 6, and the dispersibility of the exothermic sewing thread metal fiber and synthetic fiber by the production method of the present invention is greatly improved compared to the conventional product, and more It was found that the fibers were uniformly dispersed and blended in the order of single fibers.
Further, when the exothermic sewing yarns obtained in Example 1 and Comparative Example 1 were each knitted into a knitted fabric, it was difficult to knit the Comparative Example 1 product unless the speed of the cylinder knitting was set at 40% or more slower than that of the Example 1 product. In addition, the results obtained were similar to the sewing performance of the sewing machine, such as the variation in the size of the stitches, and the unevenness of the thickness of the yarn was conspicuous when viewed through the knitted fabric. It became clear that the characteristic sewing thread was improved not only in dispersibility but also in check and thickness.

本発明による発熱性ミシン糸の製造方法よれば、金属繊維と合成繊維が単繊維のオーダーで均一に分散した混紡短繊維糸条が得られるため、ミシンによる縫製性能が従来品より大幅に改良された発熱性ミシン糸が得られる。
また、同時に糸の均一性も向上するため、発熱の均一性や外観も向上し、産業上の利用分野も従来品より大幅に拡大出来る可能性がある。
According to the method for producing an exothermic sewing thread according to the present invention, it is possible to obtain a blended short fiber yarn in which metal fibers and synthetic fibers are uniformly dispersed on the order of a single fiber, so that the sewing performance by the sewing machine is greatly improved over the conventional product. An exothermic sewing thread is obtained.
At the same time, since the uniformity of the yarn is improved, the uniformity of heat generation and the appearance are also improved, and there is a possibility that the industrial application field can be greatly expanded as compared with the conventional products.

A :金属繊維の長繊維束
B :合成繊維の長繊維束
G1、G2:開繊ガイド
G3 :扁平糸条の幅調整ガイド
G4 :空気随伴流遮断ガイド
R1 :低速ニップローラー
R2 :高速ニップローラー
R3 :ニップローラー
N1、N2:空気噴出ノズル
W :ワインダー
Y :混繊糸(発熱性ミシン糸)
A: long fiber bundle of metal fibers B: long fiber bundle of synthetic fibers G1, G2: fiber opening guide G3: flat yarn width adjusting guide G4: air wake blocking guide R1: low speed nip roller R2: high speed nip roller R3 : Nip roller N1, N2: Air ejection nozzle W: Winder Y: Mixed yarn (exothermic sewing thread)

Claims (3)

金属繊維の長繊維束と合成繊維の長繊維束を引き揃えて牽切装置に供給し、金属繊維と合成繊維の短繊維が混紡された発熱性ミシン糸を製造する方法において、それぞれの長繊維束を扁平に開繊して扁平糸条とし、それらを扁平の厚み方向に重ね合わせて、これを周速度の異なる2組のニップローラーを、低速のニップローラー、高速のニップローラーの順で通過させ、その際、いずれのニップローラーにおいても該扁平の状態を維持するように、該扁平糸条を厚み方向に挟んで把持し、かつ該2組のニップローラー間で該扁平糸条を牽切し、その後、空気噴射ノズルに通して抱合することを特徴とする発熱性ミシン糸の製造方法。   In a method for producing an exothermic sewing thread in which a long fiber bundle of metal fibers and a long fiber bundle of synthetic fibers are gathered and supplied to a check device and mixed with short fibers of metal fibers and synthetic fibers, each long fiber Open the bundle flatly to make flat yarns, and superimpose them in the thickness direction of the flat, and pass this through two pairs of nip rollers with different peripheral speeds, in the order of low-speed nip roller and high-speed nip roller. At that time, the flat yarn is sandwiched and held in the thickness direction so that the flat state is maintained in any nip roller, and the flat yarn is checked between the two sets of nip rollers. And then, the method for producing an exothermic sewing thread is characterized by being conjugated through an air injection nozzle. 金属繊維の長繊維束と合成繊維の長繊維束をそれぞれ偏平状に開繊してその厚み方向に積層する際、牽切域で使用されるゴムローラーと金属ローラーからなる一対の高圧ニップローラーに対して、そのゴムローラー側に金属繊維が配置されるように積層する、請求項1に記載の発熱性ミシン糸の製造方法。   When a long fiber bundle of metal fibers and a long fiber bundle of synthetic fibers are each flatly opened and laminated in the thickness direction, a pair of high-pressure nip rollers consisting of a rubber roller and a metal roller used in the check zone 2. The method for producing an exothermic sewing thread according to claim 1, wherein lamination is performed so that metal fibers are disposed on the rubber roller side. 金属繊維の長繊維束と合成繊維の長繊維束をそれぞれ偏平状に開繊しその厚み方向に積層する際、合成繊維の長繊維束を2本使用して、その間に金属繊維の長繊維束をサンドイッチ状に挟んだ状態で牽切域に供給する、請求項1または2に記載の発熱性ミシン糸の製造方法。   When a long fiber bundle of metal fibers and a long fiber bundle of synthetic fibers are each opened in a flat shape and laminated in the thickness direction, two long fiber bundles of synthetic fibers are used, and a long fiber bundle of metal fibers is interposed between them. The method for producing an exothermic sewing thread according to claim 1 or 2, wherein the yarn is fed to the checkout region in a sandwiched state.
JP2011060322A 2011-03-18 2011-03-18 Method for producing heat-generating machine sewing thread Pending JP2012193484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011060322A JP2012193484A (en) 2011-03-18 2011-03-18 Method for producing heat-generating machine sewing thread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060322A JP2012193484A (en) 2011-03-18 2011-03-18 Method for producing heat-generating machine sewing thread

