[go: up one dir, main page]

JPH03129675A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH03129675A
JPH03129675A JP1266857A JP26685789A JPH03129675A JP H03129675 A JPH03129675 A JP H03129675A JP 1266857 A JP1266857 A JP 1266857A JP 26685789 A JP26685789 A JP 26685789A JP H03129675 A JPH03129675 A JP H03129675A
Authority
JP
Japan
Prior art keywords
gas
distribution means
single cell
cell
reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1266857A
Other languages
Japanese (ja)
Inventor
Yasuyuki Harufuji
春藤 泰之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1266857A priority Critical patent/JPH03129675A/en
Publication of JPH03129675A publication Critical patent/JPH03129675A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体電解質型燃料電池の構造に係り、特に熱
的破損がなく信頼性に優れる固体電解質型燃料電池に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a solid oxide fuel cell, and particularly to a solid oxide fuel cell that is free from thermal damage and has excellent reliability.

〔従来の技術〕[Conventional technology]

ジルコニア等の酸化物固体電解質を用いる燃料電池は、
その作動温度が800〜1100℃と高温であるため、
発電効率が高い上に触媒が不要であり、また電解質が固
体であるため取扱い容易であるなどの特長を有し、第三
世代の燃料電池として期待されている。
Fuel cells using oxide solid electrolytes such as zirconia are
Because its operating temperature is as high as 800-1100℃,
It has high power generation efficiency, does not require a catalyst, and is easy to handle because the electrolyte is solid, so it is expected to be used as a third-generation fuel cell.

しかしながら、固体電解質型燃料電池は、セラ電ソクス
が主要な構成材料であるために、熱的に破損しやすく、
またガスの適切なシール方法がないため実現が困難であ
った。そのため、燃料電池として特殊な形状である円筒
型のものが考え出され、上記二つの問題を解決し、電池
の運転試験に底切しているが、電池単位体積あたりの発
!密度が低く経済的に有利なものが得られる見通しはま
だない。
However, solid oxide fuel cells are prone to thermal damage because their main constituent material is Cera Densoku.
Furthermore, it has been difficult to realize this because there is no appropriate gas sealing method. Therefore, a cylindrical fuel cell with a special shape was devised, which solved the above two problems and successfully completed the battery operation test. There are still no prospects for low-density, economically advantageous options.

発電密度を高めるためには平板型にすることが必要であ
る。平板型の燃料電池には例えば第4図の分解斜視図に
示す構造のものが知られている。
In order to increase the power generation density, it is necessary to use a flat plate type. As a flat plate type fuel cell, for example, one having a structure shown in an exploded perspective view of FIG. 4 is known.

この型の燃料電池においては単セル17 (固体電解質
板17Aと電極17B、 17Cからなる)とセパレー
ト板18とが交互に積層され、セパレート板の立体的に
直角交差した溝にはそれぞれ異なった反応ガスが流され
る。
In this type of fuel cell, single cells 17 (consisting of a solid electrolyte plate 17A and electrodes 17B and 17C) and separate plates 18 are alternately stacked, and grooves of the separate plates that intersect at right angles in a three-dimensional manner contain different reactions. Gas is flushed.

C発明が解決しようとする課題) 反応ガスはガスマニホルド(図示せず)を用いて燃料電
池に個別に導入される。この際燃料電池内に反応ガスを
分離して充分に供給するためには単セル17とセパレー
ト板18とはガスシールを行うことが必要となる。ガス
シールを行うために単セル17とセパレート板18とを
一体に焼結することが考えられるがこの方法では、単セ
ルとセパレート板とが異種材料で構成されるため、わず
かな熱膨張率の差や温度分布の不均一性によって一体焼
結体に割れが発生する。
C) Reactant gases are individually introduced into the fuel cell using a gas manifold (not shown). At this time, in order to separate and sufficiently supply the reaction gas into the fuel cell, it is necessary to perform a gas seal between the unit cell 17 and the separate plate 18. One possibility is to sinter the single cell 17 and the separate plate 18 together in order to achieve gas sealing, but in this method, the single cell and the separate plate are made of different materials, so a small coefficient of thermal expansion is required. Cracks occur in the monolithic sintered body due to differences and non-uniformity in temperature distribution.

この発明は上述の点に鑑みてなされその目的は反応ガス
の流し方を改良することにより、熱破損がなく信頼性に
優れる固体電解質型燃料電池を供給することにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to provide a solid oxide fuel cell that is free from thermal damage and has excellent reliability by improving the flow of reactant gas.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば 単セル17.13と、反応ガス分配手段18.14.7
と、マニホルド4.5とを有し、 単セルはアノードと固体を解質とカソードとからなるも
のであり、 反応ガス分配手段は前記単セルと交互に積層され、案内
羽であるリブ20を介して燃料ガスと酸化剤ガスを前記
単セルのアノードとカソードに個別に分配し、 前記リブ20は反応ガス分配手段の中央部から周縁部の
反応ガス排出口16.19に向かって反応ガスを放射状
に流し、 前記反応ガス排出口16.19は積層された前記反応ガ
ス分配手段と単セルからなる電池の周辺部に均一な分布
で配置され、 マニホルド4,5は積層された単セルと反応ガス分配手
段の中央部を貫通して、反応ガス分配手段に反応ガスを
供給するものである、とすることにより達成される。
The above-mentioned object according to the invention includes a single cell 17.13 and a reactant gas distribution means 18.14.7.
and a manifold 4.5, the single cell is composed of an anode, a solid solute, and a cathode, and the reaction gas distribution means is stacked alternately with the single cell and has ribs 20 as guide vanes. through which the fuel gas and oxidant gas are separately distributed to the anode and cathode of the single cell, and the ribs 20 distribute the reactant gas from the central part of the reactant gas distribution means toward the reactant gas outlet 16, 19 at the peripheral part. The reactant gas discharge ports 16 and 19 are arranged in a uniform distribution around the battery consisting of the stacked reactant gas distribution means and single cells, and the manifolds 4 and 5 react with the stacked single cells. This is achieved by supplying the reactive gas to the reactive gas distribution means by penetrating the central portion of the gas distribution means.

反応ガス分配手段としてはリブ付基材、インタコネクタ
の積層支持されたリブ付基材が含まれる。
Reactant gas distribution means include ribbed substrates and ribbed substrates on which interconnectors are laminated and supported.

これらのリブ付基材は必要に応じ多孔質または緻密室の
ものが用いられる1反応ガス排出口は酸化剤ガス、燃料
ガスのそれぞれについて、独立に−様な分布の配置がな
される。
These ribbed substrates may be porous or have dense chambers, as required.One reaction gas outlet is arranged in a manner to independently distribute the oxidizing gas and the fuel gas.

〔作用〕[Effect]

反応ガスは電池の中央部から周縁部に向かって放射状に
流れるので単セルと反応ガス分配手段の間のガスシール
の必要性がなくなる。反応ガスは電池の周囲で燃焼する
が排出口の分布が−様なので周辺温度は均一となる。
The reactant gas flows radially from the center of the cell toward the periphery, eliminating the need for a gas seal between the single cell and the reactant gas distribution means. The reaction gas burns around the battery, but the distribution of the exhaust ports is negative, so the ambient temperature is uniform.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基づいて説明する。第1
図はこの発明の実施例に係る固体電解質型燃料電池の斜
視図で、酸化剤ガス排出口16は、直上のセルの排出口
16A及び、直下のセルの排出口16Bと円周方向に9
0度ずらして配設されている。
Next, embodiments of the present invention will be described based on the drawings. 1st
The figure is a perspective view of a solid oxide fuel cell according to an embodiment of the present invention, and the oxidant gas discharge port 16 is located 9 in the circumferential direction with the discharge port 16A of the cell directly above and the discharge port 16B of the cell directly below.
They are arranged offset by 0 degrees.

同様に、燃料ガス排出口19も上下のセルの排出口19
A、 19Bと円周方向に90度ずらして配設されてい
る。
Similarly, the fuel gas discharge port 19 is also the discharge port 19 of the upper and lower cells.
A and 19B are arranged 90 degrees apart in the circumferential direction.

円周方向にずらす角度は、90度に限定されるものでは
ない。
The angle of displacement in the circumferential direction is not limited to 90 degrees.

第2図はこの発明の異なる実施例に係る固定電解質型燃
料電池の中央切断面図で、アノード1と固定電解質2と
カソード3の形成されたリブ付多孔質基材7とインクコ
ネクタ12を形成したリブ付多孔質基材11とが、交互
に積層され、積層体の中央部に燃料ガス導入管4と酸化
剤ガス導入管5とが配設されて燃料電池が1威される。
FIG. 2 is a central sectional view of a fixed electrolyte fuel cell according to a different embodiment of the present invention, in which a ribbed porous base material 7 on which an anode 1, a fixed electrolyte 2, and a cathode 3 are formed, and an ink connector 12 are formed. The ribbed porous substrates 11 are alternately stacked, and a fuel gas introduction pipe 4 and an oxidant gas introduction pipe 5 are arranged in the center of the stack to form a single fuel cell.

酸化剤ガスである酸素ガスが酸化剤ガス導入管5によっ
てガス孔10Aを経由してリブ付多孔質基材11上の酸
化剤ガス室9に導かれる。燃料ガスである水素ガスが燃
料ガス導入管4によってガス孔10Bを経由してリブ付
多孔質基材7上の燃料ガス室8に導入される。酸化剤ガ
ス室9は、第3図に示すように同心円状に90度づつず
らしてガスの出口を設けた案内胴20によりガス流路が
形成される。
Oxygen gas, which is an oxidizing gas, is introduced into the oxidizing gas chamber 9 on the ribbed porous base material 11 by the oxidizing gas introduction pipe 5 via the gas hole 10A. Hydrogen gas, which is a fuel gas, is introduced into the fuel gas chamber 8 on the ribbed porous base material 7 by the fuel gas introduction pipe 4 via the gas hole 10B. As shown in FIG. 3, the oxidant gas chamber 9 has a gas flow path formed by a guide cylinder 20 having gas outlets concentrically shifted by 90 degrees.

酸化剤ガスは、中心部より周縁部へと流れ、ガス排出口
16より排出される。燃料ガス室8も同様の形状をして
いるが、反応ガス流量が少ないため、180度づつずら
してガスの出口が設けられている。
The oxidant gas flows from the center to the periphery and is discharged from the gas outlet 16. The fuel gas chamber 8 has a similar shape, but since the flow rate of the reactant gas is small, the gas outlets are provided at a 180 degree angle.

周縁部に達した燃料ガスと酸化剤ガスとは燃焼し、燃料
電池の温度を所定の高温度に維持する。また反応ガスの
余熱用熱源としても利用できる。
The fuel gas and oxidizing gas that have reached the peripheral portion are combusted, and the temperature of the fuel cell is maintained at a predetermined high temperature. It can also be used as a heat source for residual heat of reaction gas.

このような電池は次のようにして調製される。Such a battery is prepared as follows.

厚さ2fiのリブ付多孔質基材7がNi  Zr0zサ
ーメツトを用いて形成される。リブ付多孔質基材7の平
坦な主面にNi  Zr0tサーメツトをプラズマ溶射
し、厚さ100−の多孔質アノード1が形成される。
A ribbed porous substrate 7 with a thickness of 2fi is formed using NiZr0z cermet. Ni Zr0t cermet is plasma sprayed onto the flat main surface of the ribbed porous substrate 7 to form a porous anode 1 with a thickness of 100 mm.

アノード1の上にイツトリア安定化ジルコニアをプラズ
マ溶射し、厚さ30−の緻密質な固体電解質2が形成さ
れる。続いてランタンストロンチウムマンガナイトLa
 (Sr)Mn03をプラズマ溶射し、厚さ800−の
多孔質なカソード3が形成される。一方、厚さ2fiの
リブ付多孔質基材11がLa(Sr)MnOsを用いて
形成される。このリブ付多孔質基材11の平坦な主面に
ランタンクロマイトLaCrO3をプラズマ溶射し、厚
さ40nの緻密質なインクコネクタ12が形成される。
Ittria-stabilized zirconia is plasma sprayed onto the anode 1 to form a dense solid electrolyte 2 with a thickness of 30 mm. Next is lanthanum strontium manganite La.
(Sr)Mn03 is plasma sprayed to form a porous cathode 3 with a thickness of 800 mm. On the other hand, a ribbed porous base material 11 having a thickness of 2fi is formed using La(Sr)MnOs. Lanthanum chromite LaCrO3 is plasma sprayed onto the flat main surface of this ribbed porous base material 11 to form a dense ink connector 12 with a thickness of 40 nm.

ランタンクロマイトは、電子伝導性があり酸化雰囲気に
おいても酸化されることがない。
Lanthanum chromite has electronic conductivity and is not oxidized even in an oxidizing atmosphere.

さらに、ランタンクロマイトはイントリアで安定化され
たジルコニアに近似した熱膨脹率を示す。
Additionally, lanthanum chromite exhibits a coefficient of thermal expansion similar to that of intoria-stabilized zirconia.

次に、アノード1と固体電解質2とカソード3の形成さ
れたリブ付多孔質基材7とインクコネクタ12を形成し
たリブ′付多孔質基材11とを個別に焼結する。焼結後
、リブ付多孔質基材7,11の燃料ガス導入管4と酸化
剤ガス導入管5に面する側面は、セラミックセメント6
を用いてガスシールされる。
Next, the ribbed porous base material 7 on which the anode 1, the solid electrolyte 2, and the cathode 3 are formed, and the rib'-formed porous base material 11 on which the ink connector 12 is formed are individually sintered. After sintering, the side faces of the ribbed porous substrates 7 and 11 facing the fuel gas introduction pipe 4 and the oxidant gas introduction pipe 5 are covered with ceramic cement 6.
Gas sealed using.

なお、La (Sr) MnO3を用いたリブ付多孔質
基材11は必ずしも多孔質である必要はないがLa (
Sr) MnOsは還元性雰囲気では還元されるので緻
密質にしておいた場合においてもLaCrOsを用いた
インタコネクタは必要である。
Note that the ribbed porous base material 11 using La (Sr) MnO3 does not necessarily have to be porous;
Sr) Since MnOs is reduced in a reducing atmosphere, an interconnector using LaCrOs is necessary even if it is made dense.

〔発明の効果〕〔Effect of the invention〕

この発明によれば 単セルと、反応ガス分配手段と、マニホルドとを有し、 単セルはアノードと固体電解質とカソードとからなるも
のであり、 反応ガス分配手段は前記単セルと交互に積層され、案内
胴であるリブを介して燃料ガスと酸化剤ガスを前記単セ
ルのアノードとカソードに個別に分配し、 前記リブは反応ガス分配手段の中央部から周縁部の反応
ガス排出口に向かって反応ガスを放射状に流し、 前記反応ガス排出口は積層された前記反応ガス分配手段
と単セルからなる電池の周辺部に均一な分布で配置され
、 マニホルドは積層された単セルと反応ガス分配手段の中
央部を貫通して、反応ガス分配手段に反応ガスを供給す
るものであるので反応ガスは単セルと反応ガス分配手段
の積層体であるセルスタックの中央部より周縁部へと流
れ単セルと反応ガス分配手段相互のガスシールが不要と
なり、セル部材の熱膨脹率差による熱破損がなくなる。
According to the present invention, there is provided a single cell, a reactive gas distribution means, and a manifold, the single cell is composed of an anode, a solid electrolyte, and a cathode, and the reactive gas distribution means is stacked alternately with the single cell. , the fuel gas and the oxidizing gas are separately distributed to the anode and cathode of the single cell through ribs serving as guide cylinders, and the ribs are arranged from the center of the reactive gas distribution means toward the reactive gas outlet at the periphery. The reactant gas flows radially, the reactant gas outlet is arranged in a uniform distribution around the battery including the stacked reactant gas distribution means and the single cell, and the manifold is arranged between the stacked single cells and the reactant gas distribution means. Because the reactant gas is supplied to the reactant gas distribution means through the center of the cell stack, the reactant gas flows from the center of the cell stack, which is a stack of the single cell and the reactant gas distribution means, to the periphery of the single cell. There is no need for a gas seal between the cell member and the reaction gas distribution means, and thermal damage caused by a difference in the coefficient of thermal expansion of the cell members is eliminated.

また反応ガスはセルスタックの周囲に排出されたあと燃
焼するが、反応ガスの排出口が一様に分布しているため
セルスタック周縁部の温度上昇が均一であり、温度勾配
によるセルの熱破損がなくなり全体として、熱破損がな
く信頼性に優れる固体電解質型燃料電池が得られる。
In addition, the reaction gas is combusted after being discharged around the cell stack, but because the reaction gas discharge ports are uniformly distributed, the temperature rise at the periphery of the cell stack is uniform, resulting in thermal damage to the cell due to the temperature gradient. As a result, a solid oxide fuel cell with no thermal damage and excellent reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例に係る固体電解質型燃料電
池を示す斜視図、第2図はこの発明の異なる実施例に係
る固体電解質型燃料電池を示す中央切断面図、第3図は
、この発明の実施例またはこの発明の異なる実施例に係
る固体電解質型燃料電池を示す横切断面図、第4図は、
従来の固体電解質型燃料電池の分解斜視図である。 lニアノード、2:固体電解質、3:カソード、4:燃
料ガス導入管、5:酸化剤ガス導入管、6:セラミック
セメント、7;リブ付多孔質基材、8:燃料ガス室、9
:酸化剤ガス室、10A二酸化剤ガス孔、IOB  F
燃料ガス孔、11:リプ付多孔質基材、12:インタコ
ネクタ、13:単セル、16.16A。
FIG. 1 is a perspective view showing a solid oxide fuel cell according to an embodiment of the invention, FIG. 2 is a central sectional view showing a solid oxide fuel cell according to a different embodiment of the invention, and FIG. FIG. 4 is a cross-sectional view showing a solid oxide fuel cell according to an embodiment of the present invention or a different embodiment of the present invention.
FIG. 1 is an exploded perspective view of a conventional solid oxide fuel cell. l near node, 2: solid electrolyte, 3: cathode, 4: fuel gas introduction pipe, 5: oxidant gas introduction pipe, 6: ceramic cement, 7: porous base material with ribs, 8: fuel gas chamber, 9
:Oxidant gas chamber, 10A dioxide gas hole, IOB F
Fuel gas hole, 11: Porous base material with lip, 12: Interconnector, 13: Single cell, 16.16A.

Claims (1)

【特許請求の範囲】 1)単セルと、反応ガス分配手段と、マニホルドとを有
し、 単セルはアノードと固体電解質とカソードとからなるも
のであり、 反応ガス分配手段は前記単セルと交互に積層され、案内
羽であるリブを介して燃料ガスと酸化剤ガスを前記単セ
ルのアノードとカソードに個別に分配し、 前記リブは反応ガス分配手段の中央部から周縁部の反応
ガス排出口に向かって反応ガスを放射状に流し、 前記反応ガス排出口は積層された前記反応ガス分配手段
と単セルからなる電池の周辺部に均一な分布で配置され
、 マニホルドは積層された単セルと反応ガス分配手段の中
央部を貫通して、反応ガス分配手段に反応ガスを供給す
るものである、ことを特徴とする固体電解質型燃料電池
[Claims] 1) It has a single cell, a reactive gas distribution means, and a manifold, the single cell is composed of an anode, a solid electrolyte, and a cathode, and the reactive gas distribution means is arranged alternately with the single cell. The fuel gas and the oxidant gas are individually distributed to the anode and cathode of the single cell through ribs serving as guide vanes, and the ribs are stacked on top of each other to distribute the fuel gas and the oxidant gas to the anode and cathode of the single cell through ribs serving as guide vanes, and the ribs extend from the center of the reactive gas distribution means to the reactive gas outlet at the peripheral portion. The reactant gas is flowed radially towards the reactor gas, the reactant gas outlet is arranged in a uniform distribution around the battery including the stacked reactant gas distribution means and single cells, and the manifold reacts with the stacked single cells. 1. A solid oxide fuel cell, characterized in that a reactant gas is supplied to the reactant gas distribution means by penetrating the central portion of the gas distribution means.
JP1266857A 1989-10-14 1989-10-14 Solid electrolyte fuel cell Pending JPH03129675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1266857A JPH03129675A (en) 1989-10-14 1989-10-14 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1266857A JPH03129675A (en) 1989-10-14 1989-10-14 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH03129675A true JPH03129675A (en) 1991-06-03

Family

ID=17436627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1266857A Pending JPH03129675A (en) 1989-10-14 1989-10-14 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH03129675A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399442A (en) * 1993-02-08 1995-03-21 Fuji Electric Co., Ltd. Solid electrolyte fuel cell
JP2000268842A (en) * 1999-03-17 2000-09-29 Sulzer Hexis Ag Fuel cell to make after-burning at peripheral edge of cell stack
JP2004022343A (en) * 2002-06-17 2004-01-22 Mitsubishi Nuclear Fuel Co Ltd Solid electrolyte fuel cell
JP2004348978A (en) * 2003-05-19 2004-12-09 Honda Motor Co Ltd Fuel cell
JP2005353539A (en) * 2004-06-14 2005-12-22 Sumitomo Precision Prod Co Ltd Fuel cell
JP2006134597A (en) * 2004-11-02 2006-05-25 Honda Motor Co Ltd Fuel cell
JP2006134598A (en) * 2004-11-02 2006-05-25 Honda Motor Co Ltd Fuel cell
US8153330B2 (en) 2006-05-26 2012-04-10 Honda Motor Co., Ltd. Fuel cell separator stacked on an electrolyte electrode assembly
JP2013065571A (en) * 2005-10-11 2013-04-11 Commissariat A L'energie Atomique & Aux Energies Alternatives Sealed fuel cell stack
JP2014504778A (en) * 2010-12-28 2014-02-24 ポスコ Unit cell of metal support type solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell stack using the same
JP2015153704A (en) * 2014-02-18 2015-08-24 日産自動車株式会社 fuel cell
CN110832686A (en) * 2017-06-29 2020-02-21 维萨电力系统有限公司 Selective rotating flow field for thermal management in a fuel cell stack

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399442A (en) * 1993-02-08 1995-03-21 Fuji Electric Co., Ltd. Solid electrolyte fuel cell
JP2000268842A (en) * 1999-03-17 2000-09-29 Sulzer Hexis Ag Fuel cell to make after-burning at peripheral edge of cell stack
JP4675446B2 (en) * 1999-03-17 2011-04-20 ヘクシス アクチェンゲゼルシャフト Fuel cell performing afterburning at the peripheral edge of the fuel cell stack
JP4558261B2 (en) * 2002-06-17 2010-10-06 三菱原子燃料株式会社 Solid oxide fuel cell
JP2004022343A (en) * 2002-06-17 2004-01-22 Mitsubishi Nuclear Fuel Co Ltd Solid electrolyte fuel cell
JP2004348978A (en) * 2003-05-19 2004-12-09 Honda Motor Co Ltd Fuel cell
JP2005353539A (en) * 2004-06-14 2005-12-22 Sumitomo Precision Prod Co Ltd Fuel cell
JP4705763B2 (en) * 2004-06-14 2011-06-22 住友精密工業株式会社 Fuel cell
JP2006134597A (en) * 2004-11-02 2006-05-25 Honda Motor Co Ltd Fuel cell
JP4555050B2 (en) * 2004-11-02 2010-09-29 本田技研工業株式会社 Fuel cell
JP2006134598A (en) * 2004-11-02 2006-05-25 Honda Motor Co Ltd Fuel cell
US8088533B2 (en) 2004-11-02 2012-01-03 Honda Motor Co., Ltd. Fuel cell having separator with stopper
JP2013065571A (en) * 2005-10-11 2013-04-11 Commissariat A L'energie Atomique & Aux Energies Alternatives Sealed fuel cell stack
US8153330B2 (en) 2006-05-26 2012-04-10 Honda Motor Co., Ltd. Fuel cell separator stacked on an electrolyte electrode assembly
JP2014504778A (en) * 2010-12-28 2014-02-24 ポスコ Unit cell of metal support type solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell stack using the same
JP2015153704A (en) * 2014-02-18 2015-08-24 日産自動車株式会社 fuel cell
CN110832686A (en) * 2017-06-29 2020-02-21 维萨电力系统有限公司 Selective rotating flow field for thermal management in a fuel cell stack
KR20200033257A (en) * 2017-06-29 2020-03-27 버사 파워 시스템스 리미티드 Optionally rotated flow field for thermal management in fuel cell stack
JP2020525980A (en) * 2017-06-29 2020-08-27 ヴァーサ パワー システムズ リミテッドVersa Power Systems Ltd. Selectively rotated flow field for thermal management in fuel cell stacks
US11335919B2 (en) 2017-06-29 2022-05-17 Versa Power Systems Ltd Selectively rotated flow field for thermal management in a fuel cell stack
CN110832686B (en) * 2017-06-29 2022-12-20 维萨电力系统有限公司 Selective rotating flow field for thermal management in a fuel cell stack

Similar Documents

Publication Publication Date Title
US5185219A (en) Solid oxide fuel cells
US5770327A (en) Solid oxide fuel cell stack
JPS63110560A (en) Electrochemical battery
KR101238889B1 (en) Solid oxide fuel cell, and manufacturing method thereof, and tape casting device for manufacturing fuel electrode
JPH04237962A (en) Flat type solid electrolyte fuel cell
JPH03129675A (en) Solid electrolyte fuel cell
JPH03219563A (en) Solid electrolyte fuel cell
JP4374086B2 (en) Electrochemical cell unit and electrochemical cell
JP2004039573A (en) Sealing material for low-temperature operating solid oxide fuel cells
JP2002358996A (en) Manifold structure of flat laminate fuel cell
JP2531824B2 (en) Solid oxide fuel cell
JPH02168568A (en) Solid electrolyte fuel cell
JP3929136B2 (en) Electrochemical cell and electrochemical device
JPH02284362A (en) Solid electrolyte fuel cell
JP2002358980A (en) Solid electrolyte fuel cell
JPH0589901A (en) Solid electrolyte type fuel cell
JPH03116659A (en) Solid electrolyte fuel cell
JP2528986B2 (en) Solid oxide fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JPH02267869A (en) Solid electrolyte fuel cell
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JPH05151982A (en) Solid electrolyte fuel cell
JP2002358989A (en) Gas preheating device for fuel cell
JPH06196198A (en) Solid electrolyte type fuel cell
JPH0837011A (en) Fuel cell base board in hollow flat plate form