[go: up one dir, main page]

JPH03126856A - Protective coating of a knitting and weaving member - Google Patents

Protective coating of a knitting and weaving member

Info

Publication number
JPH03126856A
JPH03126856A JP2256781A JP25678190A JPH03126856A JP H03126856 A JPH03126856 A JP H03126856A JP 2256781 A JP2256781 A JP 2256781A JP 25678190 A JP25678190 A JP 25678190A JP H03126856 A JPH03126856 A JP H03126856A
Authority
JP
Japan
Prior art keywords
protective coating
particles
oxide
carbide
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2256781A
Other languages
Japanese (ja)
Inventor
Gerard Barbezat
ゲラルト バルベザット
Werner Straub
ヴェルナー ストラウブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer AG
Publication of JPH03126856A publication Critical patent/JPH03126856A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Abstract

PURPOSE: To improve wear resistance by using carbide and oxide in constituting the ceramic particles of two or more different nonmetal elements buried in a metallic matrix formed on a material base material.
CONSTITUTION: Part of the hard particles of the surface protective films consisting of the nonmetal elements of the metallic members of this textile machine and more particularly a fine spinning frame consist a carbide (e.g.: WC) phases and the particles of other parts consist of oxide (e.g. Cr2O3). The carbide phase ensured the high wear resistance and the oxide phase improves the lubricity between textile raw material yarn and the members and has the high wear resistance. These particles are embedded into the metal, by which the disadvantages of not so much high toughness thereof are made up. The embedment may be improved by forming the particles in the film forming stage in a high-speed thermal spraying method. The oxide particles are formable during the coating process and the ratio thereof may be changed by selection of the ratio between the oxygen in thermal spraying flow and gaseous fuel.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属の織機の部材、より詳しくは精紡機の部
材の表面の保護被膜であって、少なくとも2つの異なっ
た非金属元素から作られているものに関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a protective coating on the surface of a metal loom member, more specifically a spinning machine member, which is made of at least two different non-metallic elements. related to what is being said.

(従来の技術) ヤーンを加工して糸にするとき、精紡機中のローターや
分離ローラーなどの部材は相当の摩耗作用を受ける。従
ってそれらの部品の表面にセラミック超硬合金の被膜を
設けることが知られている(例えばアーインツエンホー
ファーrcVD法J、バート2、「テクニークホイテJ
 (A、 Inzenhofer“Das CVD −
Verfahren”、 Part2.“techni
kheute”)、 3−1986.38/39頁参照
)。
BACKGROUND OF THE INVENTION When yarn is processed into yarn, members such as rotors and separation rollers in spinning machines are subjected to considerable wear. Therefore, it is known to provide a coating of ceramic cemented carbide on the surface of such parts (for example, Einzenhofer rcVD method J, Bart 2, "Technique Heute J.
(A, Inzenhofer “Das CVD -
Verfahren”, Part 2. “techni
(See "Kheute"), 3-1986, pages 38/39).

(発明が解決しようとする課題) しかし、実際上は、公知の被膜を設けた織機部材の耐摩
耗性と機械的負荷容量は不充分であることが判明してい
る。従って、本発明の目的は、重い負荷のかかる織機部
材に公知の保護被膜よりもすぐれた耐摩耗性の保護被膜
を創出することである。
(Problems to be Solved by the Invention) However, in practice, it has been found that the wear resistance and mechanical load capacity of loom members provided with known coatings are insufficient. It is therefore an object of the present invention to create a protective coating for heavily loaded loom components that is more resistant to wear than the known protective coatings.

(課題を解決するための手段) この目的は一部が炭化物相から戒る硬い粒子と他の部分
が酸化物相から成る硬い粒子とを用いる本発明によって
達せられる。
(Means for Solving the Problems) This object is achieved by the present invention, which uses hard particles partially consisting of a carbide phase and the other portion consisting of an oxide phase.

