JPH03123640A - Formation of metallosilicate layer on ceramic foam - Google Patents
Formation of metallosilicate layer on ceramic foamInfo
- Publication number
- JPH03123640A JPH03123640A JP25770089A JP25770089A JPH03123640A JP H03123640 A JPH03123640 A JP H03123640A JP 25770089 A JP25770089 A JP 25770089A JP 25770089 A JP25770089 A JP 25770089A JP H03123640 A JPH03123640 A JP H03123640A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic foam
- metallosilicate
- temp
- solution
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
意粟上■丑尻立駈
本発明は流路構造を持つセラミックフオームにメタロシ
リケート層を形成する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a metallosilicate layer on a ceramic foam having a channel structure.
の ゛ しようとする課題
従来、メタロシリケート触媒はミクロ細孔への反応成分
の拡散抵抗が大きいので、通気抵抗の小さい多孔質担体
上に直接合成によりメタロシリケートを担持できれば拡
散抵抗を小さくすることができ、またハニカム構造によ
り流路が直線的でないので、反応ガスの自己撹拌効率が
高くなり、触媒と反応ガスとの接触が良好となるなどの
利点が得られる。Conventionally, metallosilicate catalysts have a high diffusion resistance of reaction components into micropores, so if metallosilicates can be supported by direct synthesis on a porous support with low ventilation resistance, the diffusion resistance can be reduced. Moreover, since the flow path is not linear due to the honeycomb structure, the self-stirring efficiency of the reaction gas is increased, and there are advantages such as good contact between the catalyst and the reaction gas.
本発明は、セラミックフオームへメタコンIJ ’7−
−トを結晶化してセラミックフオームなどの流路構造を
該構成体を二次的に修飾した細孔構造にして、実用触媒
とし有効なセラミックフオームにメタロシリケート層を
形成する方法を提供するものである。The present invention provides metacon IJ'7- to ceramic foam.
The present invention provides a method for forming a metallosilicate layer on a ceramic foam that is effective as a practical catalyst by crystallizing a ceramic foam to create a pore structure that is a secondary modification of the channel structure of the ceramic foam. be.
を”るための
本発明は、化学組成0.30TPA : 0.2 ON
a:1 /RMe: 1Si : 7.5HzO(式中
R:Si/Meの原子比40〜950、TPA :テト
ラアルキルアンモニウム、Meは金属原子)の組成に相
当する量の水酸化ナトリウムの水溶液に化学当量のTP
AB(テトラアルキルアンモニウムプロミド)例えばテ
トラプロピルアンモニウムプロミド、水溶性金属塩およ
び5i01を順次溶解して遊離ナトリウムイオンを含ま
ない水性混合液を作り、この溶液にメゾ孔以上(20Å
以上)の孔径をもつセラミックフオームを含浸させ、過
剰含浸液は例えば遠心分離した後100〜200℃の温
度で結晶化した後、得られたセラミックフオームを水洗
、乾燥後空気気流中で500〜600℃にて焼成し、次
にセラミックフオームに担持させたメタロシリケート層
のナトリウムイオンをアンモニウムイオンでイオン交換
した後再び水洗、乾燥した後500〜600℃にて焼成
することを特徴とするセラミックフオームにメタロシリ
ケート層を形成する方法を提供するものである。The present invention has a chemical composition of 0.30 TPA: 0.2 ON.
a: 1/RMe: 1Si: 7.5HzO (in the formula, R: Si/Me atomic ratio 40 to 950, TPA: tetraalkylammonium, Me is a metal atom) in an aqueous solution of sodium hydroxide in an amount corresponding to the composition. Chemical equivalent of TP
AB (tetraalkylammonium bromide) For example, tetrapropylammonium bromide, a water-soluble metal salt, and 5i01 are sequentially dissolved to prepare an aqueous mixture containing no free sodium ions.
or above), and the excess impregnating liquid is centrifuged and then crystallized at a temperature of 100 to 200°C.The obtained ceramic foam is then washed with water and dried. ℃, then the sodium ions in the metallosilicate layer supported on the ceramic foam are ion-exchanged with ammonium ions, washed again with water, dried, and fired at 500 to 600℃. A method of forming a metallosilicate layer is provided.
