[go: up one dir, main page]

JPH03115903A - Method and device for measuring surface shape - Google Patents

Method and device for measuring surface shape

Info

Publication number
JPH03115903A
JPH03115903A JP25445289A JP25445289A JPH03115903A JP H03115903 A JPH03115903 A JP H03115903A JP 25445289 A JP25445289 A JP 25445289A JP 25445289 A JP25445289 A JP 25445289A JP H03115903 A JPH03115903 A JP H03115903A
Authority
JP
Japan
Prior art keywords
probe
measured
surface shape
insulating
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25445289A
Other languages
Japanese (ja)
Other versions
JP2700696B2 (en
Inventor
Hiroshi Adachi
安達 洋
Norio Hasegawa
典夫 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP1254452A priority Critical patent/JP2700696B2/en
Publication of JPH03115903A publication Critical patent/JPH03115903A/en
Application granted granted Critical
Publication of JP2700696B2 publication Critical patent/JP2700696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、表面粗さを測定するために利用する。[Detailed description of the invention] [Industrial application field] The present invention is utilized to measure surface roughness.

特に、IIIAもしくはそれ以下の表面凹凸を測定する
に適する。
It is particularly suitable for measuring surface irregularities of IIIA or lower.

〔概要〕〔overview〕

本発明は、導電性の探針を被検物体の表面に接触しない
状態できわめて接近させ、その探針とその被検物体との
相対位置を微細に変化させながら、その探針の電界を測
定することによりその被検物体の表面の形状を測定する
方法において、探針と表面との間に絶縁性の液体を介在
させることにより、 この測定を大気中で行うことができるようにしたもので
ある。
In the present invention, a conductive probe is brought very close to the surface of a test object without touching it, and the electric field of the probe is measured while minutely changing the relative position between the probe and the test object. In this method, the shape of the surface of the object to be measured is measured by interposing an insulating liquid between the probe and the surface, making it possible to perform this measurement in the atmosphere. be.

〔従来の技術〕[Conventional technology]

従来の装置では、被検物体の表面に、探針を接触させて
これを摺動し、この探針の移動量の大きさを検知して、
その表面粗さを測定する触針式のものがある。しかしこ
の装置では探針が表面を摺動するので、被検物体の表面
を破壊することがある。
In conventional devices, a probe is brought into contact with the surface of the object to be tested, and the probe is slid, and the amount of movement of the probe is detected.
There is a stylus type that measures the surface roughness. However, in this device, the probe slides on the surface, which may destroy the surface of the object to be examined.

例えば、第5図に示すようにメツシュ本数が2000本
/mmである電子顕微鏡用のメツシュ板を測定した場合
の記録図では、そのパターンにメツシュによる規則性が
あられれていない。これはメ、ンンユ板が探針により破
壊されたためである。第6図はその顕微鏡写真である。
For example, as shown in FIG. 5, in a recorded diagram obtained by measuring a mesh plate for an electron microscope having a mesh number of 2000 meshes/mm, the regularity due to the meshes is not included in the pattern. This is because the Menu and Nunyu plates were destroyed by the probe. FIG. 6 is a microscopic photograph thereof.

また探針は表面の凹凸にひっかかりやすいので、探針の
移動量の検出に騒乱がおこり、実用上1μsオーダーの
表面粗さの測定はできない。
Furthermore, since the probe is likely to get caught in surface irregularities, disturbances occur in detecting the amount of movement of the probe, making it practically impossible to measure surface roughness on the order of 1 μs.

しかし、電子部品、例えばメモリ素子の基板などでは、
この程度またはそれ以下の微細な測定が必要とされる。
However, in electronic components, such as memory element substrates,
Fine measurements of this order or less are required.

このため、結晶の表面構造を調査する走査型トンネル電
子顕微鏡(STM)の構造のものが利用される。
For this reason, a scanning tunneling electron microscope (STM) structure for investigating the surface structure of crystals is used.

この装置では、探針と被検物体との間の距離がトンネル
電流が流れる程度(1nm程度)に離しておき、非接触
的に測定する。この装置では探針による被検物体表面の
破壊が発生しない。しかし、この方法では被検物体の表
面と探針の先端との距離をある値以下にしないと、トン
ネル電流が検出できないが、実際の測定面では大きい谷
があり、その谷でトンネル電流が検出できなくなること
がある。
In this device, the distance between the probe and the object to be measured is set to an extent (about 1 nm) that allows tunneling current to flow, and measurement is performed in a non-contact manner. With this device, the probe does not destroy the surface of the object to be inspected. However, with this method, the tunnel current cannot be detected unless the distance between the surface of the object being tested and the tip of the probe is less than a certain value, but the actual measurement surface has a large valley, and the tunnel current is detected at that valley. It may not be possible to do so.