炭化物相は周知のように何よりも高い耐摩耗性を保証す
る。これに対して酸化物相は織物原料ヤーンと部材の間
の滑性を改善する。しかし酸化物相は高い耐摩耗性も持
っている。金属相に埋め込むことによって酸化物炭化物
のさ程強靭でないという不利を大きく補なうことができ
る。この埋め込みと保護被膜の部材即ち基材への接着強
度とは、酸化物粒子がHVC(高速度溶射)法による被
覆過程で形成されるなら、改善することができる。
As is known, the carbide phase guarantees above all a high wear resistance. On the other hand, the oxide phase improves the slipperiness between the textile raw yarn and the component. However, the oxide phase also has high wear resistance. By embedding it in the metal phase, the disadvantage that oxide carbide is not very strong can be largely compensated for. This implantation and the adhesion strength of the protective coating to the component or substrate can be improved if the oxide particles are formed during the HVC (high velocity thermal spray) coating process.

このHVC法はここ数年で達成した溶射法であり、溶射
粒子が音速を越える速度に達するものである(ズルツア
ー テクニーシェ ルンドシャウ(Sulzer Te
chnische Rundschau ) (STR
) 4 / 1988゜4−10頁)。
This HVC method is a thermal spraying method that has been achieved in recent years, in which the sprayed particles reach a speed that exceeds the speed of sound (Sulzer Technieche Rundschau).
chnische Rundschau ) (STR
) 4/1988゜pp. 4-10).

合金成分として少なくともクロムを含むニッケル又ハコ
ヘルドベース合金が被覆の金属マトリックスとして好結
果をもたらすことが判明した。炭化物相は好ましくはタ
ングステンの炭化物がらなり、それも少なくとも70%
の炭化タングステン(WC)からなるのが好都合である
It has been found that nickel- or hakoheld-based alloys containing at least chromium as an alloying component give good results as the metal matrix of the coating. The carbide phase preferably consists of carbides of tungsten, which also comprises at least 70%
Advantageously, it is made of tungsten carbide (WC).

しかしながら、好ましくは被膜の50〜90重量%“′
に相当する″炭化物相において、タングステンの炭化物
の少なくとも一部をチタン(Ti )、タンタル(Ta
 )、バナジウム(Va)及びl又はニオブ(Nb)の
金属の炭化物で置換えてもよい。
However, preferably 50 to 90% by weight of the coating
In the carbide phase corresponding to
), vanadium (Va) and metal carbides of l or niobium (Nb) may be substituted.

保護被膜中に5重量%まで存在する酸化物成分は、クロ
ム酸化物特に三酸化ニクロム(cr2o3)として存在
するのが好ましい。酸化物相の割合は、ガスパラメータ
ー特にHVC法の溶射流中の酸素と燃料ガスとの比を適
当に選択することによって変えることができる。プロパ
ン(C3H8)、プロピレン(C3H6)又は水素(H
2)が燃料ガスとして主に使われる。
The oxide component present in the protective coating at up to 5% by weight is preferably present as chromium oxide, especially dichromium trioxide (cr2o3). The proportion of the oxide phase can be varied by suitably selecting the gas parameters, in particular the ratio of oxygen to fuel gas in the spray stream of the HVC process. Propane (C3H8), propylene (C3H6) or hydrogen (H
2) is mainly used as fuel gas.

実験によって、金属マトリックスとしてコバルトlクロ
ム合金、炭化物相として炭化タングステン下 (%’C)、及び酸化物相として三酸化ニクロム(Cr
2O3)からなる保護被膜が特に好結果をもたらすこと
が判明した。
Experiments have shown that cobalt-chromium alloy as the metal matrix, tungsten carbide (%'C) as the carbide phase, and dichromium trioxide (Cr) as the oxide phase.
It has been found that a protective coating consisting of 2O3) gives particularly good results.

保護被膜の良好な耐摩耗性の1つの良好な基準は表面粗
さである。上に概略を述べた本発明の目的を達するには
前述のタイプの保護被膜は、算術的中心線平均(ari
thmetical centre−1ine ave
rage)(Ra)が溶射された状態において1.5 
μmと7μmの間にあり、±1μmの分散の分散の範囲
にあると特に好結果をもたらすことが判明した。望まし
い中心線平均は、このケースにおいては、ある程度溶射
される粉末の粒子サイズを適当に選択するがどうかによ
って左右されるようである。
One good criterion for good abrasion resistance of a protective coating is surface roughness. In order to achieve the objects of the invention outlined above, a protective coating of the type described above has an arithmetic centerline average (arithmetic centerline average).
thmetical center-1ine ave
(Ra) is 1.5 in the sprayed state.
It has been found that a range of dispersion between .mu.m and 7 .mu.m and a dispersion of .+-.1 .mu.m gives particularly good results. The desired centerline average, in this case, appears to depend in part on the appropriate selection of the particle size of the sprayed powder.

鉄、アルミニウム、鋼又はチタンをベースにした金属材
料が基材として用いられる。
Metal materials based on iron, aluminum, steel or titanium are used as substrates.

(実施例) 本発明を以下に実施例を示してより詳細に説明する。こ
の実施例においては、精紡機の所謂分離ローラーの表面
の少なくとも一部を被覆する。
(Example) The present invention will be described in more detail by showing examples below. In this embodiment, at least part of the surface of a so-called separation roller of a spinning machine is coated.

硬化スチールで作った基材への被膜の接着強度を増すた
めに、被覆すべき面を始めに溶剤で油を除キ、次いで酸
化アルミニウム(コランダム、Al2O2)で作った粒
状物質でサンドブラストをかける。Al2O2の粒子サ
イズは、例えば0.12 mmから0.25 mmの間
である。前記基材は、粒子を約3バールの圧力で加速す
るサンドブラスト源からおおよそ100mm離れた所に
置く。
In order to increase the adhesion strength of the coating to a substrate made of hardened steel, the surface to be coated is first degreased with a solvent and then sandblasted with a granular material made of aluminum oxide (corundum, Al2O2). The particle size of Al2O2 is for example between 0.12 mm and 0.25 mm. The substrate is placed approximately 100 mm from a sandblasting source that accelerates the particles at a pressure of approximately 3 bar.

市販のプラズマ塊化又は押し砕きもしくは粉砕した冶金
用粉末を溶射用粉末として用いる。その組成は次のよう
である。
Commercially available plasma agglomerated, crushed or crushed metallurgical powders are used as thermal spray powders. Its composition is as follows.

丁 炭化タングステン(■C)       867M量%
コバルトベース合金CoCr 30    14 重量
%すでに述べたように、溶射粉末の粒子サイズ分布は、
保護被膜の形成された表面の、溶射された状態における
望みの表面粗さいがんにががっている。
Tungsten carbide (■C) 867M%
Cobalt-based alloy CoCr 30 14% by weight As already mentioned, the particle size distribution of the thermal spray powder is
The desired surface roughness in the thermally sprayed state of the surface on which the protective coating has been formed is adhered to.

溶射粉末の粒子サイズ分布と溶射された被膜の算術的中
心線平均Raとの相関関係を下記する。尚いろいろな母
集団を用いて保護被膜の適用に使用したので、これらに
ついて記す。
The correlation between the particle size distribution of the spray powder and the arithmetic centerline average Ra of the sprayed coating is shown below. In addition, various populations were used for the application of the protective coating, and these will be described below.

粒子サイズ(μm)    Ra値(μm)(長さ1.
5mmにわたっ て測定した) +15〜605〜7 +5〜453〜5 +5〜12        2〜3 +5〜12         1.5〜2上記STR4
/ 88の記事に記載された方法に従って被膜を設ける
。5〜25μmのフラクションを持つ粉末に対して、 プロパン60e / min及び 酸素500e / min の燃料ガス流を用い、これに窒素2Oe / minを
キャリヤーガスとして混合する。
Particle size (μm) Ra value (μm) (length 1.
Measured over 5mm) +15-605-7 +5-453-5 +5-12 2-3 +5-12 1.5-2 STR4 above
The coating is applied according to the method described in the article No./88. For powders with a fraction of 5-25 μm, a fuel gas flow of 60 e/min of propane and 500 e/min of oxygen is used, mixed with 2 Oe/min of nitrogen as carrier gas.

前記粉末をガス流に14 g / minで加える。基
材と粉末を運ぶガス流の間の速度は30〜60 m /
 minであり、温度は2900’Cに達する。溶射装
置と基材の間の距離は約250mmである。
Add the powder to the gas stream at 14 g/min. The velocity between the substrate and the gas stream carrying the powder is 30-60 m/
min and the temperature reaches 2900'C. The distance between the thermal spray device and the substrate is approximately 250 mm.

スプレーガンで、被覆すべき面を自動装置の制御の下に
何列にもわたって被覆する溶射操作を、被膜の厚さが2
O〜5011mになるまで続ける。
A spray gun is used to coat the surface to be coated in several rows under the control of automatic equipment until the coating thickness is 2.
Continue until it reaches 0~5011m.

その後の分析が示しているように前記被覆は本質的にC
oとCrの混晶の金属マトリックスがらなり、この中に
約80重量%のタングステン炭化物と約5重量%のクロ
ム酸化物が沈積している。タングステン炭化物中VCが
約72%を占める。一方クロム酸化物は、(これは被覆
過程で形成されるのであるが)金相学試験又は相の分配
を基準にしたXS*微細構造分析によって確証できるが
、丁度Cr2O3の形で存在する。
Subsequent analysis has shown that the coating consists essentially of C.
It consists of a metal matrix of a mixed crystal of o and Cr, in which about 80% by weight of tungsten carbide and about 5% by weight of chromium oxide are deposited. VC in tungsten carbide accounts for about 72%. On the other hand, chromium oxide (which is formed during the coating process) is present exactly in the form of Cr2O3, which can be established by metallographic tests or by XS* microstructural analysis on the basis of phase distribution.

溶射された状態における保護被膜のRa値は、このケー
スでは1.5〜2.0μmである。この被膜は高い接着
強度を持つ。
The Ra value of the protective coating in the sprayed state is in this case 1.5 to 2.0 μm. This coating has high adhesive strength.

Claims (11)

【特許請求の範囲】[Claims] (1)織物機械の金属部材、特に精紡機の金属部材の表
面の保護被膜であって、金属の基材の上に形成される少
なくとも2つの異なった非金属元素のセラミック粒子か
ら作られ、これら粒子は金属マトリックスの中に埋め込
まれているものにおいて、一部の硬い粒子は炭化物相か
らなり、他の部分の粒子は酸化物からなることを特徴と
する前記保護被膜。
(1) A protective coating on the surface of a metal member of a textile machine, in particular a metal member of a spinning machine, which is made of ceramic particles of at least two different non-metallic elements formed on a metal substrate, The protective coating described above, wherein the particles are embedded in a metal matrix, and some of the hard particles are made of a carbide phase, and other parts of the particles are made of an oxide.
(2)前記酸化物粒子がHVC(高速度溶射)法による
被覆過程の間に形成されることを特徴とする請求項(1
)の保護被膜。
(2) The oxide particles are formed during a coating process by an HVC (high velocity thermal spray) method.
) protective coating.
(3)前記金属マトリックスがニッケル又はコバルトを
ベースとし、少なくともクロムを含む合金であることを
特徴とする請求項(1)又は(2)の保護被膜。
(3) The protective coating according to claim 1 or 2, wherein the metal matrix is an alloy based on nickel or cobalt and containing at least chromium.
(4)前記炭化物相がタングステンの炭化物からなるこ
とを特徴とする請求項(1)ないし(3)のいずれかの
保護被膜。
(4) The protective coating according to any one of claims (1) to (3), wherein the carbide phase is made of tungsten carbide.
(5)前記タングステンの炭化物が少なくとも70%の
炭化タングステン(WC)からなることを特徴とする請
求項(4)の保護被膜。
5. The protective coating of claim 4, wherein said tungsten carbide comprises at least 70% tungsten carbide (WC).
(6)前記タングステンの炭化物が少なくとも部分的に
チタン、タンタル、バナジウム及び/又はニオブの金属
の炭化物で置き換えられていることを特徴とする請求項
(4)又は(5)の保護被膜。
(6) A protective coating according to claim 4 or 5, characterized in that the tungsten carbide is at least partially replaced by a metal carbide of titanium, tantalum, vanadium and/or niobium.
(7)前記保護被膜が50〜90重量%の炭化物相を含
むことを特徴とする請求項(1)〜(6)のいずれかの
保護被膜。
(7) The protective coating according to any one of claims (1) to (6), wherein the protective coating contains 50 to 90% by weight of a carbide phase.
(8)前記酸化物相がクロムの酸化物からなることを特
徴とする請求項(1)〜(7)のいずれかの保護被膜。
(8) The protective coating according to any one of claims (1) to (7), wherein the oxide phase consists of an oxide of chromium.
(9)前記保護被膜が5重量%までのクロム酸化物を含
むことを特徴とする請求項(8)の保護被膜。
9. The protective coating of claim 8, wherein said protective coating contains up to 5% by weight of chromium oxide.
(10)前記保護被膜が、金属マトリックスとしてのコ
バルト/クロム合金、炭化物相としての炭化タングステ
ン(WC)及び酸化物としての三酸化ニクロム(Cr_
2O_3)からなることを特徴とする請求項(4)〜(
9)のいずれかの保護被膜。
(10) The protective coating includes a cobalt/chromium alloy as a metal matrix, tungsten carbide (WC) as a carbide phase, and dichromium trioxide (Cr_
Claims (4) to (2O_3)
9) Any of the protective coatings.
(11) 溶射後の保護被膜の算術的中心線平均(ar
ithmetical centre−line av
erage)Raが1.5μmと7μmの間であり、±
1μmの分散の範囲にあることを特徴とする請求項(1
)〜(10)のいずれかの保護被膜。
(11) Arithmetic centerline average (ar
ithmetical center-line av
age) Ra is between 1.5 μm and 7 μm, ±
Claim 1 characterized in that the dispersion is in the range of 1 μm.
) to (10).
JP2256781A 1989-10-11 1990-09-26 Protective coating of a knitting and weaving member Pending JPH03126856A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3704/89A CH679047A5 (en) 1989-10-11 1989-10-11
CH03704/89-9 1989-10-11

Publications (1)

Publication Number Publication Date
JPH03126856A true JPH03126856A (en) 1991-05-30

Family

ID=4261727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256781A Pending JPH03126856A (en) 1989-10-11 1990-09-26 Protective coating of a knitting and weaving member

Country Status (3)

Country Link
EP (1) EP0423063A1 (en)
JP (1) JPH03126856A (en)
CH (1) CH679047A5 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139199A (en) * 2001-11-06 2003-05-14 Tsubakimoto Chain Co Wear-resistant covering object and silent chain covering the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631961B1 (en) * 1993-06-19 1997-12-10 Hoechst Aktiengesellschaft Yarn guiding component with an improved outer surface
TW383233B (en) * 1995-01-31 2000-03-01 Rieter Ag Maschf Thread guiding elements
AT404028B (en) * 1996-10-29 1998-07-27 United Container Machinery Gro Process for treating corrugated rolls with a high-speed thermal spray jet fed with oxygen and fuel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2964420A (en) * 1955-06-14 1960-12-13 Union Carbide Corp Refractory coated body
US4146654A (en) * 1967-10-11 1979-03-27 Centre National De La Recherche Scientifique Process for making linings for friction operated apparatus
DD154081A1 (en) * 1980-12-15 1982-02-24 Heiner Fink METHOD FOR PRODUCING SURFACE COATINGS FOR WET ROLLERS
GB2104111B (en) * 1981-08-14 1986-04-23 Reiners Verwaltungs Gmbh Spinning rotor for an open-end spinning machine and method for its production
DE3218402C2 (en) * 1982-05-15 1985-03-21 Davy McKee AG, 6000 Frankfurt Process for the surface coating of thread-guiding components and thread-guiding components produced by the process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139199A (en) * 2001-11-06 2003-05-14 Tsubakimoto Chain Co Wear-resistant covering object and silent chain covering the same
US6969560B2 (en) 2001-11-06 2005-11-29 Tsubakimoto Chain Co. Wear-resistant coating and silent chain coated with same

Also Published As

Publication number Publication date
EP0423063A1 (en) 1991-04-17
CH679047A5 (en) 1991-12-13

Similar Documents

Publication Publication Date Title
Mishra et al. Experimental investigation and study of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr coating on its sliding wear behaviour
Bolelli et al. HVOF-sprayed WC–CoCr coatings on Al alloy: effect of the coating thickness on the tribological properties
Murthy et al. Abrasive wear behaviour of WC–CoCr and Cr3C2–20 (NiCr) deposited by HVOF and detonation spray processes
US4526618A (en) Abrasion resistant coating composition
Sharma et al. Effect of surface preparation on the microstructure, adhesion, and tensile properties of cold-sprayed aluminum coatings on AA2024 substrates
Lioma et al. Cold gas dynamic spraying of WC–Ni cemented carbide coatings
Ak et al. NiCr coatings on stainless steel by HVOF technique
EP1485220A1 (en) Corrosion resistant powder and coating
Mahade et al. Investigating load-dependent wear behavior and degradation mechanisms in Cr3C2–NiCr coatings deposited by HVAF and HVOF
CA1274093A (en) Method of heat treating of wear resistant coatings and compositions useful therefor
Kulu et al. Selection criteria for wear resistant powder coatings under extreme erosive wear conditions
US20130177705A1 (en) Applying bond coat using cold spraying processes and articles thereof
Fernandes et al. Influence of nanostructured ZrO2 additions on the wear resistance of Ni-based alloy coatings deposited by APS process
Sharma et al. Surface characterization and mechanical properties’ evaluation of boride-dispersed nickel-based coatings deposited on copper through thermal spray routes
Tabatabaei et al. The effect of WC-CoCr content on hardness and tribological properties of NiCrBSi coatings fabricated by the HVOF process
Kulu et al. Abrasive wear resistance of recycled hardmetal reinforced thick coating
JPH0394048A (en) Immersion member for molten zinc bath and the like excellent in corrosion resistance and wear resistance
Raheem et al. Wear and friction of polymer fiber composites coated by NiCr alloy
Tillmann et al. Metallization of ceramic coatings: Effect of cold gas spray parameters and roughness of the ceramic substrate on metallic layer properties
JPH03126856A (en) Protective coating of a knitting and weaving member
Liu et al. Quantitative characteristics of FeCrAl films deposited by arc and high-velocity arc spraying
Bains et al. Wear between ring and traveler: a pin-on-disc mapping of various detonation gun sprayed coatings
Storozhenko et al. Microstructure and Tribological Behavior of Plasma Sprayed (Ti, Cr) C-Ni Composite Coatings
Mohanty et al. Lightweight TiC/Ti wear-resistant coatings for lightweight structural applications
Kulu Selection of powder coatings for extreme erosion wear conditions