メタロシリケート含浸液を遊離のナトリウムイオンを含
まないものにした理由は、ナトリウムイオンが存在する
と後工程の焼成工程などにおいて残存するナトリウムイ
オンによって担体であるセラミックフオームの表面が溶
融され易くなり、該フオームの流路構造かはかいされる
おそれがあるからである。The reason why the metallosilicate impregnating solution was made to be free of sodium ions is that if sodium ions are present, the surface of the ceramic foam that is the carrier is likely to be melted by the remaining sodium ions in the subsequent firing process, and the foam This is because there is a risk that the flow path structure may be scratched.
セラミックフオームへのメタロシリケートの1旦持量は
、メタロシリケート水性混合液の濃度、過剰の含浸液を
のぞくための遠心分離の回数、およびセラミックフオー
ムの含浸液への含浸回数などによって容易に調整できる
。The amount of metallosilicate added to the ceramic foam can be easily adjusted by adjusting the concentration of the aqueous metallosilicate mixture, the number of centrifugations to remove excess impregnating liquid, and the number of times the ceramic foam is impregnated with the impregnating liquid. .
セラミックフオームに担持させるメタロシリケートの金
属の種類は使用目的によって選択されるが、水溶性金属
塩例えば硝酸塩、硫酸塩および塩化物などであれば特に
制限されない。The type of metal in the metallosilicate supported on the ceramic foam is selected depending on the purpose of use, but is not particularly limited as long as it is a water-soluble metal salt such as nitrate, sulfate, or chloride.
例えばメタロシリケート担持セラミックフオームが触媒
、特にメタノールからの低級オレフィンへの転化反応の
触媒であるGa−シリケート触媒である場合には金属塩
としてGat<5ot)s・nHzOが使用される。For example, when the metallosilicate-supported ceramic foam is a catalyst, in particular a Ga-silicate catalyst for the conversion reaction of methanol to lower olefins, Gat<5ot)s.nHzO is used as the metal salt.
また合成ガスの転化反応の触媒であるCo −Mn −
Ru系触媒である場合には金属塩としてC0(NO3)
!・68zO、Mn(NOz)z ・6HzOおよびR
uCl 53H1Oが使用される。In addition, Co -Mn - is a catalyst for the conversion reaction of synthesis gas.
In the case of a Ru-based catalyst, C0(NO3) is used as a metal salt.
!・68zO, Mn(NOz)z ・6HzO and R
uCl 53H1O is used.
(実施例) 以下に実施例を示し、本発明をさらに詳細に説明する。(Example) EXAMPLES The present invention will be explained in further detail by way of Examples below.
5iOz20 gSGas(Soa)s・nHzo
3.43 gs NaOH2、66gおよびTPAB
(テトラプロピルアンモニウムプロミド)26.58g
の試薬から含浸液を作るに当り、先づ水酸化ナトリウム
水溶液を作り、これにT P A B −、Gat(S
on)3HnHzOおよびSin、の順序で添加して溶
解し、遊離ナトリウムイオンを含まないメタロシリケー
トの水性液を作り、この溶液に直径10鶴、長さ50曹
朧のセラミックフオーム0.97 gを1分間浸した後
1000回転で30秒遠心分離した。得られたセラミッ
クフオームを170℃で48時間結晶化を行なった。次
にセラミックフオームを水洗後1夜乾燥した。次に空気
気流中で室温から540℃まで1時間で昇温後、3.5
時間焼成した。焼成後1規定のNl(、、NO3溶液で
80℃で1時間イオン交換した。次q水洗、乾燥後焼成
して触媒を得た。5iOz20 gSGas(Soa)s・nHzo
3.43 gs NaOH2, 66g and TPAB
(Tetrapropylammonium bromide) 26.58g
To prepare the impregnating solution from the reagents, first make an aqueous sodium hydroxide solution, and add T P A B -, Gat (S
on) 3HnHzO and Sin are added and dissolved in this order to create an aqueous metallosilicate solution containing no free sodium ions, and 0.97 g of ceramic foam with a diameter of 10 mm and a length of 50 mm is added to this solution. After soaking for a minute, it was centrifuged at 1000 rpm for 30 seconds. The obtained ceramic foam was crystallized at 170° C. for 48 hours. The ceramic foam was then washed with water and dried overnight. Next, after increasing the temperature from room temperature to 540℃ in an air stream for 1 hour, 3.5
Baked for an hour. After calcination, ion exchange was carried out at 80° C. for 1 hour with 1N Nl (, NO3 solution). Next, the product was washed with water for q, and after drying, calcination was performed to obtain a catalyst.
