JPH03131035A - Large scale integrated circuit - Google Patents
Large scale integrated circuitInfo
- Publication number
- JPH03131035A JPH03131035A JP1269497A JP26949789A JPH03131035A JP H03131035 A JPH03131035 A JP H03131035A JP 1269497 A JP1269497 A JP 1269497A JP 26949789 A JP26949789 A JP 26949789A JP H03131035 A JPH03131035 A JP H03131035A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- input
- gate
- wiring
- internal logic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
- H01L2224/05554—Shape in top view being square
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、大規模集積回路、特にその電源およびグラン
ドの配線方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to large-scale integrated circuits, and in particular to a method for wiring power and ground thereof.
チップ上に多数の論理ゲートおよびメモリセルを搭載す
る半導体記憶装置は年々その大容量化が進み、それに伴
い高回路密度、低消費電力が要求されCMO3による回
路構成が脚光を浴びている。この半導体記憶装置は通常
チップ中央部にメモリセルを配設し、チップ周辺にアド
レスデコーダ回路、コントロール回路、および外部回路
との入出力用のバッファが配置される。特にその外部か
らの入力バッファはTTLとのインターフェイスを前提
にTTLの出力電圧に合わせて論理しきい値が決定され
、その出力は入出力がCMOSレベルである内部の論理
ゲートに接続され、大力バッファと論理ゲートの電源お
よびグランド配線は共通であった。Semiconductor memory devices, which have a large number of logic gates and memory cells mounted on a chip, are increasing in capacity year by year, and as a result, high circuit density and low power consumption are required, and circuit configurations based on CMO3 are attracting attention. This semiconductor memory device usually has memory cells arranged in the center of the chip, and an address decoder circuit, a control circuit, and a buffer for input/output with external circuits arranged around the chip. In particular, the external input buffer has a logic threshold determined according to the TTL output voltage on the assumption that it will be interfaced with TTL, and its output is connected to an internal logic gate whose input and output are CMOS levels, and a high-power buffer The power supply and ground wiring for both logic gates were common.
〔発明が解決しようとする課題]
しかし、前述の従来技術では論理ゲートが多数同時にス
イッチングすると大きな電流が電源配線から論理ゲート
を通してグランド配線へ流れ込み、前者の配線の電位が
下り、逆に後者の配線の電位は上がる。入力バッファの
入力電圧がTTLレベルで規定されていると、特に後者
のグランド配線電位が上ると相対的に信号電位が下り、
場合によっては入力信号が°゛H”レベルから“L”レ
ベルへ変ったと判断され、誤動作を生じる恐れがある。[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, when a large number of logic gates switch simultaneously, a large current flows from the power supply wiring through the logic gates to the ground wiring, the potential of the former wiring decreases, and conversely, the potential of the latter wiring decreases. The potential of increases. If the input voltage of the input buffer is specified at the TTL level, especially when the latter ground wiring potential increases, the signal potential will decrease relatively.
In some cases, it may be determined that the input signal has changed from the "H" level to the "L" level, which may result in malfunction.
そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは内部論理ゲートの動作で電源配線
およびグランド配線の電位が変動することによって生じ
る大力バッファの誤動作を抑えた、大規模集積回路を提
供するところにある。The present invention is intended to solve these problems, and its purpose is to suppress malfunctions of high-power buffers caused by fluctuations in the potential of the power supply wiring and ground wiring due to the operation of internal logic gates. The company provides integrated circuits.
本発明の大規模集積回路は、入力用バッファの電源配線
およびグランド配線は論理ゲートの電源配線およびグラ
ンド配線とは別にして各々を独立に設け、各電源配線お
よび各グランド配線の同種配線同士をチップ周辺のボン
ディングバッド部で接続し、該パッドから外部電源回路
へ接続されることを特徴とする。In the large-scale integrated circuit of the present invention, the power supply wiring and the ground wiring of the input buffer are provided independently from the power supply wiring and the ground wiring of the logic gate, and the same types of wiring of each power supply wiring and each ground wiring are separated from each other. It is characterized in that it is connected at a bonding pad portion around the chip, and is connected from the pad to an external power supply circuit.
[作 用]
本発明の上記の構成によれば入力バッファの電源は内部
論理ゲートの電源とは別系統にされるため、多数の論理
ゲートが一斉に“H”レベルから“L”レベルまたはそ
の逆に変化するようなことがあっても入力バッファの電
源力よびグランドレベルは変化せず、誤動作を抑制する
ことができる。[Function] According to the above configuration of the present invention, the power supply for the input buffer is separated from the power supply for the internal logic gates, so that a large number of logic gates simultaneously change from "H" level to "L" level or vice versa. Even if there is a reverse change, the power supply power and ground level of the input buffer do not change, and malfunctions can be suppressed.
[実 施 例]
第1図は本発明の実施例を示し、第2図は第1図の一部
を拡大して示す。[Example] FIG. 1 shows an example of the present invention, and FIG. 2 shows a part of FIG. 1 in an enlarged manner.
第1図で1は半導体チップであり、その中央大部分にメ
モリセル2が構成され、周辺には電源用ボンディングバ
ッド3、グランド用ボンディングバッド4および他の入
出力用ボンディングバッドが形成されている。また第2
図において9は入力用バッファ回路、10はアドレスデ
コーダ等の論理ゲートであり、5・6は前記入力バッフ
ァの電源およびグランド配線、7・8は前記論理ゲート
の電源およびグランド配線で、4のグランド用ボンディ
ングバッド部分でグランド配線同士が接続されている。In FIG. 1, reference numeral 1 denotes a semiconductor chip, in which a memory cell 2 is formed in most of its center, and a power supply bonding pad 3, a grounding bonding pad 4, and other input/output bonding pads are formed around the periphery. . Also the second
In the figure, 9 is an input buffer circuit, 10 is a logic gate such as an address decoder, 5 and 6 are the power supply and ground wiring for the input buffer, 7 and 8 are the power supply and ground wiring for the logic gate, and 4 is the ground. The ground wires are connected to each other at the bonding pad.
第1図を見てもわかるように電源用ボンディングバッド
部にて入力バッファと論理ゲートの電源配線も同様に接
続されており、入力バッファの電源およびグランド配線
は論理ゲートの電源およびグランド配線とは回路構成部
分では分離されている。As can be seen from Figure 1, the power supply wiring for the input buffer and logic gate are also connected in the same way at the power supply bonding pad, and the power supply and ground wiring for the input buffer are different from the power and ground wiring for the logic gate. The circuit components are separated.
入力バッファから内部論理ゲートの初段までの回路例を
第3図に示す、PチャネルMO3I−ランジスクP1・
P2およびNチャネルMOSトランジスタN1−N2で
構成されるNORゲートは大力バッファ回路で、入力端
子INが入力用ボンディングバッドに接続され、もう一
方の入力C0NTは内部の論理ゲートからの制御入力で
ある。前記NORゲートの入力しきい値電圧はそのMO
Sトランジスタのサイズにより入力INはTTLレベル
、入力C0NTは内部論理回路がCMOSレベルで動作
するため同様にCMOSレベルに設定されている。NO
Rゲートの出力はCMOSレベルで、P3・N3により
構成されるインパークに入力され、さらにその出力がP
4・N4およびP5・N5により構成される2段のイン
バータによりバッファリングされ内部の論理ゲートに接
続される。これらのゲートめうち電源■1およびそのグ
ランド配線G、に接続されるのは入力バッファであると
ころのNORゲートのみで、NORゲートの次段のイン
バータ以降の論理ゲートは電源v2およびそのグランド
配線G2に接続される。An example of the circuit from the input buffer to the first stage of the internal logic gate is shown in Figure 3.
The NOR gate composed of P2 and N-channel MOS transistors N1 and N2 is a large-power buffer circuit, and its input terminal IN is connected to an input bonding pad, and the other input C0NT is a control input from an internal logic gate. The input threshold voltage of the NOR gate is its MO
Due to the size of the S transistor, the input IN is set to the TTL level, and the input C0NT is similarly set to the CMOS level because the internal logic circuit operates at the CMOS level. NO
The output of the R gate is at CMOS level and is input to the impark formed by P3 and N3, and the output is further input to P
4.N4 and P5.N5 are buffered by a two-stage inverter and connected to an internal logic gate. Only the NOR gate, which is an input buffer, is connected to the power supply 1 and its ground wiring G, and the logic gates after the inverter in the next stage of the NOR gate are connected to the power supply v2 and its ground wiring G2. connected to.
本発明のようにすると多数のゲートで構成される論理ゲ
ートの電源は入力バッファの電源とは別系統にされるの
で、多数の論理ゲートが一斉に“H”レベルから“L“
レベルまたはその逆に変化するようなことがあっても大
力バッファの電源およびグランドレベルは変化せず、誤
動作する恐れがない。According to the present invention, the power supply for the logic gates, which are composed of a large number of gates, is separated from the power supply for the input buffer.
Even if the level or vice versa changes, the power and ground levels of the large-capacity buffer do not change, and there is no risk of malfunction.
〔発明の効果1
以上述べたように本発明によれば、入力バッファと内部
論理ゲートの電源を別系統にすることにより、内部論理
ゲートの電流によるノイズの混入、誤動作を阻止するこ
とができる。このように内部論理ゲートの電流による悪
影響を回避する手段を構じておくと入力バッファには単
純な回路が使用でき、入力バッファ自体の低消費電力化
、高速動作化が図れる。[Effect of the Invention 1] As described above, according to the present invention, by providing separate power supplies for the input buffer and the internal logic gate, it is possible to prevent noise intrusion and malfunction due to the current of the internal logic gate. By providing means for avoiding the adverse effects of the current of the internal logic gates in this manner, a simple circuit can be used for the input buffer, and the input buffer itself can achieve lower power consumption and faster operation.
さらに電源またはグランド配線を引き回した場合、一方
が他方にシールドされた形になりクロストークの発生が
ないという効果も有する。また、電源およびグランド配
線を分離するという構成を適用すると、入力バッファの
誤動作という点で制約のあった該レイアウトの自由度が
大幅に向上する。Furthermore, when the power supply or ground wiring is routed, one side is shielded from the other, and there is an effect that crosstalk does not occur. Further, by applying a configuration in which the power supply and ground wiring are separated, the degree of freedom in the layout, which has been limited by the malfunction of the input buffer, is greatly improved.
第1図は本発明の実施例を示す概略平面図、第2図はそ
の一部の拡大平面図、第3図は入力バッファおよび内部
論理ゲートの一部の回路例を示す回路図である。
l・・・・・・半導体チップ
2・・・・・・メモリセル
3 ・ ・ ・ ・
4 ・ ・ ・ ・
5 ・ ・ ・ ・
6 ・ ・ ・ ・
7 ・ ・ ・ ・
8 ・ ・ ・ ・
9 ・ ・ ・ ・
10 ・ ・ ・ ・
P 1〜P5
N 1〜N5
・ti源用ポンデイグパッド
・グランド用ボンディングバッド
・入力バッファ用電源配線
・大力バッファ用グランド配線
・内部論理ゲート用電源配線
・内部論理ゲート用グランド配線
・大力バッファ回路部
・内部論理ゲート部
・PチャネルMOSトランジスタ
・NチャネルMOSトランジスタ
以上FIG. 1 is a schematic plan view showing an embodiment of the present invention, FIG. 2 is an enlarged plan view of a portion thereof, and FIG. 3 is a circuit diagram showing a circuit example of a portion of an input buffer and an internal logic gate. l...Semiconductor chip 2...Memory cell 3...4...4...5...6...7...7...8...9...・ ・ ・ 10 ・ ・ ・ ・ P 1 to P5 N 1 to N5 ・Ponding pad for ti source ・Bonding pad for ground ・Power supply wiring for input buffer ・Ground wiring for large power buffer ・Power supply wiring for internal logic gate ・Internal logic Gate ground wiring, large power buffer circuit section, internal logic gate section, P channel MOS transistor, N channel MOS transistor and above
Claims (1)
外部回路との入力用のバッファを設けられた半導体チッ
プを備える大規模集積回路において、該入力用バッファ
の電源配線およびグランド配線は論理ゲートの電源配線
およびグランド配線とは別にして各々を独立に設け、各
電源配線および各グランド配線の同種配線同士がチップ
周辺のボンディングバッド部にて接続し、該パッドから
外部電源回路へ接続されることを特徴とする大規模集積
回路。In a large-scale integrated circuit that is composed of a large number of logic gates and includes a semiconductor chip provided with an input buffer between the logic gates and an external circuit, the power supply wiring and ground wiring of the input buffer are connected to the power supply of the logic gates. Each wiring and ground wiring are provided independently, and the same type of wiring of each power wiring and each ground wiring is connected to each other at the bonding pad part around the chip, and from this pad to the external power supply circuit. Features large-scale integrated circuits.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1269497A JPH03131035A (en) | 1989-10-17 | 1989-10-17 | Large scale integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1269497A JPH03131035A (en) | 1989-10-17 | 1989-10-17 | Large scale integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03131035A true JPH03131035A (en) | 1991-06-04 |
Family
ID=17473253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1269497A Pending JPH03131035A (en) | 1989-10-17 | 1989-10-17 | Large scale integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03131035A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6525587B2 (en) | 2001-04-11 | 2003-02-25 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor integrated circuit device including a clock synchronous type logical processing circuit |
-
1989
- 1989-10-17 JP JP1269497A patent/JPH03131035A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6525587B2 (en) | 2001-04-11 | 2003-02-25 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor integrated circuit device including a clock synchronous type logical processing circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110068826A1 (en) | Semiconductor integrated circuit device | |
JP2003158189A (en) | Multi-threshold voltage MIS integrated circuit device and circuit design method thereof | |
JPH0527285B2 (en) | ||
JPH0529551A (en) | Semiconductor integrated circuit | |
US4386286A (en) | High current static MOS output buffer circuit for power-down mode of operation | |
JP3125081B2 (en) | Logic circuit | |
JPS6161437A (en) | Semiconductor integrated circuit device | |
JPH0440893B2 (en) | ||
JPH09107070A (en) | Semiconductor integrated circuit device | |
JPH03131035A (en) | Large scale integrated circuit | |
JPH0419633B2 (en) | ||
JP2830244B2 (en) | Tri-state buffer circuit | |
JP3705526B2 (en) | Semiconductor memory device | |
JPH03159313A (en) | Output circuit and semiconductor integrated circuit device | |
JPH04372220A (en) | semiconductor equipment | |
JPS6153826A (en) | Semiconductor integrated circuit device | |
JPH03212955A (en) | Semiconductor device | |
JPH0642529B2 (en) | Semiconductor integrated circuit device | |
JPH0465547B2 (en) | ||
JPH0879048A (en) | Output buffer | |
JPH0637623A (en) | Semiconductor integrated circuit device | |
JPH03265311A (en) | Tri-state i/o buffer control circuit | |
JPH07273635A (en) | Output circuit for semiconductor integrated circuit | |
JPH0575038A (en) | Semiconductor MOS integrated circuit | |
JP2000183714A (en) | Semiconductor integrated circuit |