Publications (1)

Publication Number Publication Date
JP2012193484A true JP2012193484A (en) 2012-10-11

Family

ID=47085635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060322A Pending JP2012193484A (en) 2011-03-18 2011-03-18 Method for producing heat-generating machine sewing thread

Country Status (1)

Country Link
JP (1) JP2012193484A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146730A (en) * 1990-10-19 1991-06-21 Teijin Ltd Production of heater
JPH04194040A (en) * 1990-11-26 1992-07-14 Teijin Ltd Heat-generating cord yarn
JP2009013306A (en) * 2007-07-05 2009-01-22 Honda Motor Co Ltd Carbon fiber reinforced sheeted molding material and its manufacturing method
JPWO2008056755A1 (en) * 2006-11-09 2010-02-25 帝人化成株式会社 Composite material and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146730A (en) * 1990-10-19 1991-06-21 Teijin Ltd Production of heater
JPH04194040A (en) * 1990-11-26 1992-07-14 Teijin Ltd Heat-generating cord yarn
JPWO2008056755A1 (en) * 2006-11-09 2010-02-25 帝人化成株式会社 Composite material and manufacturing method thereof
JP2009013306A (en) * 2007-07-05 2009-01-22 Honda Motor Co Ltd Carbon fiber reinforced sheeted molding material and its manufacturing method

Similar Documents

Publication Publication Date Title
CN102534915B (en) Yarn, especially line or embroidery yarn and the method producing this yarn
KR100981206B1 (en) Opening device for composite yarn
JP4952780B2 (en) Core yarn sewing thread
JP2008007883A (en) Long and short-compounded spun yarn woven fabric
EP1500728B1 (en) Sewing thread and process for producing the same
JP2012193484A (en) Method for producing heat-generating machine sewing thread
JP2008174848A (en) Core yarn sewing thread and method for producing the same
JP3212193U (en) Antistatic yarn and antistatic fabric
JPH03206140A (en) Blended yarn of polyester/wool/electrically conductive fiber produced by pneumatic false-twisting method
JP2006161179A (en) Spun yarn of core-sheath two-layer structure
JP4501372B2 (en) Core yarn sewing thread
WO2006043342A1 (en) Core yarn sewing thread
TW473569B (en) Process and device and application of the device to produce a blended-yarn or combined yarn
JP2012193485A (en) High strength spun machine sewing thread and method for producing the same
JP2007247077A (en) Polyester core yarn sewing machine thread
JPS6017129A (en) Composite sewing machine yarn
JP2012067414A (en) Method for producing multicolor dyeable combined filament yarn
JP3166481B2 (en) Sewing thread composed of high-strength fluff yarn and method for producing the same
JPH08337937A (en) Processed filament yarn having fluff like spun yarn and its production
JP2012067413A (en) Method for producing combined filament yarn excellent in aesthetic property
JPS5831416B2 (en) Polyester bulk “Dakashi”
JPS601414B2 (en) Untwisted spun yarn
JP2004176186A (en) Spun long fiber yarn and method for producing the same
JPS61146830A (en) Production of spun like two-layered structural feather yarn
JP2006132038A (en) Core yarn sewing thread

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150128