Ga−シリケートの担持率は57−t%であった。The loading rate of Ga-silicate was 57-t%.
物性測定:
実施例1の方法で得られたセラミックフオームに担持さ
れたメタロシリケート触媒のX線回折パターンを第1図
に示した。Measurement of Physical Properties: The X-ray diffraction pattern of the metallosilicate catalyst supported on the ceramic foam obtained by the method of Example 1 is shown in FIG.
使用装置:理学電気製X線回折装置、Geigerfl
ex−2013、線源Cuk ex、2θ=5〜706
第1図において、C)は担体セラミックフオーム(CF
)のパターン、a)はメタロシリケートのパターン、b
)はメタロシリケート1旦持セラミツクフオームのパタ
ーンである。Equipment used: Rigaku X-ray diffraction device, Geigerfl
ex-2013, radiation source Cuk ex, 2θ=5~706
In FIG. 1, C) is a carrier ceramic foam (CF
) pattern, a) is a metallosilicate pattern, b
) is a pattern of ceramic foam with one metallosilicate.
パターンa)およびb)を比較した場合から明らかなよ
うに、2θの値が8〜9″付近および24゜付近に特徴
的なピークが現われており、このことはb)がC)と同
様にペンタシル構造を有していることを示している。As is clear from the comparison of patterns a) and b), characteristic peaks appear around the 2θ value of 8 to 9″ and around 24°, which means that b) is similar to C). This indicates that it has a pentasil structure.
このことからメタロシリケートはI旦体セラミックフオ
ーム上でペンタシル型メタロシリケートに合成されてい
ることが確認された。This confirmed that the metallosilicate was synthesized into a pentasil-type metallosilicate on the solid ceramic foam.
I3撚
実施例1の方法で得られたGa−シリケート担持セラミ
ック触媒を用いてメタノールから低級オレフィン系炭化
水素の合成反応を行なった。A synthesis reaction of lower olefinic hydrocarbons from methanol was carried out using the Ga-silicate supported ceramic catalyst obtained by the method of I3 twist Example 1.
反応:メタノール常圧流通反応装置を用いて、メタノー
ル転化反応を行なった。担持触媒はそのまま、直系61
1の反応管に充填して用いた。非担持触媒は合成結晶を
打錠成型し、15〜20meshに破砕して用いた。そ
れらにN2で希釈した20%MeOHの原料ガスを、担
体を含めた触媒全体積基準(7) GH5V 1050
0h−’テ流通し、300℃に保って反応させた。3時
間後生酸物はインチグレーター付きガスクロマトグラフ
で分析した。Reaction: A methanol conversion reaction was carried out using a methanol atmospheric pressure flow reactor. Supported catalyst is directly connected to 61
It was used by filling it into a reaction tube. The unsupported catalyst was used by molding synthetic crystals into tablets and crushing them into 15 to 20 mesh pieces. Add to them a raw material gas of 20% MeOH diluted with N2, based on the total volume of the catalyst including the carrier (7) GH5V 1050
The mixture was circulated for 0 h-' and kept at 300°C for reaction. After 3 hours, the produced acid was analyzed using a gas chromatograph equipped with an inch grater.
使用装置は島津GC−8A(MeOHlMeOMe 、
Co)、島津GC−12A(ガス状炭化水素)であっ
た。The equipment used is Shimadzu GC-8A (MeOHlMeOMe,
Co), Shimadzu GC-12A (gaseous hydrocarbon).