そこでトボグラフィング方式が考えられただ。Therefore, the tobographing method was thought of.

この方式は電界が印加された探針を被検物体の表面に対
し非接触に保持し、被検物体との間の空間に探針から電
流を放射し、この放射電流値を測定することにより、探
針とこれに対向する被検物体の表面の部分との距離を検
出するものである。これにより1μmオーダーの表面の
粗さが正確に測定できる。
In this method, a probe to which an electric field is applied is held in a non-contact manner to the surface of the object to be tested, and a current is emitted from the probe into the space between the probe and the object to be tested, and the value of this emitted current is measured. , which detects the distance between the probe and the portion of the surface of the object to be measured that faces it. This allows accurate measurement of surface roughness on the order of 1 μm.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前述のトボグラフィング方式においては、探針
と被検物体との間の媒体の電媒定数によって、測定され
る電界の大きさが変化する。このため、測定を超高真空
雰囲気で行わなければならない。したがって実用的な装
置では多くの制限が生じる。
However, in the above-described tobographing method, the magnitude of the measured electric field changes depending on the medium constant of the medium between the probe and the object to be measured. For this reason, measurements must be performed in an ultra-high vacuum atmosphere. Therefore, many limitations arise in practical devices.

本発明は、これらの課題を解決するもので、非接触形で
あるので被検物体の表面の破壊がなく、大気中で測定可
能であり、微細な凹凸が正確に測定できる高分解能の表
面形状の測定方法および装置を提供することを目的とす
る。
The present invention solves these problems.Since the present invention is a non-contact type, there is no destruction of the surface of the object to be measured, it can be measured in the atmosphere, and it has a high-resolution surface shape that allows accurate measurement of minute irregularities. The purpose of the present invention is to provide a method and apparatus for measuring.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、被検物体の表面に対して接近させかつ接触し
ない位置に導電性の探針を配置し、その表面とその探針
との相対位置を変化させながらその探針に流れる電界を
観測し、その電界から探針と表面との距離を検出するこ
とによって物体の表面形状を測定する方法において、 被検物体の表面と探針との間に絶縁性の液体を介在させ
ることを特徴とする。
In the present invention, a conductive probe is placed close to the surface of a test object but not in contact with it, and the electric field flowing through the probe is observed while changing the relative position between the surface and the probe. A method for measuring the surface shape of an object by detecting the distance between the probe and the surface from the electric field, which is characterized by interposing an insulating liquid between the surface of the object and the probe. do.

導電性の探針と、この探針を被検物体の表面に対して接
近させかつ接触しない位置に配置する機械手段とを備え
、この機械手段は、探針と被検物体との相互位置を微小
に変化させる手段を含み、探針と被検物体との間に電圧
を印加する電源と、探針と被検物体との間に流れる電流
を検出する手段とを備えた表面形状の測定装置において
、探針と被検物体の表面との間に、絶縁性の液体が介在
されたことを特徴とする。
It comprises an electrically conductive probe and mechanical means for positioning the probe in close proximity to, but not in contact with, the surface of the object to be tested, the mechanical means determining the relative position of the probe and the object to be tested. A surface shape measuring device that includes a means for making minute changes, a power supply that applies a voltage between the probe and the object to be measured, and a means that detects the current flowing between the probe and the object to be measured. The method is characterized in that an insulating liquid is interposed between the probe and the surface of the object to be measured.

絶縁性の液体は絶縁油であることができる。The insulating liquid can be an insulating oil.

探針は、絶縁油と化学的に反応しない金属材料であるこ
とが好ましい。
The probe is preferably made of a metal material that does not chemically react with the insulating oil.

〔作用〕[Effect]

被検物体の表面と探針との間には絶縁性の液体が介在す
る。絶縁性の液体は高電媒定数の物質であるから、表面
と探針との間は均一な電場となる。
An insulating liquid is interposed between the surface of the object to be measured and the probe. Since the insulating liquid is a substance with a high electric medium constant, a uniform electric field is created between the surface and the probe.

したがって放射電流は、真空にしなくとも測定雰囲気の
温度や湿度の影響を受けることがなくなる。
Therefore, the radiation current is not affected by the temperature or humidity of the measurement atmosphere even if it is not vacuumed.

このため装置の構成が簡単になり、装置の測定模作も容
易になる。
This simplifies the configuration of the device and facilitates measurement and reproduction of the device.

液体は、絶縁油を使用する場合は、安価に測定が行える
If insulating oil is used as the liquid, measurement can be performed at low cost.

探針は、絶縁油と化学的に反応しない金属材料を使用す
ることが望ましく、長期間にわたり安定した測定を行う
ことができる。
It is desirable to use a metal material for the probe that does not chemically react with the insulating oil, so that stable measurements can be made over a long period of time.

また、絶縁油は被検物体および探針と化学反応をおこさ
ないものであることがのぞましい。
Further, it is preferable that the insulating oil does not cause a chemical reaction with the object to be measured and the probe.

〔実施例〕〔Example〕

次に本発明の実施例を図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明一実施例装置の要部構造図である。本
図では説明を容易にするため本発明に関連する部分のみ
を示す。
FIG. 1 is a structural diagram of main parts of an apparatus according to an embodiment of the present invention. In this figure, only parts related to the present invention are shown for ease of explanation.

本図において、表面形状の測定方法は、被検物体1の表
面に接近させかつ接触しない位置に導電性の探針2を配
置し、その表面と探針2との相対位置を変化させながら
、探針2に流れる放射電流を集電極板3で受け、放射電
流検出部21で読み取り、これにより探針2と被検物体
1の表面との距離を検出するものである。
In this figure, the method for measuring the surface shape is to place the conductive probe 2 at a position close to the surface of the object to be tested 1 but not in contact with it, and while changing the relative position between the surface and the probe 2. The radiation current flowing through the probe 2 is received by the collector plate 3 and read by the radiation current detector 21, thereby detecting the distance between the probe 2 and the surface of the object 1 to be measured.

したがって本実施例装置は、探針2とこの探針2を被検
物体10表面に対して接近させかつ接触しない位置(以
下単に設定位置という)に配置する機械手段として、探
針2の基部2Aを絶縁物4を介して保持する保持具5と
、被検物体lの下部を前記集電極板3を介して保持する
板ばね6とから構成される。この集電極板3は板ばね6
(大地)と絶縁板3Aにより電気的に絶縁された構造で
ある。板ばね6は探針2を被検物体1の表面から前記設
定位置にあるように調整するため、その一端がポル)6
Aにより枠6Bに固定され、他端は支持枠6Dに回動自
在に取り付けられた微細ピッチねじ6Cの先端により押
下されている。
Therefore, the device of this embodiment uses the base 2A of the probe 2 as a mechanical means for placing the probe 2 in a position where the probe 2 approaches the surface of the object 10 and does not come into contact with it (hereinafter simply referred to as the set position). The test object 1 is composed of a holder 5 that holds the test object 1 with an insulator 4 in between, and a leaf spring 6 that holds the lower part of the object 1 with the collector plate 3 in between. This collector plate 3 is a leaf spring 6
(earth) and is electrically insulated by an insulating plate 3A. The leaf spring 6 adjusts the probe 2 so that it is at the set position from the surface of the object 1 to be tested, so one end of the leaf spring 6 is connected to the pole) 6.
A is fixed to the frame 6B, and the other end is pressed down by the tip of a fine pitch screw 6C rotatably attached to the support frame 6D.

前記支持枠6Dは粗ピツチねじ6Eを介して前記枠6B
に取り付けられている。このため探針2を被検物体1に
対して設定位置とするのは、粗ピツチねじ6Eにより、
支持枠6Dを概略の位置とし、次に微細ピッチねじ6C
で精密調整を行う。
The support frame 6D is connected to the frame 6B via coarse pitch screws 6E.
is attached to. Therefore, the probe 2 is set at the set position relative to the object 1 by using the coarse pitch screw 6E.
Place the support frame 6D in the approximate position, then insert the fine pitch screw 6C.
Make precise adjustments.

さらにこの機械手段には、探針2と被検物体1との相互
位置を微細に変化させる手段として、探針2を保持する
前記保持具5をそれぞれZ軸、X軸およびY軸の各方向
に沿ってその各一端で支持し、その各他端が装置の固定
点x、ySzにそれぞれ支持される三個の微動軸体7.
8および9を備えている。この微動軸体はその支持構造
として圧電素子の軸を備えこの圧電素子の極に制御部2
2よりそれぞれ制御電圧が入力されると、この制御電圧
により圧電素子の軸が伸縮する。これにより保持具5は
x、ySz各軸方向に微細に動く。板ばね6の枠6Bを
制御部22の信号によりX軸およびY軸に沿って移動し
、表面と探針とのXY面上の相対位置を変化させ走査す
る移動台10が設けられる。この移動台10は通常の顕
微鏡の載物台の構造である。
Furthermore, this mechanical means has the above-mentioned holder 5 that holds the probe 2 in each direction of the Z axis, the Three fine movement shafts 7. are supported at one end along the line and the other ends are supported at fixed points x, ySz of the device, respectively.
8 and 9. This fine movement shaft body has a shaft of a piezoelectric element as its support structure, and a control unit 2 is attached to the pole of this piezoelectric element.
When a control voltage is inputted from 2, the axis of the piezoelectric element expands and contracts due to this control voltage. As a result, the holder 5 moves minutely in the directions of the x and ySz axes. A moving table 10 is provided which moves the frame 6B of the leaf spring 6 along the X-axis and the Y-axis according to a signal from the control unit 22, and scans by changing the relative position of the surface and the probe on the XY plane. This moving stage 10 has the structure of a common stage for a microscope.

また探針2と被検物体lとの間に電圧を印加する電源部
23と、探針2に流れる電流を検出する手段として前記
集電極板3ふよび放射電流検出部21を備える。
It also includes a power supply section 23 for applying a voltage between the probe 2 and the object to be tested 1, and the collector electrode plate 3 and a radiation current detection section 21 as means for detecting the current flowing through the probe 2.

ここに本発明の特徴とするところは、被検物体1の表面
と探針2との間に絶縁性の液体である絶縁油11を介在
させたことにある。また探針2は絶縁油11と化学的に
反応しない金属材料である。
The feature of the present invention is that an insulating oil 11, which is an insulating liquid, is interposed between the surface of the object 1 to be examined and the probe 2. Further, the probe 2 is made of a metal material that does not chemically react with the insulating oil 11.

絶縁油としては、流動パラフィン、n−デカンなどの高
沸点炭化水素、シリコーン油、または流動性のある天然
油脂などがある。これらのうちで、低粘度のものでは、
探針の先端が空気中に露出するもので好ましくない。ま
た探針としては、白金、金、タングステン、ニッケルな
どの材質のものが該当するが、白金と金とが最も好まし
い。探針の成形は、白金と金とは機械的研摩により、タ
ングステン、ニッケルはそれぞれ水酸化ナトリウム、0 塩酸の水溶液に浸してふ食させて行う。探針の先端は可
及的に尖らせることが必要である。この尖った点、すな
わち尖点は一本の探針の先端に一個とは限らず複数個形
成されても差し支えない。これは複数個の尖点がある場
合は、通常そのうちの最も電流を放射しゃずい尖点から
放射されるが、これが損耗した場合は、次に放射しゃす
い尖点から放射されるからである。このような尖点の損
耗は電界放射電流値と絶縁油に対する探針の耐食性とに
関係する。したがって前記のように化学的安定度のよい
白金または金が好ましい。第1図において符号24は検
査結果を図形表示する表示部である。
Examples of the insulating oil include liquid paraffin, high boiling point hydrocarbons such as n-decane, silicone oil, and fluid natural oils and fats. Among these, those with low viscosity are
The tip of the probe is exposed in the air, which is not desirable. The probe may be made of materials such as platinum, gold, tungsten, and nickel, with platinum and gold being the most preferred. The probes are formed by mechanical polishing for platinum and gold, and by soaking tungsten and nickel in aqueous solutions of sodium hydroxide and hydrochloric acid, respectively. The tip of the probe needs to be as sharp as possible. This sharp point, that is, a cusp, is not limited to one at the tip of one probe, and may be formed in plural numbers. This is because if there are multiple cusps, the current will normally be radiated from the one that can radiate the least amount of current, but if this one is worn out, the current will be radiated from the next one. Such wear of the tip is related to the field emission current value and the corrosion resistance of the probe to insulating oil. Therefore, as mentioned above, platinum or gold, which has good chemical stability, is preferable. In FIG. 1, reference numeral 24 is a display section that graphically displays the test results.

本表面形状の測定方法で、被検物体1の表面と探針2と
の相対位置を変化させながら得られた探針2に流れる電
界放射電流の変化から、探針2と表面との距離を検出す
る方法には、次の二つのモードがある。
With this surface shape measurement method, the distance between the probe 2 and the surface can be determined from the change in the field emission current flowing through the probe 2 while changing the relative position between the surface of the test object 1 and the probe 2. There are two detection methods:

1、 前記距離を一定に保ちつつ水平面上の相対位置を
変化させるよう走査する。このとき電界放射電流は一定
になる。これを定電流モードという。
1. Scanning while keeping the distance constant while changing the relative position on the horizontal plane. At this time, the field emission current becomes constant. This is called constant current mode.

23  探針と表面との間の電位差が一定となるように
し、探針を水平面上で走査して、電流値の変化より距離
を検出する。これを定電圧モードという。
23 The potential difference between the probe and the surface is kept constant, the probe is scanned on a horizontal plane, and the distance is detected from the change in current value. This is called constant voltage mode.

定電圧モードは、探針を一定の水平面上を走査するので
凹凸量の差の大きい表面に適用する。しかしその水平面
より上方に凸部が突出した場合は探針がこの凸部に衝突
する。−力走電流モードは表面の凹凸にならって探針を
上下方向に移動しつつ走査するので、このような支障が
ない。
In the constant voltage mode, the probe scans a fixed horizontal plane, so it is applied to surfaces with large differences in the amount of unevenness. However, if the protrusion protrudes above the horizontal plane, the probe collides with the protrusion. - In the force running current mode, this problem does not occur because the probe is scanned while moving in the vertical direction following the unevenness of the surface.

定電流モードの場合は、探針と表面との距離は、0、旧
〜10μlの範囲であり、好ましくは0.1〜1μmの
範囲とする。また電流値は10−’μA〜1μへの範囲
がよい。
In the case of constant current mode, the distance between the probe and the surface is in the range of 0 to 10 μl, preferably in the range of 0.1 to 1 μm. Further, the current value is preferably in the range of 10-'μA to 1μ.

定電圧モードの電圧値は、下限は0.1vであり、上限
は絶縁性の液体の電圧破壊を考慮して100Vとするこ
とが好ましい。
The lower limit of the voltage value in the constant voltage mode is preferably 0.1 V, and the upper limit is preferably 100 V in consideration of voltage breakdown of the insulating liquid.

第2図は本実施例装置の電気回路を示す図である。FIG. 2 is a diagram showing the electric circuit of the device of this embodiment.

次に第2図を用いて、本実施例装置の測定法に■ ついて説明する。Next, using Fig. 2, explain about.

定電流モードによる例を説明すると、先ず探針2と被検
物体1との間に絶縁油11を介在させ、電源部23から
定電圧を基部2Aを介して探針2に印加する。次に第1
図に示す粗ピツチねじ6Eと微細ピッチねじ6Cとを操
作して、探針2と表面との距離がほぼ1μlとなるよう
に設定する。次に制御部22のプロセッサ22Aにより
、所定の方向(X軸またはY軸の方向)に移動台1oの
X軸駆動部1゜AまたはY軸駆動部10Bを作動させて
走査を開始する。いま探針2の先端が表面の凹部に向う
場合は、両者の間の距離が大きくなるので、電界放射電
流が減少する。電界放射電流値は集電極板3を介して、
放射電流検出部21が検出し、制御部22の比較回路2
2Bがその差分を検出する。この場合差分は負の値とな
る。プロセッサ22Aはこの入力によりZ細微動軸体7
に一定の制御電圧を供給しているZ軸駆動電源部7Aに
その制御電圧を昇圧するように指令する。Z細微動軸体
7はこれによりその軸方向に伸長し、前記比較回路22
Bで検出す3 る差分が零になるまで伸長する。このようにして探針2
は下方に突き出され、表面との距離を一定(はぼ1μm
)に保つ。探針2の先端が凸部が向う場合は前記と逆に
作動する。探針2の保持具5はその位置がみだりに変動
しないように、前記3軸方向のピエゾ軸体で保持されて
いるので、前記の探針と表面との距離を一定にするため
には、プロセッサ22Aは、前記Z軸駆動電源部7Aだ
はでなく、X軸およびY軸の各駆動電源部8Aおよび9
Aの制御電圧を同時に制御し、X軸およびY軸のピエゾ
軸体8および9を伸縮する。このように探針2の上下方
向の移動距離は各軸の駆動電源部7A、8A、9Aの送
出する制御電圧の変化によって定まる。これらの値をフ
ィードバックされたプロセッサ22Aは探針の移動距離
を演算して、これを表示部24に表示する。
To explain an example using the constant current mode, first, the insulating oil 11 is interposed between the probe 2 and the object to be measured 1, and a constant voltage is applied from the power supply unit 23 to the probe 2 via the base 2A. Then the first
The coarse pitch screw 6E and fine pitch screw 6C shown in the figure are operated to set the distance between the probe 2 and the surface to be approximately 1 μl. Next, the processor 22A of the control unit 22 operates the X-axis drive unit 1°A or the Y-axis drive unit 10B of the movable table 1o in a predetermined direction (X-axis or Y-axis direction) to start scanning. If the tip of the probe 2 is now directed toward the concave portion of the surface, the distance between the two increases, and the field emission current decreases. The field emission current value is transmitted through the collector plate 3,
The radiation current detection section 21 detects and the comparison circuit 2 of the control section 22
2B detects the difference. In this case, the difference will be a negative value. The processor 22A uses this input to control the Z fine movement shaft 7.
A command is given to the Z-axis drive power supply section 7A, which supplies a constant control voltage to the Z-axis drive power supply section 7A, to increase the control voltage. The Z fine movement shaft body 7 thereby extends in its axial direction, and the comparison circuit 22
Expand until the difference detected in B becomes zero. In this way, probe 2
is projected downward, and the distance from the surface is constant (approximately 1 μm)
). When the tip of the probe 2 faces toward the convex portion, the operation is reversed to that described above. The holder 5 of the probe 2 is held by the piezo shaft in the three axes so that its position does not change unnecessarily, so in order to keep the distance between the probe and the surface constant, the processor 22A is not the Z-axis drive power supply section 7A, but each of the X-axis and Y-axis drive power supply sections 8A and 9.
The control voltage of A is controlled simultaneously to expand and contract the X-axis and Y-axis piezo shaft bodies 8 and 9. In this way, the vertical movement distance of the probe 2 is determined by changes in the control voltages sent out by the drive power supply units 7A, 8A, and 9A for each axis. The processor 22A fed back these values calculates the moving distance of the probe and displays this on the display unit 24.

このように本測定方法およびその装置において、もっと
も肝要なことは、電界放射電流がいかに精度よく測定さ
れるかに関連する。この測定精度の良否に一番影響を与
えるのは、放射空間すなわち4 探針の先端と被検物体表面との間の電媒定数の変動であ
る。しかし本実施例においては、この空間は電媒定数が
一定である絶縁性の液体、特に絶縁油が介在しているの
で、安定した測定が行われる。
As described above, the most important thing in the present measuring method and apparatus is how accurately the field emission current is measured. What has the greatest influence on the accuracy of this measurement is the variation in the electric medium constant between the radiation space, that is, the tip of the 4-probe and the surface of the object to be measured. However, in this embodiment, since an insulating liquid having a constant electric medium constant, particularly an insulating oil, is present in this space, stable measurements can be performed.

以上説明した本実施例の装置において、移動台10は防
振台に設置され、また装置全体は断熱部材に覆われて、
測定の安定化をはかっている。また表示部24は必要に
より、図形描画記録を行う記録部に変更できる。
In the device of the present embodiment described above, the moving table 10 is installed on a vibration isolating table, and the entire device is covered with a heat insulating member.
This is aimed at stabilizing measurements. Further, the display section 24 can be changed to a recording section for recording graphic drawings, if necessary.

第3図(a)は、本実施例装置により前記の電子顕微鏡
用のメツシュ板を測定した場合の記録図である。これに
はメツシュによりパターンが明瞭にあられれており、被
検物体の表面に探針による傷がないことがわかる。第3
図(b)はその顕微鏡写真である。
FIG. 3(a) is a recorded diagram when the mesh plate for an electron microscope is measured using the apparatus of this embodiment. The pattern is clearly defined by the mesh, and it can be seen that there are no scratches caused by the probe on the surface of the object to be inspected. Third
Figure (b) is a micrograph of the same.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば高真空雰囲気でな
くても電界放射電流が安定して検出でき、探針を被検物
体の表面にきわめて接近してもその表面に接触するおそ
れがないので、表面の微細な凹凸が容易に測定できる高
分解能の表面形状の測定方法および装置を実現できる効
果がある。
As explained above, according to the present invention, field emission current can be detected stably even in a non-high vacuum atmosphere, and there is no risk of the probe coming into contact with the surface of the object to be measured even if the probe approaches the surface very closely. Therefore, it is possible to realize a high-resolution surface shape measuring method and apparatus that can easily measure minute irregularities on the surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例装置の要部構造図。 第2図は同実施例装置の電気回路図。 第3図は同実施例装置の測定記録図。 第4図は前記測定後の被検物体の表面粒子構造を示す顕
微鏡写真。 第5図は従来例による測定記録図。 第6図は前記測定後の被検物体の表面粒子構造を示す顕
微鏡写真。 1・・・被検物体、2・・・探針、2A・・・探針の基
部、3・・・集電極板、3A・・・絶縁板、4・・・絶
縁物、5・・・保持具、6・・・板ばね、6A・・・ボ
ルト、6B・・・枠、6C・・・微細ピッチねじ、6D
・・・支持枠、6E・・・粗ピツチねじ、7.8.9・
・・それぞれZ軸、X軸、Y軸方向の微動軸体、7A1
8Δ、9A・・・それぞれZ軸、X軸、Y軸駆動電源部
、10・・・移動台、■OA、IOB・・・それぞれX
軸、Y軸駆動部、11・・・介在6 する絶縁性の液体である絶縁油、21・・・放射電流検
出部、22・・・制御部、22A・・・プロセッサ、2
2B・・・比較回路、23・・・電源部、24・・・表
示部、x、y、z・・・固定点。
FIG. 1 is a structural diagram of main parts of an apparatus according to an embodiment of the present invention. FIG. 2 is an electrical circuit diagram of the same embodiment device. FIG. 3 is a measurement record diagram of the same embodiment device. FIG. 4 is a micrograph showing the surface particle structure of the object to be tested after the measurement. FIG. 5 is a measurement record diagram according to a conventional example. FIG. 6 is a micrograph showing the surface particle structure of the object to be tested after the measurement. DESCRIPTION OF SYMBOLS 1... Test object, 2... Probe, 2A... Base of probe, 3... Collector electrode plate, 3A... Insulating plate, 4... Insulator, 5... Holder, 6... Leaf spring, 6A... Bolt, 6B... Frame, 6C... Fine pitch screw, 6D
...Support frame, 6E...Coarse pitch screw, 7.8.9.
...Fine movement shafts in the Z-axis, X-axis, and Y-axis directions, respectively, 7A1
8Δ, 9A...Z-axis, X-axis, Y-axis drive power supply unit respectively, 10...Movement table, ■OA, IOB...X respectively
Axis, Y-axis drive unit, 11... Insulating oil, which is an insulating liquid, 21... Emission current detection unit, 22... Control unit, 22A... Processor, 2
2B... Comparison circuit, 23... Power supply section, 24... Display section, x, y, z... Fixed point.

Claims (1)

【特許請求の範囲】 1、被検物体の表面に対して接近させかつ接触しない位
置に導電性の探針を配置し、 その表面とその探針との相対位置を変化させながらその
探針に流れる電界を観測し、 その電界から前記探針と前記表面との距離を検出するこ
とによって前記物体の表面形状を測定する方法において
、 前記被検物体の表面と前記探針との間に絶縁性の液体を
介在させることを特徴とする表面形状の測定方法。 2、導電性の探針と、この探針を被検物体の表面に対し
て接近させかつ接触しない位置に配置する機械手段とを
備え、 この機械手段は、前記探針と前記被検物体との相互位置
を微小に変化させる手段を含み、前記探針と前記被検物
体との間に電圧を印加する電源と、 前記探針に流れる電流を検出する手段と を備えた表面形状の測定装置において、 前記探針と前記被検物体の表面との間に、絶縁性の液体
が介在された ことを特徴とする表面形状の測定装置。 3、前記絶縁性の液体は絶縁油である請求項2記載の表
面形状の測定装置。 4、前記探針は、前記絶縁油と化学的に反応しない金属
材料である請求項3記載の表面形状の測定装置。
[Claims] 1. A conductive probe is placed at a position close to but not in contact with the surface of the object to be tested, and a conductive probe is placed on the probe while changing the relative position between the surface and the probe. In the method of measuring the surface shape of the object by observing a flowing electric field and detecting the distance between the probe and the surface from the electric field, an insulating material is provided between the surface of the object to be measured and the probe. A method for measuring surface shape, characterized by intervening a liquid. 2. A conductive probe and a mechanical means for placing the probe in a position close to the surface of the object to be detected but not in contact with the surface of the object. A surface shape measuring device comprising: a power source for applying a voltage between the probe and the object; and a means for detecting a current flowing through the probe. A surface shape measuring device, characterized in that an insulating liquid is interposed between the probe and the surface of the object to be measured. 3. The surface shape measuring device according to claim 2, wherein the insulating liquid is an insulating oil. 4. The surface shape measuring device according to claim 3, wherein the probe is made of a metal material that does not chemically react with the insulating oil.
JP1254452A 1989-09-29 1989-09-29 Method and apparatus for measuring surface shape Expired - Fee Related JP2700696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254452A JP2700696B2 (en) 1989-09-29 1989-09-29 Method and apparatus for measuring surface shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254452A JP2700696B2 (en) 1989-09-29 1989-09-29 Method and apparatus for measuring surface shape

Publications (2)

Publication Number Publication Date
JPH03115903A true JPH03115903A (en) 1991-05-16
JP2700696B2 JP2700696B2 (en) 1998-01-21

Family

ID=17265211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254452A Expired - Fee Related JP2700696B2 (en) 1989-09-29 1989-09-29 Method and apparatus for measuring surface shape

Country Status (1)

Country Link
JP (1) JP2700696B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740831A (en) * 2021-11-08 2021-12-03 广东磊蒙智能装备集团有限公司 Crusher discharge port distance measuring device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223602A (en) * 1986-03-26 1987-10-01 Hitachi Ltd Surface measuring instrument
JPS6444803A (en) * 1987-08-12 1989-02-17 Olympus Optical Co Scanning-type tunnel unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223602A (en) * 1986-03-26 1987-10-01 Hitachi Ltd Surface measuring instrument
JPS6444803A (en) * 1987-08-12 1989-02-17 Olympus Optical Co Scanning-type tunnel unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740831A (en) * 2021-11-08 2021-12-03 广东磊蒙智能装备集团有限公司 Crusher discharge port distance measuring device and method

Also Published As

Publication number Publication date
JP2700696B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
JP2574942B2 (en) Electrical probe
EP0792437B1 (en) Capacitive transducer with electrostatic actuation
EP0868644B1 (en) Multi-dimensional capacitive transducer
EP0361932B1 (en) Scanning tunnel-current-detecting device and method
EP0805946B1 (en) Apparatus for microindentation hardness testing and surface imaging incorporating a multi-plate capacitor system
US5168159A (en) Barrier height measuring apparatus including a conductive cantilever functioning as a tunnelling probe
US5220555A (en) Scanning tunnel-current-detecting device and method for detecting tunnel current and scanning tunnelling microscope and recording/reproducing device using thereof
US20030089162A1 (en) Dual stage instrument for scanning a specimen
CN109738702A (en) Probes, probes and measuring instruments for non-destructive measurement of sheet resistance of graphene films
JP5254509B2 (en) Electrostatic force detector with cantilever and shield
JP2002031655A (en) Four-terminal measuring apparatus using nanotube terminal
JPH0651831A (en) Two-dimensional position adjusting device
Chetwynd et al. A controlled-force stylus displacement probe
JPH03115903A (en) Method and device for measuring surface shape
EP0449221B1 (en) Scanning probe microscope
JP6561920B2 (en) Electrical characteristic measuring apparatus and electrical characteristic measuring method
US6377066B1 (en) Method and apparatus for sub-micron imaging and probing on probe station
JP6531975B2 (en) Micro-object electrical characteristic measuring apparatus and micro-object electrical characteristic measuring method
JPH079363B2 (en) Surface mechanical property measuring device
JPH09229663A (en) Stylus type film thickness measuring method and device
JPH0670565B2 (en) Surface shape measuring method and device
O'Neal Indenting thin films using an atomic force microscope
JP2554764B2 (en) Surface shape measuring method and apparatus
JPH01259210A (en) Surface shape measuring instrument
JPH0526612A (en) Scanning tunneling microscope

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees