[go: up one dir, main page]

JPH03116810A - Multilayer ceramic capacitor and manufacture thereof - Google Patents

Multilayer ceramic capacitor and manufacture thereof

Info

Publication number
JPH03116810A
JPH03116810A JP25226989A JP25226989A JPH03116810A JP H03116810 A JPH03116810 A JP H03116810A JP 25226989 A JP25226989 A JP 25226989A JP 25226989 A JP25226989 A JP 25226989A JP H03116810 A JPH03116810 A JP H03116810A
Authority
JP
Japan
Prior art keywords
electrode
element body
internal electrode
ceramic multilayer
bonding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25226989A
Other languages
Japanese (ja)
Other versions
JPH0756850B2 (en
Inventor
Masayuki Fujimoto
正之 藤本
Toushi Nishi
西 湯二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP25226989A priority Critical patent/JPH0756850B2/en
Publication of JPH03116810A publication Critical patent/JPH03116810A/en
Publication of JPH0756850B2 publication Critical patent/JPH0756850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To suppress the generation of delamination in a sintering process, and to contrive improvement in various characteristics such as a moistureproof property and the like by a method wherein, in a multilayer ceramic capacitor formed by connecting an Ni internal electrode and a basic material through a bonding layer, the bonding layer is formed by aluminosilicate. CONSTITUTION:The title multilayer ceramic capacitor is formed by laminating a plurality of dielectrics, i.e., element bodies 2, in each of which an internal electrode 1 is formed by Ni. A junction layer 3, having an aluminosilicate phase is formed between the internal electrode 1 and the element body 2, and the internal electrode 1 and the element body 1 are firmly joined together with a junction layer 3. It is considered that Si or Al, which forms a solid solution or is partially located in the Ni electrode at high temperature during a firing process is deposited from the Ni electrode during the cooling course of the firing process, causing an epitaxial growth as the aluminosilicate phase. Accordingly, the inner electrode and the element body the tightly compled without wing a glass component, the occurrence of delamination is supposed, and it is possible to improve the moisture-proof property.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミック積層コンデンサおよびその製造方
法に関し、更に詳細には、Ni電極を内部電極として用
いたセラミック積層コンデンサおよびその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a ceramic multilayer capacitor and a method for manufacturing the same, and more particularly to a ceramic multilayer capacitor using Ni electrodes as internal electrodes and a method for manufacturing the same. be.

(従来の技術) セラミック積層コンデンサは、内部電極きしての電極材
料を印刷したセラミックグリーンシートを、順次積層し
焼成してなるものであり、上記電極材料としては、従来
、Pt、Ag−Pd等の貴金属が用いられていた。しか
しながら、これら従来の積層磁気コンデンサでは、内部
電極の暦数が増えるにつれて、コンデンサの体積に対し
て内部電極の占める割合が増加し、コンデンサのコスト
にも大きく影響するようになってきた。このような理由
から、最近では、内部電極として安価な卑金属を用いた
セラミック積層コンデンサが種々検討されており、その
一つとして、内部電極をN1で形成したものがが提案さ
れている。
(Prior Art) Ceramic multilayer capacitors are made by sequentially laminating and firing ceramic green sheets printed with electrode materials for internal electrodes. Conventionally, the electrode materials have been Pt, Ag-Pd, etc. Precious metals such as However, in these conventional multilayer magnetic capacitors, as the number of internal electrodes increases, the ratio of the internal electrodes to the volume of the capacitor increases, which has a large effect on the cost of the capacitor. For these reasons, various types of ceramic multilayer capacitors using inexpensive base metals as internal electrodes have been studied recently, and one in which internal electrodes are made of N1 has been proposed.

また、従来、Ni電極を内部電極として用いたセラミッ
ク積層コンデンサは、Ni金属粉末に、ガラス成分を添
加した電極ペーストを、(Ba+−8Cax )(T 
i +−y Z ry)03粉末を主成分としたグリー
ンシート上に印刷し、そして、このシートを通常の手法
により積層し、還元雪囲気中で焼成することによって製
造されていた。
Conventionally, ceramic multilayer capacitors using Ni electrodes as internal electrodes are made by using electrode paste (Ba+-8Cax)(T
It was manufactured by printing on a green sheet containing i + - y Z ry) 03 powder as a main component, laminating the sheets by a conventional method, and firing in an atmosphere of reduced snow.

即ち、従来は、内部電極と素体とは、ガラス成分によっ
て接合されていた。
That is, conventionally, the internal electrode and the element body were bonded using a glass component.

(発明が解決しようとする課題) しかしながら、従来のNi電極を内部電極として用いた
セラミック積層コンデンサにおいては、上記したように
、素体とNi内部電極がガラス成分により接合されてい
るため、ガラス相と素体、あるいはガラス相とNi内部
電極との熱膨張差から、焼成過程において、デラミネー
ションが発生し易い。このため、得られたセラミック積
層コンデンサの耐湿特性が劣化し、信頼性に問題を残し
ている。
(Problems to be Solved by the Invention) However, in ceramic multilayer capacitors using conventional Ni electrodes as internal electrodes, as described above, the element body and the Ni internal electrodes are bonded by a glass component, so the glass phase Due to the difference in thermal expansion between the Ni internal electrode and the element body or the glass phase, delamination tends to occur during the firing process. As a result, the moisture resistance of the obtained ceramic multilayer capacitor deteriorates, leaving problems with reliability.

そこで、本発明は、上記従来のコンデンサの問題点を解
決して、焼成工程においてデラミネーションが発生せず
、その結果、種々の特性を良好に維持することのできる
セラミック積層コンデンサ、およびその製造方法を提供
することを目的とするものである。
Therefore, the present invention solves the problems of the conventional capacitors described above, and provides a ceramic multilayer capacitor that does not cause delamination during the firing process and, as a result, can maintain various characteristics well, and a method for manufacturing the same. The purpose is to provide the following.

(課題を解決するための手段) 本願の第1の発明は、N1内部電極と素体とを接合層を
介して接合してなるセラミック積層コンデンサにおいて
、上記接合層がアルミノンリケードで形成されているこ
とを特徴とするものである。
(Means for Solving the Problem) A first invention of the present application is a ceramic multilayer capacitor formed by bonding an N1 internal electrode and an element body through a bonding layer, in which the bonding layer is formed of an aluminum non-ricade. It is characterized by the presence of

本願の第2の発明は、電極ペーストを、セラミック素体
用グリーンシート上に印刷し、この後、該グリーンシー
トを複数枚積層したものを焼成することからなるセラミ
ック積層コンデンサの製造方法において、前記素体の成
分および電極ペーストの少なくとも一方に、Si、Al
!i分を所定量添加したことを特徴とするものである。
A second invention of the present application is a method for manufacturing a ceramic multilayer capacitor, which comprises printing an electrode paste on a green sheet for a ceramic body, and then firing a plurality of stacked green sheets. Si, Al is included in at least one of the components of the element body and the electrode paste.
! It is characterized by adding a predetermined amount of i.

なお、上記Si、Ai!成分は、電極ペースト中に添加
することが望ましく、そのときのSiおよびAIの総添
加量は、それらの酸化物の形で、Nl成分100重量部
に対して0.1〜10重量部であることが望ましい。
In addition, the above Si, Ai! The components are desirably added to the electrode paste, and the total amount of Si and AI added in the form of their oxides is 0.1 to 10 parts by weight per 100 parts by weight of the Nl component. This is desirable.

(作用) 本発明によれば、上記したように、N1ペースト中ある
いは素体成分中へSi、AA成分を添加することにより
、焼成後、素体・内部電極間に板状のアルミノシリケー
ト相が析出する。
(Function) According to the present invention, as described above, by adding Si and AA components to the N1 paste or the element body components, a plate-shaped aluminosilicate phase is formed between the element body and the internal electrodes after firing. Precipitate.

これは、焼成過程高温において、Ni電極(あるいは素
体)中に固溶あるいは偏在していたS11.11が、焼
成過程冷却中にNi電極から析出し、アルミノシリケー
ト相としてエピタキシャル成長を起こしていると考えら
れる。また、このアルミノシリケート相は、S i、A
Ilを主成分とし、Nlあるいは素体成分が混合したも
のである。
This is because S11.11, which was dissolved or unevenly distributed in the Ni electrode (or element body) at high temperatures during the firing process, precipitates from the Ni electrode during cooling during the firing process, causing epitaxial growth as an aluminosilicate phase. Conceivable. Moreover, this aluminosilicate phase is Si, A
It has Il as the main component and is a mixture of Nl or elemental components.

以上により一1本発明によれば、従来のように、内部電
極ペースト中にガラス成分を添加しなくとも、素体−電
極間を強固に結合することが可能であり、デラミネーシ
ョンも抑えられ、セラミック積層コンデンサの信頼性の
向上が図れる。
As a result of the above, (11) according to the present invention, it is possible to firmly bond between the element body and the electrode without adding a glass component to the internal electrode paste as in the conventional case, and delamination can also be suppressed. The reliability of ceramic multilayer capacitors can be improved.

なお、5i1Aj2成分を素体成分中へ添加すると、コ
ンデンサの誘電率等の電気的特性が大きく変動し、その
電気特性を把握しずらくなるので、該Si、Af成分の
添加は、電極ペーストへ行うことが望ましい。また、こ
の電極ペースト中への添加の場合、SiおよびAIの総
添加量を、それらの酸化物の形で、Ni成分100重量
部に対して0.1〜10重量部が望ましいとしたのは、
添加量が0.1重量部より少ないと、アルミノシリケー
ト相の析出量が少なく、素体−電極間の接合が十分でな
く、コンデンサの静電容量が低下するとともに、誘電損
失が悪化する等の特性上の問題が生ずる一方、添加量が
10重量部を超えると、電極自体の焼結が阻害され、多
孔質の電極となり、耐湿特性の低下を招くからである。
Note that if the 5i1Aj2 component is added to the element component, the electrical properties such as the dielectric constant of the capacitor will vary greatly, making it difficult to understand the electrical properties. Therefore, the addition of the Si and Af components to the electrode paste It is desirable to do so. In addition, in the case of addition to this electrode paste, the total amount of Si and AI added in the form of their oxides is preferably 0.1 to 10 parts by weight per 100 parts by weight of the Ni component. ,
If the amount added is less than 0.1 part by weight, the amount of aluminosilicate phase precipitated is small, the bond between the element body and the electrode is insufficient, the capacitance of the capacitor decreases, and the dielectric loss worsens. This is because, on the one hand, when the amount added exceeds 10 parts by weight, the sintering of the electrode itself is inhibited, resulting in a porous electrode, leading to a decrease in moisture resistance.

(実施例) 以下、添付図面を参照しつつ本発明の好ましい実施例に
よるセラミック積層コンデンサ、およびその製造方法に
ついて説明する。
(Example) Hereinafter, a ceramic multilayer capacitor and a manufacturing method thereof according to a preferred example of the present invention will be described with reference to the accompanying drawings.

セーミ    コンーン の 図面は、本発明の実施例によるセラミック積層コンデン
サの2層を示す断面図である。
The Semi-Conne drawing is a cross-sectional view showing two layers of a ceramic multilayer capacitor according to an embodiment of the present invention.

セラミック積層コンデンサは、第1図に示されているよ
うな、Niで内部電極1が形成された誘電体すなわち素
体2を複数枚積層して形成されている。また、上記内部
電極1と素体2の間には、アルミノシリケート相である
接合層3が形成され、該内部電極1と素体2とは、該接
合層3によって強固に接合されている。
A ceramic multilayer capacitor, as shown in FIG. 1, is formed by laminating a plurality of dielectric bodies, ie, element bodies 2, each having an internal electrode 1 formed of Ni. Further, a bonding layer 3 of an aluminosilicate phase is formed between the internal electrode 1 and the element body 2, and the internal electrode 1 and the element body 2 are firmly bonded by the bonding layer 3.

λ生血1流1 まず、上記素体2を形成するため、次の作業を行った。λ fresh blood 1 flow 1 First, in order to form the element body 2, the following operations were performed.

すなわち、まず、純度99.9%以上のBaC0!1 
、CaCO3、TiO2、ZrO2を出発原料として、
基本成分 ((Bao、s+  Cao、os) O) 1.o’
2 (T io、++32 r o、 +t) O□ となるように秤量した。
That is, first, BaC0!1 with a purity of 99.9% or more
, CaCO3, TiO2, ZrO2 as starting materials,
Basic component ((Bao, s+ Cao, os) O) 1. o'
2 (T io, ++32 ro, +t) O□.

次に、上記秤量した原料を15時間、湿式混合し、粉砕
した後、乾燥し、次いで、大気中において、約1200
℃で、2時間仮焼を行った。
Next, the weighed raw materials were wet mixed for 15 hours, pulverized, dried, and then heated in the atmosphere for about 1200 m
Calcining was performed at ℃ for 2 hours.

上記基本成分100重量部に対し、2重量部のL i 
20−Ca OS i 02ガラス粉末を添加し、これ
と同時に、アクリル酸エステルポリマ、グリセリン、縮
合燐酸塩の水溶液からなる有機バインダを15重量部加
え、更に50重量部の純水を加え、ボールミルで混合し
、セラミック原料のスラリを作製した。この原料スラリ
から、ドクターブレード法によりセラミックグリーンシ
ートを作製した。
2 parts by weight of Li per 100 parts by weight of the above basic ingredients
20-Ca OS i 02 glass powder was added, and at the same time, 15 parts by weight of an organic binder consisting of an aqueous solution of acrylic acid ester polymer, glycerin, and condensed phosphate was added, and further 50 parts by weight of pure water were added, and the mixture was milled in a ball mill. They were mixed to prepare a slurry of ceramic raw materials. Ceramic green sheets were produced from this raw material slurry by the doctor blade method.

一方、Niを95重量%、Al2O3と5iOzとを総
量で5重量%に、有機ビヒクルを添加して、導電性の電
極ペーストを作製し、この電極ペーストを、上記セラミ
ックグリーンシートの一方の主面上に、内部電極の電極
パターンで印刷した。この後、上記のように電極パター
ンが印刷されたセラミックグリーンシートを所定の枚数
積層し、熱圧着し一体化させた。
On the other hand, a conductive electrode paste was prepared by adding an organic vehicle to 95% by weight of Ni, 5% by weight of Al2O3 and 5iOz in total, and applying this electrode paste to one main surface of the ceramic green sheet. The electrode pattern of the internal electrodes was printed on top. Thereafter, a predetermined number of ceramic green sheets on which electrode patterns were printed as described above were laminated and bonded together by thermocompression.

次に、上記一体化させたグリーンシートの積層体をカッ
トし、チップ化したものを、加熱炉中に配置し、空気中
で、室温から600℃まで昇温させて加熱し、有機バイ
ンダを燃焼させた。更に、加熱炉の雰囲気を非酸性雰囲
気(例えば、N21゜5%−N295%)に変え、焼成
温度1200℃で3時間保持し、上記チップ化したもの
の焼成を行った。
Next, the integrated green sheet laminate is cut into chips, placed in a heating furnace, and heated in air from room temperature to 600°C to burn the organic binder. I let it happen. Furthermore, the atmosphere in the heating furnace was changed to a non-acidic atmosphere (for example, N21°5%-N295%), and the firing temperature was maintained at 1200°C for 3 hours to fire the chips.

以上により得られたコンデンサチップの電極−素体界面
の構造は、上記図の様であった。
The structure of the electrode-element interface of the capacitor chip obtained as described above was as shown in the above figure.

このように作製されたコンデンサチップ100個の絶縁
抵抗を測定したところ、いずれも103MΩ以上であり
、ガラス成分で内部電極とぶ体を結合したものと変わら
なかった。このことから、本実施例によるものも、上記
アルミノシリケート和からなる接合層3によって、内部
電極l−素体2間が強固に結合されていることが分かる
When the insulation resistance of 100 capacitor chips produced in this manner was measured, all of them were 103 MΩ or more, which was the same as that of a capacitor in which the internal electrodes were bonded using a glass component. From this, it can be seen that also in this example, the internal electrode 1 and the element body 2 are firmly bonded by the bonding layer 3 made of the aluminosilicate sum.

比較上 電極ペーストを、Niを95重量%、PbO−BaO−
3iOzガラスを5重量%に、有機ビヒクルを添加して
形成したものに変えた他は上記実施例と同様の方法で、
比較例のコンデンサチップを作製した。
For comparison, the electrode paste was made of 95% by weight Ni, PbO-BaO-
In the same manner as in the above example, except that 3iOz glass was changed to 5% by weight and an organic vehicle was added.
A capacitor chip as a comparative example was manufactured.

以上のように作製した実施例のコンデンサチップと比較
例のコンデンサチップを用いて、デラミネーション検査
と、コンデンサの信頼性で問題となる耐湿負荷試験を行
った。
Using the capacitor chip of the example and the capacitor chip of the comparative example produced as described above, a delamination test and a moisture resistance load test, which poses a problem in capacitor reliability, were conducted.

デラミネーション検査は、上記実施例と比較例のコンデ
ンサチップをそれぞれ100個づつ各々樹脂中に埋め込
み、チップの内部電極が形成されている面を紙やすりを
用いて水平方向に研磨しながら、時々拡大鏡(X30)
で研暦面を観察さる方法で行った。
The delamination test was carried out by embedding 100 capacitor chips of the above example and comparative example in resin, and polishing the surface where the internal electrodes of the chips are formed horizontally using sandpaper while occasionally enlarging the chips. Mirror (X30)
This was done by observing the research surface.

その結果、本実施例のコンデンサチップでは、デラミネ
ーションの発生個数は零、即ち、発生率0/100であ
ったのに対して、比較例でのデラミネーション発生個数
は3個、即ち発生率3/100であった。
As a result, in the capacitor chip of this example, the number of delaminations occurred was zero, that is, the occurrence rate was 0/100, whereas in the comparative example, the number of delaminations occurred was 3, that is, the occurrence rate was 3. /100.

次に、耐湿負荷試験は、上記実施例と比較例のコンデン
サチップをそれぞれ100個づつ、予め所定形状にパタ
ーンニングされているプリント基板に、リフロー炉を用
いてハンダ付けした後、定格電圧(50V)を印加した
状態で、恒温(60℃)恒5!(95%)槽中に100
0時間放置し、この放置の前後の絶縁抵抗を比較するこ
とにより行った。
Next, in the humidity load test, 100 each of the capacitor chips of the above example and comparative example were soldered to a printed circuit board that had been patterned in a predetermined shape using a reflow oven. ) is applied, constant temperature (60℃) 5! (95%) 100 in the tank
The test was carried out by leaving it for 0 hours and comparing the insulation resistance before and after this standing.

その結果、本実施例のコンデンサチップでは、そのいず
れもが絶縁抵抗の変化が無かったのに対して、比較例の
ものでは、5個のチップにおいて絶縁抵抗抵抗の低下が
見られ、即ち、耐湿特性劣化率が5/100であった。
As a result, in the capacitor chips of this example, there was no change in insulation resistance for any of them, whereas in the comparative example, a decrease in insulation resistance was observed in five chips, that is, moisture resistance The characteristic deterioration rate was 5/100.

(発明の効果) 以上の説明から分かるように、本発明によれば、ガラス
成分を用いなくとも、内部電極−素体間が強固に結合さ
れ、かつデラミネーションの発生も抑えられるとともに
、耐湿特性が向上したセラミック積層コンデンサを得る
ことができる。
(Effects of the Invention) As can be seen from the above explanation, according to the present invention, the internal electrodes and the element body can be firmly bonded without using a glass component, the occurrence of delamination can be suppressed, and the moisture resistance A ceramic multilayer capacitor with improved performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の実施例によるセラミック積層コンデンサ
の2層の断面図である。 内部電極 素体 接合層
The figure is a cross-sectional view of two layers of a ceramic multilayer capacitor according to an embodiment of the present invention. Internal electrode element bonding layer

Claims (3)

【特許請求の範囲】[Claims] (1)Ni内部電極と素体とを接合層を介して接合して
なるセラミック積層コンデンサにおいて、前記接合層が
アルミノシリケートで形成されていることを特徴とする
セラミック積層コンデンサ。
(1) A ceramic multilayer capacitor formed by bonding a Ni internal electrode and an element body through a bonding layer, characterized in that the bonding layer is made of aluminosilicate.
(2)電極ペーストを、セラミック素体用グリーンシー
ト上に印刷し、この後、該グリーンシートを複数枚積層
したものを焼成することからなるセラミック積層コンデ
ンサの製造方法において、前記素体の成分および電極ペ
ーストの少なくとも一方に、Si、Al成分を所定量添
加したことを特徴とするセラミック積層コンデンサの製
造方法。
(2) A method for manufacturing a ceramic multilayer capacitor, which comprises printing an electrode paste on a green sheet for a ceramic body, and then firing a plurality of laminated green sheets, including the components of the body and A method for manufacturing a ceramic multilayer capacitor, characterized in that a predetermined amount of Si and Al components are added to at least one of the electrode pastes.
(3)前記Si、Al成分を前記電極ペースト中に添加
するものとし、SiおよびAlの総添加量が、それらの
酸化物の形で、Ni成分100重量部に対して0.1〜
10重量部であることを特徴とする請求項第2項記載の
セラミック積層コンデンサの製造方法。
(3) The Si and Al components shall be added to the electrode paste, and the total amount of Si and Al added in the form of their oxides is 0.1 to 100 parts by weight of the Ni component.
3. The method for manufacturing a ceramic multilayer capacitor according to claim 2, wherein the amount is 10 parts by weight.
JP25226989A 1989-09-29 1989-09-29 Ceramic multilayer capacitor and manufacturing method thereof Expired - Lifetime JPH0756850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25226989A JPH0756850B2 (en) 1989-09-29 1989-09-29 Ceramic multilayer capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25226989A JPH0756850B2 (en) 1989-09-29 1989-09-29 Ceramic multilayer capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03116810A true JPH03116810A (en) 1991-05-17
JPH0756850B2 JPH0756850B2 (en) 1995-06-14

Family

ID=17234890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25226989A Expired - Lifetime JPH0756850B2 (en) 1989-09-29 1989-09-29 Ceramic multilayer capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0756850B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2353408A (en) * 1999-08-19 2001-02-21 Murata Manufacturing Co Method for manufacturing a monolithic ceramic electronic component
WO2003036666A1 (en) * 2001-10-25 2003-05-01 Matsushita Electric Industrial Co., Ltd. Laminated ceramic electronic component and method of manufacturing the electronic component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691807B2 (en) * 2001-03-08 2011-06-01 株式会社村田製作所 Multilayer ceramic capacitor
JP2007194592A (en) * 2005-12-20 2007-08-02 Tdk Corp Dielectric element and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2353408A (en) * 1999-08-19 2001-02-21 Murata Manufacturing Co Method for manufacturing a monolithic ceramic electronic component
GB2353408B (en) * 1999-08-19 2001-07-04 Murata Manufacturing Co Monolithic ceramic electronic component and method for manufacturing the same
US6370014B1 (en) 1999-08-19 2002-04-09 Murata Manufacturing Co., Ltd. Monolithic ceramic electronic component and method for manufacturing the same
WO2003036666A1 (en) * 2001-10-25 2003-05-01 Matsushita Electric Industrial Co., Ltd. Laminated ceramic electronic component and method of manufacturing the electronic component
US7042706B2 (en) 2001-10-25 2006-05-09 Matsushita Electric Industrial Co., Ltd. Laminated ceramic electronic component and method of manufacturing the electronic component

Also Published As

Publication number Publication date
JPH0756850B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
JPH113834A (en) Multilayer ceramic capacitor and its manufacture
JPH03276510A (en) Porcelain dielectric for temperature compensation
JPH1025157A (en) Dielectric ceramic composition and multilayer capacitor
JPH03116810A (en) Multilayer ceramic capacitor and manufacture thereof
JPS6323646B2 (en)
JPS6020850B2 (en) dielectric porcelain material
JPS62157607A (en) Dielectric porcelain compound
JPH0512997Y2 (en)
JPH0113205B2 (en)
JP3160855B2 (en) Multilayer ceramic capacitors
JP3085596B2 (en) Multilayer ceramic capacitors
JPH0551127B2 (en)
JPH04260316A (en) Ceramic laminate
JPS60119010A (en) Dielectric porcelain composition
JP4593817B2 (en) Low temperature fired ceramic circuit board
JP3804135B2 (en) Multilayer ceramic capacitor
JPH0437011A (en) A laminated ceramic capacitor
JPH07297073A (en) Multilayered ceramic capacitor and its manufacture
JPH04367559A (en) Nonreducible dielectric porcelain composition
JPS5917229A (en) Laminated condenser element
JPS6114608B2 (en)
JPS63244729A (en) Laminated ceramic capacitor and manufacture of the same
JPH04280411A (en) Laminated ceramic capacitor
JPH01204305A (en) Dielectric ceramic composition
JPH0851004A (en) Chip thermister