実験結果は第2図に示した。The experimental results are shown in Figure 2.
第2図において、a)はH−Ga−シリケート担持セラ
ミックフオーム触媒、b)はH−Ga−シリケート触媒
を用いた場合である。a)の場合、メタノールの転化率
は98.3%であり、b)の場合、メタノールの転化率
は100%であった。62′およびC1゜の低級炭化水
素の留分はa)の場合がb)の場合よりすぐれており、
また流路構造担体の特徴が活かされ、反応時のコーク生
成を抑制する効果が得られた。In FIG. 2, a) shows the case where an H-Ga-silicate supported ceramic foam catalyst is used, and b) shows the case where an H-Ga-silicate catalyst is used. In case a), the conversion rate of methanol was 98.3%, and in case b), the conversion rate of methanol was 100%. The fraction of lower hydrocarbons of 62' and C1° is better in case a) than in case b),
Furthermore, the characteristics of the channel structure carrier were utilized to suppress coke formation during the reaction.
(発明の効果)
(1) メタロシリケートのセラミックフオームへの
担持率は容易に調節可能である。(Effects of the Invention) (1) The supporting ratio of metallosilicate on ceramic foam can be easily adjusted.
(2)セラミックフオームなどの流路構造を、構造体を
二次的に修飾した細孔構造にして実用触媒として有効な
ものにした。(2) A channel structure such as a ceramic foam is made into a pore structure by secondary modification of the structure, making it effective as a practical catalyst.
(3)ゼオライト触媒を効果的に担持分散することがで
きた。(3) The zeolite catalyst could be effectively supported and dispersed.
第1図は本発明方法で合成されたGa−シリケート担持
セラミック触媒のX線回折図、第2図は本発明方法で合
成されたGa−シリケート担持セラミック触媒によるメ
タノール転化反応による生成炭化水素の分布図である。
第1図Figure 1 is an X-ray diffraction diagram of the Ga-silicate-supported ceramic catalyst synthesized by the method of the present invention, and Figure 2 is the distribution of hydrocarbons produced by the methanol conversion reaction using the Ga-silicate-supported ceramic catalyst synthesized by the method of the present invention. It is a diagram. Figure 1
Claims (1)
1Si:7.5H_2O(式中R:Si/Meの原子比
40〜950、TPA:テトラアルキルアンモニウム、
Meは金属原子)の組成に相当する量の水酸化ナトリウ
ムの水溶液に化学当量のTPAB(テトラアルキルアン
モニウムプロミド)、水溶性金属塩およびSiO_2を
順次溶解して遊離ナトリウムイオンを含まない水性混合
液を作り、この溶液にセラミックフォームを含浸させ、
過剰の含浸液を分離した後100〜200℃の温度にて
結晶化した後、空気気流中で500℃〜600℃にて焼
成し、次にセラミックフォームに担持させたメタロシリ
ケート層のナトリウムイオンをアンモニウムイオンでイ
オン交換した後乾燥し、500℃〜600℃にて焼成す
ることを特徴とするセラミックフォームにメタロシリケ
ート層を形成する方法。Chemical composition 0.30TPA:0.20Na:1/RMe:
1Si:7.5H_2O (in the formula, R: Si/Me atomic ratio 40 to 950, TPA: tetraalkylammonium,
Chemical equivalents of TPAB (tetraalkylammonium bromide), water-soluble metal salts, and SiO_2 are sequentially dissolved in an aqueous solution of sodium hydroxide in an amount corresponding to the composition of Me (Me is a metal atom) to create an aqueous mixture containing no free sodium ions. and impregnate ceramic foam with this solution,
After separating the excess impregnating liquid, it is crystallized at a temperature of 100-200°C and then calcined at 500-600°C in a stream of air, and then the sodium ions of the metallosilicate layer supported on the ceramic foam are A method for forming a metallosilicate layer on a ceramic foam, the method comprising ion-exchanging with ammonium ions, drying, and firing at 500°C to 600°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1257700A JPH07121359B2 (en) | 1989-10-04 | 1989-10-04 | Method for forming metallosilicate layer on ceramic foam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1257700A JPH07121359B2 (en) | 1989-10-04 | 1989-10-04 | Method for forming metallosilicate layer on ceramic foam |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03123640A true JPH03123640A (en) | 1991-05-27 |
JPH07121359B2 JPH07121359B2 (en) | 1995-12-25 |
Family
ID=17309900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1257700A Expired - Fee Related JPH07121359B2 (en) | 1989-10-04 | 1989-10-04 | Method for forming metallosilicate layer on ceramic foam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07121359B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57149821A (en) * | 1981-02-03 | 1982-09-16 | Battelle Institut E V | Zeolite molecular sieve-, adsorber-, catalyst-tissue and manufacture |
JPH01224216A (en) * | 1988-01-07 | 1989-09-07 | Mobil Oil Corp | Production and use of gallosilicate aromatizing catalyst |
-
1989
- 1989-10-04 JP JP1257700A patent/JPH07121359B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57149821A (en) * | 1981-02-03 | 1982-09-16 | Battelle Institut E V | Zeolite molecular sieve-, adsorber-, catalyst-tissue and manufacture |
JPH01224216A (en) * | 1988-01-07 | 1989-09-07 | Mobil Oil Corp | Production and use of gallosilicate aromatizing catalyst |
Also Published As
Publication number | Publication date |
---|---|
JPH07121359B2 (en) | 1995-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4242233A (en) | Method for preparing aluminosilicates, their use as catalyst supports and catalysts, and method for producing catalysts therefrom | |
KR102370849B1 (en) | AEI structure molecular sieve, manufacturing method and use thereof | |
JP2000300987A (en) | Process of converting small carbon number aliphatic hydrocarbon into greater carbon number hydrocarbon, and catalyst therefor | |
KR101743760B1 (en) | Method for manufacturing of SSZ-13 zeolite catalyst and the SSZ-13 zeolite catalyst thereby | |
CN110615444A (en) | Mordenite molecular sieve, and preparation method and application thereof | |
CN114105166B (en) | A kind of organic template and its preparation method and application and high silicon KFI zeolite molecular sieve and its preparation method and application | |
JP2648452B2 (en) | Method for producing metal silicate catalyst | |
EP0014023A1 (en) | Method for producing crystalline aluminosilicates | |
EP0152485B1 (en) | Binder-free zeolite catalyst, process for its preparation, and catalytic reaction using same | |
CN111099623B (en) | AEI/MFI composite structure molecular sieve and synthetic method thereof | |
CN111377460A (en) | Hierarchical pore HZSM-5 molecular sieve | |
JPH026323A (en) | Method for producing noble metal-containing titanosilicate and aromatic hydrocarbons | |
JP4827289B2 (en) | MEL-type binderless zeolite molding, its production method and its use | |
JPH03123640A (en) | Formation of metallosilicate layer on ceramic foam | |
EP1466866A2 (en) | Porous crystalline material (itq-21) and the method of obtaining same in the absence of fluoride ions | |
CN114471675B (en) | Modified ZSM-5 molecular sieve for hydrodewaxing and preparation method thereof | |
CN107497479B (en) | A method for preparing methyl methoxyacetate by synthesizing beta molecular sieve with cordierite as carrier | |
CN116102034B (en) | A M-SSZ-13 molecular sieve and its preparation method and application | |
EP0107385A1 (en) | A method of producing a zeolite containing occluded multi-component metal oxides | |
JPS59107921A (en) | Crystalline borosilicic acid, its manufacture and manufacture of p-xylene using it | |
RU2773702C1 (en) | Method for preparing a catalyst for reactions following the acid-base mechanism | |
SU1092141A1 (en) | Silicate production process | |
JPH07121360B2 (en) | Method for forming zeolite layer on ceramic foam | |
JPS60100528A (en) | Production of hydrocarbon | |
JPS6042221A (en) | Treatment of zeolites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |