[go: up one dir, main page]

JP6561920B2 - Electrical characteristic measuring apparatus and electrical characteristic measuring method - Google Patents

Electrical characteristic measuring apparatus and electrical characteristic measuring method Download PDF

Info

Publication number
JP6561920B2
JP6561920B2 JP2016117847A JP2016117847A JP6561920B2 JP 6561920 B2 JP6561920 B2 JP 6561920B2 JP 2016117847 A JP2016117847 A JP 2016117847A JP 2016117847 A JP2016117847 A JP 2016117847A JP 6561920 B2 JP6561920 B2 JP 6561920B2
Authority
JP
Japan
Prior art keywords
sample
current value
measuring
unit
support plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016117847A
Other languages
Japanese (ja)
Other versions
JP2017223493A (en
Inventor
太田 勝啓
勝啓 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2016117847A priority Critical patent/JP6561920B2/en
Publication of JP2017223493A publication Critical patent/JP2017223493A/en
Application granted granted Critical
Publication of JP6561920B2 publication Critical patent/JP6561920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は,電気特性測定装置及び電気特性測定方法に関する。   The present invention relates to an electrical property measuring apparatus and an electrical property measuring method.

本技術分野の背景技術として、特開2003−121459号公報(特許文献1)がある。この公報には、「探針として原子間力顕微鏡等の走査プローブ顕微鏡が備えるカンチレバーなどの微小探針を用い、原子間力の範囲で圧力あるいは変位を制御して、微小探針を被測定材料に接触させ、これによって、微小探針の被測定対象への接触圧力を原子間力の範囲に制御しながら4探針法による測定し、また、電気抵抗率の接触圧力依存性あるいは変位依存性を求めることができる。」と記載されている。   As background art of this technical field, there is JP-A-2003-121459 (Patent Document 1). In this publication, “a microprobe such as a cantilever provided in a scanning probe microscope such as an atomic force microscope is used as a probe, and the pressure or displacement is controlled within the range of the atomic force, and the microprobe is measured on the material to be measured. Measured by the four-probe method while controlling the contact pressure of the microprobe to the object to be measured within the range of the atomic force, and the electrical resistivity depends on the contact pressure or displacement Can be obtained. "

また、特開平2003−344257号公報(特許文献2)がある。この公報には、「サンプルの表面にそれぞれ向けられる第1の先端部及び第2の先端部を含むプローブアセンブリを含む、該サンプルを検査するための原子間力顕微鏡(AFM)。該原子間力顕微鏡は更に、第1の先端部と第2の先端部との間に電位を印加する電圧源と、表面とプローブとの間の相対的な運動を生じさせる少なくとも1つの機構と、第1の先端部と前記第2の先端部との間に流れる電流を検出する少なくとも1つのセンサとを含む。」 と記載されている。   There is JP-A-2003-344257 (Patent Document 2). This publication states: “Atomic force microscope (AFM) for inspecting the sample, including a probe assembly including a first tip and a second tip, each directed to the surface of the sample. The microscope further includes a voltage source that applies a potential between the first tip and the second tip, at least one mechanism that produces a relative motion between the surface and the probe, and a first And at least one sensor for detecting a current flowing between the tip portion and the second tip portion.

特開2003−121459号公報JP 2003-121459 A 特開2003−344257号公報JP 2003-344257 A

特許文献1には、被測定対象の電気特性を測定する方法が記載されている。しかし、特許文献1には、被測定対象の表面形状を計測する手段がない。そのため、微小領域の電気特性評価ができない。また、特許文献1は、複数のプローブを用いて電気特性評価を行う方法であるが、微小領域の電気特性評価ができないため、被測定対象の表面の平均電圧を計測する方法である。   Patent Document 1 describes a method for measuring electrical characteristics of a measurement target. However, Patent Document 1 does not have means for measuring the surface shape of the measurement target. Therefore, it is impossible to evaluate the electrical characteristics of a minute region. Further, Patent Document 1 is a method for evaluating electrical characteristics using a plurality of probes, but it is a method for measuring the average voltage on the surface of a measurement target because electrical characteristics cannot be evaluated in a minute region.

特許文献2には、被測定対象の電気特性を測定する方法が記載されている。しかし、特許文献2には、被測定対象の表面形状を計測する手段がない。そのため、被測定対象の表面の微小領域の電気特性評価ができない。   Patent Document 2 describes a method for measuring electrical characteristics of a measurement target. However, Patent Document 2 does not have means for measuring the surface shape of the measurement target. For this reason, it is impossible to evaluate the electrical characteristics of a minute region on the surface of the measurement target.

そこで、本発明では、上記した従来技術の課題を解決して、被測定対象の表面の微小領域の電気特性を被測定対象の表面形状と対応して測定することを可能にする電気特性測定装置及び電気特性測定方法を提供するものである。   Therefore, in the present invention, an electrical characteristic measuring apparatus that solves the above-described problems of the prior art and makes it possible to measure the electrical characteristics of a minute region of the surface of the measurement target in correspondence with the surface shape of the measurement target. And a method for measuring electrical characteristics.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本発明は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、電気特性測定装置を、試料を搭載して移動可能な試料ステージと、この試料ステージに搭載した試料に電圧を印加する電圧印加部と、試料ステージに搭載した試料を流れる電流値を測定する1対の電極を備えた電流値計測部と、電圧印加部で試料ステージに搭載した試料に電圧を印加した状態で試料の表面の電界の分布を計測する表面特性計測部と、この表面特性計測部で測定した試料の表面の電界の分布に基づく試料の画像を生成する画像生成部と、電流値計測部で計測した電流値のデータと画像生成部で生成した試料の画像とを表示する表示部とを備えて構成した。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of means for solving the above-described problems. To give an example, the electrical property measuring device includes a sample stage that is movable with a sample mounted thereon, and a voltage applied to the sample mounted on the sample stage. A voltage application unit that applies voltage, a current value measurement unit that includes a pair of electrodes that measure a current value flowing through the sample mounted on the sample stage, and a state in which a voltage is applied to the sample mounted on the sample stage by the voltage application unit The surface property measurement unit that measures the distribution of the electric field on the surface of the sample with the image generation unit that generates an image of the sample based on the distribution of the electric field on the surface of the sample measured by the surface property measurement unit, and the current value measurement unit A display unit for displaying the measured current value data and the sample image generated by the image generation unit is provided.

また、上記課題を解決するために本発明では、電気特性測定方法において、試料ステージに搭載した試料に電極を接触させて電極間に流れる電流値を計測することを試料上で所定のピッチごとに行って電極間に流れる電流値が異常な領域を抽出し、この抽出した電流値が異常な領域について電極間に流れる電流値を所定のピッチよりも細かいピッチで計測し、試料に電圧を印加した状態で抽出した電流値が異常な領域の上部を電圧を印加した支持板の先端部分に装着したプローブで走査して電流値が異常な領域における試料の表面の電界の分布を計測し、この計測した電界の分布に基づく画像を生成し、この生成した電界の分布に基づく画像と電流値が異常な領域について計測した電流値のデータとを画面上に表示するようにした。   Further, in order to solve the above-described problems, in the present invention, in the electrical characteristic measurement method, the measurement of the current value flowing between the electrodes by contacting the electrode mounted on the sample stage is performed at a predetermined pitch on the sample. The region where the current value flowing between the electrodes is abnormal is extracted, the current value flowing between the electrodes is measured at a region where the extracted current value is abnormal, and the voltage is applied to the sample. This is the measurement of the electric field distribution on the surface of the sample in the region where the current value is abnormal by scanning the upper part of the region where the current value extracted in the state is abnormal with a probe attached to the tip of the support plate to which the voltage is applied. An image based on the distribution of the electric field is generated, and the image based on the generated electric field distribution and the current value data measured for the region where the current value is abnormal are displayed on the screen.

本発明によれば、被測定対象の表面の微小領域の電気的情報の取得と表面形状情報の取得とを同時に行なうことで,電気的情報と表面形状情報とのずれがなくなり,より正しい測定を行なうことができるようになった。また、電気的情報を,試料と電極との間に流れる電流値に関するデータを演算処理して測定することで,得られた電気的情報から試料表面の抵抗情報を提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, the electrical information and the surface shape information are acquired at the same time by acquiring the electrical information of the micro area on the surface of the object to be measured. I can do it now. In addition, the electrical information is measured by processing data related to the current value flowing between the sample and the electrode, so that resistance information on the sample surface can be provided from the obtained electrical information.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の実施例1に係る電気特性測定装置の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the electrical property measuring apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る電気特性測定装置を用いた電気特性測定の処理の流れを示すフロー図である。It is a flowchart which shows the flow of a process of the electrical property measurement using the electrical property measuring apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る電気特性測定装置を用いた電気特性測定の処理の流れを示すフロー図である。It is a flowchart which shows the flow of a process of the electrical property measurement using the electrical property measuring apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る電気特性測定装置の測定の結果を出力する画面の正面図である。It is a front view of the screen which outputs the result of a measurement of the electrical property measuring device concerning Example 1 of the present invention. 本発明の実施例2に係る電気特性測定装置の主要部の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the principal part of the electrical property measuring apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る電気特性測定装置の主要部の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the principal part of the electrical property measuring apparatus which concerns on Example 3 of this invention. 本発明の実施例4に係る電気特性測定装置の主要部の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the principal part of the electrical property measuring apparatus which concerns on Example 4 of this invention. 本発明の実施例5に係る電気特性測定装置の主要部の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the principal part of the electrical property measuring apparatus which concerns on Example 5 of this invention. 本発明の実施例6に係る電気特性測定装置で電気特性を測定する対象の透明導電膜つき基材の断面図である。It is sectional drawing of the base material with a transparent conductive film of the object which measures an electrical property with the electrical property measuring apparatus which concerns on Example 6 of this invention.

本発明は、プローブを試料の表面に近接配置し、プローブと試料とを相対的に走査しながらプローブと試料との間に電圧を印加することにより、試料の表面とプローブの先端との間に生じる物理的現象を利用して試料の表面を観察する試料表面の電気特性を測定する装置及びその方法であって、1対の電極を試料の表面に接触あるいは刺突させ、この状態で電極と試料との間に電圧を印加し、両者間に流れる電流を測定することにより、試料の電気的情報を得るようにして、被測定対象の表面の微小領域の電気的情報の取得と表面形状情報の取得とを同時に行なうことで,電気的情報と表面形状情報とのずれがなくなり,より正しい測定を行なうことができるようにしたものである。
以下、図面を用いて実施例の説明をする。
In the present invention, the probe is disposed close to the surface of the sample, and a voltage is applied between the probe and the sample while relatively scanning the probe and the sample, thereby making it possible to place the probe between the surface of the sample and the tip of the probe. An apparatus and method for measuring the electrical characteristics of a sample surface for observing the surface of the sample by utilizing the physical phenomenon that occurs. A pair of electrodes are brought into contact with or pierced with the surface of the sample. By applying a voltage to the sample and measuring the current flowing between them, the electrical information of the sample is obtained, and the electrical information of the micro area on the surface of the object to be measured and the surface shape information By simultaneously acquiring the information, the deviation between the electrical information and the surface shape information is eliminated, and more accurate measurement can be performed.
Hereinafter, embodiments will be described with reference to the drawings.

本実施例では、電気特性測定装置及び電気特性測定方法の例を説明する。
図1は、本実施例による電気特性測定装置100の全体の構成を示すブロック図である。本実施例による電気特性測定装置100は、ステージ部110、表面特性計測部120、電気特性測定部130、及び処理制御部140を備えて構成されている。
In this embodiment, an example of an electrical property measuring apparatus and an electrical property measuring method will be described.
FIG. 1 is a block diagram showing the overall configuration of an electrical characteristic measuring apparatus 100 according to this embodiment. The electrical property measuring apparatus 100 according to the present embodiment includes a stage unit 110, a surface property measuring unit 120, an electrical property measuring unit 130, and a processing control unit 140.

ステージ部110は、試料ステージ1とステージ駆動機構3と直流電源4及び除電装置5を備えている。試料ステージ1は、試料2を搭載し、ステージ駆動機構3で駆動されてX−Y平面内と、X−Y平面に垂直なZ方向及びX−Y平面内で回転するθ方向に移動する。試料ステージ1と試料2とは、金属などの導電性材料で形成されており、直流電源4により直流電圧が印加される。直流電源4に除電装置5を接続することにより、直流電源4による試料ステージ1及び試料2への電圧の印加を停止したときに、試料ステージ1及び試料2は除電される。   The stage unit 110 includes a sample stage 1, a stage drive mechanism 3, a DC power supply 4, and a charge removal device 5. The sample stage 1 carries the sample 2 and is driven by the stage driving mechanism 3 to move in the XY plane and in the Z direction perpendicular to the XY plane and the θ direction rotating in the XY plane. The sample stage 1 and the sample 2 are formed of a conductive material such as a metal, and a DC voltage is applied from the DC power source 4. By connecting the neutralization device 5 to the DC power source 4, the sample stage 1 and the sample 2 are neutralized when the application of voltage to the sample stage 1 and the sample 2 by the DC power source 4 is stopped.

表面特性計測部120は、先端の自由端部にプローブ7が形成された支持板6と、支持板6に必要な電圧を印加する電源8と、支持板6のたわみ量を検出するたわみ量検出部9と、支持板6のZ方向の高さを設定するZ軸駆動部51を備えている。電源8は、直流電源4の負極側と支持板6との間に接続されている。Z軸駆動部51は、例えばピエゾ素子で構成され、図示していない電源からピエゾ素子に印加する電圧で支持板6のZ方向の位置(高さ)を設定する。   The surface characteristic measurement unit 120 includes a support plate 6 having a probe 7 formed at the free end of the tip, a power supply 8 that applies a necessary voltage to the support plate 6, and a deflection amount detection that detects the deflection amount of the support plate 6. A portion 9 and a Z-axis drive portion 51 for setting the height of the support plate 6 in the Z direction are provided. The power source 8 is connected between the negative electrode side of the DC power source 4 and the support plate 6. The Z-axis drive unit 51 is configured by, for example, a piezo element, and sets the position (height) of the support plate 6 in the Z direction with a voltage applied to the piezo element from a power source (not shown).

表面特性計測部120は、試料2の表面の特性を計測するときに、まず、試料2を搭載した試料ステージ1に直流電源4から直流電圧を印加し、支持板6に電源8から所定の電圧を印加する。   When measuring the surface characteristics of the sample 2, the surface characteristic measuring unit 120 first applies a DC voltage from the DC power source 4 to the sample stage 1 on which the sample 2 is mounted, and applies a predetermined voltage from the power source 8 to the support plate 6. Apply.

この時、直流電圧を印加された試料2の表面は必ずしも均一な電界が発生しているわけではなく、試料2の内部の状態に応じて表面の電界に分布(電位分布)が生じている場合がある。この表面電界の分布を計測することにより、試料2の内部の状態を予測することができる。表面特性計測部120は、表面電界の分布(電位分布)を計測して、試料2の内部の情報を得るものである。   At this time, a uniform electric field is not necessarily generated on the surface of the sample 2 to which a DC voltage is applied, and a distribution (potential distribution) is generated in the electric field on the surface according to the internal state of the sample 2. There is. By measuring the distribution of the surface electric field, the internal state of the sample 2 can be predicted. The surface characteristic measurement unit 120 measures the distribution of the electric field on the surface (potential distribution) and obtains information inside the sample 2.

支持板6に所定の電圧を印加した状態で、Z軸駆動部51で支持板6の高さを調整してプローブ7の先端と試料2の表面の間隔を所定の量に設定する。この状態で、プローブ7は、試料表面の電位に応じた引力または斥力を受けている。次に、ステージ駆動機構3で試料ステージ1をX方向(Y方向)に一定の速度で駆動すると、プローブ7は、試料表面の電位の変化に応じて受ける引力または斥力が変化して変位する。このプローブ7の変位に伴ってプローブ7が取り付けられた支持板6の先端部分がたわむ。この支持板6のたわみによる変位を、たわみ量検出部9で検出する。   In a state where a predetermined voltage is applied to the support plate 6, the height of the support plate 6 is adjusted by the Z-axis drive unit 51 to set the distance between the tip of the probe 7 and the surface of the sample 2 to a predetermined amount. In this state, the probe 7 receives attraction or repulsion according to the potential of the sample surface. Next, when the sample stage 1 is driven in the X direction (Y direction) at a constant speed by the stage driving mechanism 3, the probe 7 is displaced by the attractive force or repulsive force that is received according to the change in the potential of the sample surface. As the probe 7 is displaced, the tip portion of the support plate 6 to which the probe 7 is attached bends. The displacement due to the deflection of the support plate 6 is detected by the deflection amount detection unit 9.

たわみ量検出部9の機構は、特に限定されるものではない。例えば、表面特性計測部120をレーザ光源と受光素子とを備えて構成し、支持板6の試料2とは反対の面にレーザ光源から発射したレーザを照射して支持板6で反射されたレーザを受光素子で検出する。   The mechanism of the deflection amount detection unit 9 is not particularly limited. For example, the surface characteristic measuring unit 120 is configured to include a laser light source and a light receiving element, and the laser beam emitted from the laser light source is irradiated on the surface opposite to the sample 2 of the support plate 6 and reflected by the support plate 6. Is detected by the light receiving element.

受光素子として、例えば4分割受光素子を用いた場合、各受光素子間の受光量の差が支持板6で反射されたレーザの受光素子上での位置ずれとして検出され、たわみ量検出部9から制御部35に出力される。制御部35では、たわみ量検出部9からの出力値(4分割受光素子の各受光素子間の出力の差)がゼロとなるように、Z軸駆動部51を制御する。また、このZ軸駆動部51を制御する信号はデータ処理部32に送られ、プローブ7の変位量のデータとして処理される。   For example, when a four-divided light receiving element is used as the light receiving element, the difference in the amount of light received between the light receiving elements is detected as a positional deviation of the laser reflected by the support plate 6 on the light receiving element. It is output to the control unit 35. The control unit 35 controls the Z-axis drive unit 51 so that the output value from the deflection amount detection unit 9 (the difference in output between the light receiving elements of the four-divided light receiving elements) becomes zero. A signal for controlling the Z-axis drive unit 51 is sent to the data processing unit 32 and processed as displacement amount data of the probe 7.

電気特性測定部130は、先端部に電極10を取り付けた支持板21と、支持板21のZ方向の位置(高さ)を設定するZ軸駆動部22と、Z軸駆動部22を載置してX方向に移動可能なXテーブル221、先端部に電極11を取り付けた支持板23と、支持板23のZ方向の位置(高さ)を設定するZ軸駆動部24と、Z軸駆動部24を載置してX方向に移動可能なXテーブル231を備えている。また、電気特性測定部130は、直流電源12と電流計13、演算処理部31、除電装置15を備えている。   The electrical characteristic measurement unit 130 mounts the support plate 21 with the electrode 10 attached to the tip, the Z-axis drive unit 22 that sets the position (height) of the support plate 21 in the Z direction, and the Z-axis drive unit 22. An X table 221 movable in the X direction, a support plate 23 having the electrode 11 attached to the tip, a Z axis drive unit 24 for setting the position (height) of the support plate 23 in the Z direction, and a Z axis drive There is provided an X table 231 on which the unit 24 is placed and movable in the X direction. The electrical characteristic measuring unit 130 includes a DC power source 12, an ammeter 13, an arithmetic processing unit 31, and a static elimination device 15.

直流電源12と電流計13とは、電極10と11との間に接続されており、電極10と11とが試料ステージ1に搭載された試料2に接触すると、閉ループが形成されて、直流電源12により電極10と11との間に電気が流れて、電流計13で検出され、その検出した電流のデータを用いて演算処理部31で演算がおこなわれる。   The DC power source 12 and the ammeter 13 are connected between the electrodes 10 and 11, and when the electrodes 10 and 11 come into contact with the sample 2 mounted on the sample stage 1, a closed loop is formed, and the DC power source 12, electricity flows between the electrodes 10 and 11 and is detected by the ammeter 13, and calculation is performed by the arithmetic processing unit 31 using the data of the detected current.

処理制御部140は、データ処理部32と、入出力部33、制御部35を備えている。データ処理部32は、演算処理部31からの出力とたわみ量検出部9からの出力及び制御部35からの試料ステージ1の位置情報を受けて、試料ステージ1に搭載された試料2の電気的特性の分布及び試料表面の特性分布(例えば、電界分布)情報を算出し、入出力部33に出力する。   The processing control unit 140 includes a data processing unit 32, an input / output unit 33, and a control unit 35. The data processing unit 32 receives the output from the arithmetic processing unit 31, the output from the deflection amount detection unit 9, and the position information of the sample stage 1 from the control unit 35, and the electrical processing of the sample 2 mounted on the sample stage 1. Characteristic distribution and sample surface characteristic distribution (for example, electric field distribution) information are calculated and output to the input / output unit 33.

入出力部33は、表示画面34を備え、データ処理部32から出力された試料2の電気的特性の分布及び試料表面の形状情報を表示画面34に表示する。   The input / output unit 33 includes a display screen 34 and displays the distribution of the electrical characteristics of the sample 2 and the shape information of the sample surface output from the data processing unit 32 on the display screen 34.

制御部35は、ステージ駆動機構3を制御して、試料ステージ1に載置された試料2を所定の位置に移動させる。また、Xテーブル221とXテーブル231とを制御して、電極10と11との間隔を所望の間隔に設定する。更に、Z軸駆動部51、Z軸駆動部22及びZ軸駆動部24を制御して、プローブ7、電極10及び電極11のZ軸方向の位置(高さ)を調整する。   The control unit 35 controls the stage driving mechanism 3 to move the sample 2 placed on the sample stage 1 to a predetermined position. Further, the X table 221 and the X table 231 are controlled to set the distance between the electrodes 10 and 11 to a desired distance. Further, the Z-axis driving unit 51, the Z-axis driving unit 22, and the Z-axis driving unit 24 are controlled to adjust the positions (heights) of the probe 7, the electrode 10, and the electrode 11 in the Z-axis direction.

次に、図1で説明した電気特性測定装置100を用いて、試料2の電気特性を測定する一連の動作について、図2A及び図2Bのフロー図を用いて説明する。   Next, a series of operations for measuring the electrical characteristics of the sample 2 using the electrical characteristics measuring apparatus 100 described with reference to FIG. 1 will be described with reference to the flowcharts of FIGS. 2A and 2B.

まず、試料ステージ1に試料2を載置し(S201)、この状態で電気特性測定部130のXテーブル221とXテーブル231とをX方向に駆動して、電極10及び電極11を試料2の検査すべき領域のX方向両端部に位置させる(S202)。この時、ステージ駆動機構3を制御して試料ステージ1をY方向に駆動して電極10及び電極11が試料2のY方向の端部上に位置させる。次に、直流電源12を作動させた状態で、Z軸駆動部22及びZ軸駆動部24を制御して電極10及び電極11を試料2に接触させる(S203)。電極10及び電極11を試料2に接触させた状態で電流計13を流れる電流値を演算処理部31で読取る(S204)。   First, the sample 2 is placed on the sample stage 1 (S201), and in this state, the X table 221 and the X table 231 of the electrical characteristic measuring unit 130 are driven in the X direction, and the electrode 10 and the electrode 11 are moved to the sample 2's state. It is located at both ends in the X direction of the region to be inspected (S202). At this time, the stage drive mechanism 3 is controlled to drive the sample stage 1 in the Y direction so that the electrode 10 and the electrode 11 are positioned on the end of the sample 2 in the Y direction. Next, in a state where the DC power supply 12 is operated, the Z-axis drive unit 22 and the Z-axis drive unit 24 are controlled to bring the electrode 10 and the electrode 11 into contact with the sample 2 (S203). The current value flowing through the ammeter 13 with the electrodes 10 and 11 in contact with the sample 2 is read by the arithmetic processing unit 31 (S204).

次に、Z軸駆動部22及びZ軸駆動部24を制御して電極10及び電極11を上昇させて試料2から離れさせる(S205)。この状態で、今回計測した位置が試料2のY方向の端部に達したかをチェックし(S206)、試料2のY方向の端部に達していない場合には(S206でNOの場合)、ステージ駆動機構3を制御して試料ステージ1をY方向に駆動して試料2を所定のピッチY方向に移動させ(S207)、S203からの処理を繰返す。   Next, the Z-axis drive unit 22 and the Z-axis drive unit 24 are controlled to raise the electrode 10 and the electrode 11 so that they are separated from the sample 2 (S205). In this state, it is checked whether or not the position measured this time has reached the end of the sample 2 in the Y direction (S206). If it has not reached the end of the sample 2 in the Y direction (NO in S206) Then, the stage driving mechanism 3 is controlled to drive the sample stage 1 in the Y direction to move the sample 2 in the predetermined pitch Y direction (S207), and the processing from S203 is repeated.

次に、電極10及び電極11がY方向の端部まで達した場合(S206でYESの場合)には、試料2のX方向とY方向について全領域測定したかをチェックする(S208)。試料2の全領域の測定が完了していない場合(S208でNOの場合)には、ステージ駆動機構3を制御して試料ステージ1をθ方向に駆動して試料2を90°回転させ(S209),S202からの動作を繰り返す。これにより、試料2の検査領域の電流値について、マトリックス状のデータが有られる。   Next, when the electrode 10 and the electrode 11 reach the end in the Y direction (YES in S206), it is checked whether the entire region is measured in the X direction and the Y direction of the sample 2 (S208). If measurement of the entire region of the sample 2 has not been completed (NO in S208), the stage driving mechanism 3 is controlled to drive the sample stage 1 in the θ direction to rotate the sample 2 by 90 ° (S209). ), The operation from S202 is repeated. Thereby, matrix-like data is provided for the current value in the inspection region of the sample 2.

試料2の全領域の測定が完了した場合(S208でYESの場合)には、検出した電流値に異常がないかをデータ処理部32でチェックし(S210)、異常が見つからなければ(S210でNOの場合)処理を終了する。   When the measurement of the entire region of the sample 2 is completed (YES in S208), the data processing unit 32 checks whether there is an abnormality in the detected current value (S210), and if no abnormality is found (in S210) In the case of NO), the process is terminated.

一方、検出した電流値に異常があった場合には(S210でYESの場合)、ステージ駆動機構3を制御と共に電気特性測定部130のXテーブル221とXテーブル231とをX方向に駆動して、電極10及び電極11がS210で検出した電流値異常領域のY方向の端部で、かつX方向の両端部上に位置させる(S211)。   On the other hand, if the detected current value is abnormal (YES in S210), the stage drive mechanism 3 is controlled and the X table 221 and the X table 231 of the electrical characteristic measuring unit 130 are driven in the X direction. The electrodes 10 and 11 are positioned at the ends in the Y direction and on both ends in the X direction of the current value abnormal region detected in S210 (S211).

次に、直流電源12を作動させた状態で、Z軸駆動部22及びZ軸駆動部24を制御して電極10及び電極11を試料2に接触させる(S212)。電極10及び電極11を試料2に接触させた状態で電流計13を流れる電流値を演算処理部31で読取る(S213)。   Next, in a state where the DC power supply 12 is operated, the Z-axis drive unit 22 and the Z-axis drive unit 24 are controlled to bring the electrode 10 and the electrode 11 into contact with the sample 2 (S212). The current value flowing through the ammeter 13 with the electrode 10 and the electrode 11 in contact with the sample 2 is read by the arithmetic processing unit 31 (S213).

次に、Z軸駆動部22及びZ軸駆動部24を制御して電極10及び電極11を上昇させて試料2から離れさせる(S214)。この状態で、今回計測した位置が試料2の電流値異常領域のY方向の端部に達したかをチェックし(S215)、電流値異常領域のY方向の端部に達していない場合には(S215でNOの場合)、ステージ駆動機構3を制御して試料ステージ1をY方向に駆動して試料2を所定のピッチ(S207におけるピッチと比べて微小なピッチ)Y方向に移動させ(S216)、S212からの処理を繰返す。   Next, the Z-axis drive unit 22 and the Z-axis drive unit 24 are controlled to raise the electrode 10 and the electrode 11 so that they are separated from the sample 2 (S214). In this state, it is checked whether the position measured this time has reached the end in the Y direction of the current value abnormal region of the sample 2 (S215). (In the case of NO in S215), the stage drive mechanism 3 is controlled to drive the sample stage 1 in the Y direction to move the sample 2 in the Y direction at a predetermined pitch (a fine pitch compared to the pitch in S207) (S216). ), The process from S212 is repeated.

次に、電極10及び電極11が電流値異常領域のY方向の端部まで達した場合(S215でYESの場合)には、試料2の電流値異常領域のX方向とY方向について全領域測定したかをチェックする(S217)。試料2の全領域の測定が完了していない場合(S217でNOの場合)には、ステージ駆動機構3を制御して試料ステージ1をθ方向に駆動して試料2を90°回転させ(S218),S211からの動作を繰り返す。   Next, when the electrode 10 and the electrode 11 reach the end of the current value abnormal region in the Y direction (YES in S215), the entire region is measured in the X direction and Y direction of the current value abnormal region of the sample 2. It is checked whether it has been done (S217). When the measurement of the entire region of the sample 2 is not completed (NO in S217), the stage driving mechanism 3 is controlled to drive the sample stage 1 in the θ direction to rotate the sample 2 by 90 ° (S218). ), The operation from S211 is repeated.

試料2の全領域の測定が完了した場合(S217でYESの場合)には、ステージ駆動機構3を制御して電流値異常領域がプローブ7の直下に来るように試料2を移動させ(S219)、直流電源4を作動させて試料ステージ1と試料2に直流電圧を印加し、プローブ7を取り付けた支持板6に電源8から電圧を印加する(S220)。試料2と支持板6にそれぞれ電圧を印加した状態で、Z軸駆動部51を駆動してプローブ7が試料2の表面から所定の高さになるように設定する(S221)。   When the measurement of the entire area of the sample 2 is completed (YES in S217), the stage drive mechanism 3 is controlled to move the sample 2 so that the abnormal current value area is directly below the probe 7 (S219). Then, the DC power supply 4 is operated to apply a DC voltage to the sample stage 1 and the sample 2, and a voltage is applied from the power supply 8 to the support plate 6 to which the probe 7 is attached (S220). With the voltages applied to the sample 2 and the support plate 6, respectively, the Z-axis drive unit 51 is driven to set the probe 7 to a predetermined height from the surface of the sample 2 (S221).

次に、この状態でステージ駆動機構3を制御して試料ステージ1をX方向の走査とY方向のステップ送りとを交互に繰返して、プローブ7で試料2の電流値異常領域を全面走査する(S222)。データ処理部32において、プローブ7で試料2の電流値異常領域を全面走査したときに、たわみ量検出部9で検出した支持板6のたわみを補正するために垂直方向位置制御回路36からZ軸駆動部51に出力した値と、プローブ7のX−Y面内の位置情報に基づいて電流値異常領域の表面画像を生成する(S223)。   Next, in this state, the stage driving mechanism 3 is controlled to alternately scan the sample stage 1 in the X direction and the step feed in the Y direction, and the probe 7 scans the entire current value abnormal region of the sample 2 ( S222). In the data processing unit 32, when the probe 7 scans the current value abnormal region of the sample 2 over the entire surface, the vertical position control circuit 36 corrects the deflection of the support plate 6 detected by the deflection amount detection unit 9 from the Z-axis. A surface image of the current value abnormal region is generated based on the value output to the drive unit 51 and the positional information in the XY plane of the probe 7 (S223).

最後に、生成した電流値異常領域の表面画像と、電流値のプロファイルを入出力部33の表示画面34に表示して処理を終了する(S224)。図3に、出力画面の一例を示す。表示画面34には、電流値異常領域の表面画像341と、表面画像341上で指定したライン上の電流値のプロファイル342〜344が表示される。   Finally, the generated surface image of the abnormal current value region and the current value profile are displayed on the display screen 34 of the input / output unit 33, and the process is terminated (S224). FIG. 3 shows an example of the output screen. On the display screen 34, a surface image 341 of a current value abnormal region and current value profiles 342 to 344 on a line designated on the surface image 341 are displayed.

なお、上記した実施例においては、図2AのS202からS208までのステップで、電流値の異常領域を検出し、図2AのS211から図2BのS224で電流値の異常領域を詳細に計測して表面の画像を得る方法について説明したが、本発明はこれに限られるものではない。例えば、S202からS208までのステップで、S207におけるY方向の1ピッチの移動量を大きくして電流値の異常領域を検出し、この検出した電流値の異常領域について更に、S207におけるY方向の1ピッチの移動量を狭くして電流値の異常領域を狭めることを繰返して、図2AのS211から図2BのS224で詳細に計測して表面の画像の領域を絞り込むようにしてもよい。   In the above-described embodiment, the abnormal region of the current value is detected in steps S202 to S208 of FIG. 2A, and the abnormal region of the current value is measured in detail from S211 of FIG. 2A to S224 of FIG. 2B. Although the method for obtaining the image of the surface has been described, the present invention is not limited to this. For example, in steps S202 to S208, the movement amount of one pitch in the Y direction in S207 is increased to detect an abnormal region of the current value, and the detected abnormal region of the current value is further increased to 1 in the Y direction in S207. It is also possible to narrow down the amount of movement of the pitch and narrow the abnormal region of the current value, and narrow down the region of the surface image by measuring in detail from S211 in FIG. 2A to S224 in FIG. 2B.

本実施例によれば、電流値異常領域の表面画像と電流値のプロファイルとを同時に確認することができるので、試料の電気的特性に関する複数の情報を可視化して同時に表示することができるようになった。   According to the present embodiment, the surface image of the current value abnormality region and the current value profile can be confirmed at the same time, so that a plurality of information relating to the electrical characteristics of the sample can be visualized and displayed simultaneously. became.

また、本実施例で得られた試料と電極との間に流れる電流値に関するデータを演算処理して測定することで,得られた電気的情報から試料表面の抵抗情報を得ることもできる。   Moreover, resistance information on the surface of the sample can be obtained from the obtained electrical information by calculating and measuring data on the value of the current flowing between the sample and the electrode obtained in the present embodiment.

図4に、本発明の実施例2における電気特性測定装置100−1の主要部の構成を示す。プローブ7で試料2の表面状態を画像化し、電気特性評価領域を特定できれば、プローブ7と電極10、11の位置は、特に限定されない。図4は、2本の電極10、11の間にプローブ7が位置する例である。図4において、実施例1で説明した図1に示した電気特性測定装置100と同じ構成部分については図示を省略している。   In FIG. 4, the structure of the principal part of the electrical property measuring apparatus 100-1 in Example 2 of this invention is shown. The positions of the probe 7 and the electrodes 10 and 11 are not particularly limited as long as the surface state of the sample 2 can be imaged by the probe 7 and the electrical property evaluation region can be specified. FIG. 4 shows an example in which the probe 7 is positioned between the two electrodes 10 and 11. 4, illustration of the same components as those of the electrical characteristic measuring apparatus 100 shown in FIG. 1 described in the first embodiment is omitted.

図5に、本発明の実施例3における電気特性測定装置100−2の主要部の構成を示す。プローブ7で試料2の表面状態を画像化し、電気特性評価領域を特定できれば、プローブ7と電極10、11の位置は、特に限定されない。図5は、プローブ7が走査後、プローブ7を中央に位置するように2本の電極10、11が位置する例である。図5において、実施例1で説明した図1に示した電気特性測定装置100と同じ構成部分については図示を省略している。   In FIG. 5, the structure of the principal part of the electrical property measuring apparatus 100-2 in Example 3 of this invention is shown. The positions of the probe 7 and the electrodes 10 and 11 are not particularly limited as long as the surface state of the sample 2 can be imaged by the probe 7 and the electrical property evaluation region can be specified. FIG. 5 shows an example in which two electrodes 10 and 11 are positioned so that the probe 7 is positioned in the center after the probe 7 is scanned. In FIG. 5, the same components as those of the electrical characteristic measuring apparatus 100 shown in FIG.

図6に、本発明の実施例4における電気特性測定装置100−3の主要部の構成を示す。試料表面内部に電気特定を評価した領域がある場合、図6に示すように、プローブ7で検出された画像を基に、電極10、11を試料2に刺突させる。刺突後、直流電源12から電圧を電極10、11に印加し、電流計13で電流値を計測し、演算処理部31で、抵抗や電気容量等、電気特性値を算出する。図6において、実施例1で説明した図1に示した電気特性測定装置100と同じ構成部分については図示を省略している。   In FIG. 6, the structure of the principal part of the electrical property measuring apparatus 100-3 in Example 4 of this invention is shown. When there is a region in which the electrical identification is evaluated inside the sample surface, the electrodes 10 and 11 are made to pierce the sample 2 based on the image detected by the probe 7 as shown in FIG. After the piercing, a voltage is applied from the DC power source 12 to the electrodes 10 and 11, the current value is measured by the ammeter 13, and the electric characteristic values such as resistance and electric capacity are calculated by the arithmetic processing unit 31. In FIG. 6, the same components as those of the electrical characteristic measuring apparatus 100 shown in FIG.

図7に、本発明の実施例4における電気特性測定装置100−4の主要部の構成を示す。試料2に直流電源4から電圧を印加する際、銀ペーストなど、導電材料16を試料2の導電部に塗布し、そこに直流電源4を接続することもできる。これを図7に示す。図7において、実施例1で説明した図1に示した電気特性測定装置100と同じ構成部分については図示を省略している。   In FIG. 7, the structure of the principal part of the electrical property measuring apparatus 100-4 in Example 4 of this invention is shown. When a voltage is applied to the sample 2 from the DC power supply 4, a conductive material 16 such as silver paste can be applied to the conductive portion of the sample 2, and the DC power supply 4 can be connected thereto. This is shown in FIG. In FIG. 7, the same components as those of the electrical characteristic measuring apparatus 100 illustrated in FIG. 1 described in the first embodiment are not illustrated.

従来の透明導電膜付き基材の電気特性を評価した例を示す。
例えば、特開2015−201023号公報に示されている、従来の透明導電膜付き基材で説明する。
The example which evaluated the electrical property of the conventional base material with a transparent conductive film is shown.
For example, a conventional substrate with a transparent conductive film described in JP-A-2015-201023 will be described.

図8に示すように、易接着層830付の透明基材840と、易接着層830上に形成された、金属ナノワイヤ860をバインダー部850に含有してなる透明電極層820と、この透明電極層820の上に形成された、着色層870とを有する透明導電膜付き基材810で構成されている。   As shown in FIG. 8, a transparent base material 840 with an easy adhesion layer 830, a transparent electrode layer 820 formed on the easy adhesion layer 830 and containing a metal nanowire 860 in a binder portion 850, and the transparent electrode A base 810 with a transparent conductive film having a colored layer 870 formed on the layer 820 is formed.

この透明導電膜付き基材810を実施例4に示すように、プローブ7で検出された画像を基に、電極10、11を試料2に刺突させる。刺突後、直流電源12により電圧を電極10、11に印加し、電流計13で電流値を計測し、演算処理部31で、抵抗や電気容量等、電気特性値を算出した。   As shown in Example 4, the transparent conductive film-coated substrate 810 is made to pierce the sample 2 with the electrodes 10 and 11 based on the image detected by the probe 7. After the piercing, a voltage was applied to the electrodes 10 and 11 by the DC power source 12, a current value was measured by the ammeter 13, and an electric characteristic value such as resistance and electric capacity was calculated by the arithmetic processing unit 31.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。   Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。   Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

1…試料ステージ 2…試料 3…ステージ駆動機構 4…直流電源
5…除電装置 6…支持板 7…プローブ 8…電源 9…たわみ量検出部
10,11…電極 12…直流電源 13…電流計 15…除電装置
21…支持板 22…Z軸駆動部 23…支持板 24…Z軸駆動部
31…演算処理部 32…データ処理部 33…入出力部 34…表示画面
35…制御部 36…垂直方向位置制御回路 51…Z軸駆動部
100,100−1,100−2,100−3,100−4…電気特性測定装置
110…ステージ部 120…表面特性計測部 130…電気特性測定部
140…処理制御部 221…Xテーブル 231…Xテーブル。
DESCRIPTION OF SYMBOLS 1 ... Sample stage 2 ... Sample 3 ... Stage drive mechanism 4 ... DC power supply
DESCRIPTION OF SYMBOLS 5 ... Static elimination apparatus 6 ... Support plate 7 ... Probe 8 ... Power supply 9 ... Deflection amount detection part
DESCRIPTION OF SYMBOLS 10,11 ... Electrode 12 ... DC power supply 13 ... Ammeter 15 ... Static elimination apparatus
DESCRIPTION OF SYMBOLS 21 ... Support plate 22 ... Z-axis drive part 23 ... Support plate 24 ... Z-axis drive part
31 ... Calculation processing unit 32 ... Data processing unit 33 ... Input / output unit 34 ... Display screen
35 ... Control unit 36 ... Vertical position control circuit 51 ... Z-axis drive unit
100, 100-1, 100-2, 100-3, 100-4 ... Electrical characteristic measuring device
DESCRIPTION OF SYMBOLS 110 ... Stage part 120 ... Surface characteristic measurement part 130 ... Electrical characteristic measurement part
140 ... processing control unit 221 ... X table 231 ... X table.

Claims (10)

試料を搭載して移動可能な試料ステージと、
前記試料ステージに搭載した試料に電圧を印加する電圧印加部と、
前記試料ステージに搭載した試料を流れる電流値を測定する1対の電極を備えた電流値計測部と、
前記電圧印加部で前記試料ステージに搭載した試料に電圧を印加した状態で前記試料の表面の電界の分布を計測する表面特性計測部と、
前記表面特性計測部で測定した前記試料の表面の電界の分布に基づく前記試料の画像を生成する画像生成部と、
前記電流値計測部で計測した電流値のデータと前記画像生成部で生成した前記試料の画像とを表示する表示部と
を備えたことを特徴とする電気特性測定装置。
A sample stage that can be moved by loading the sample;
A voltage application unit for applying a voltage to the sample mounted on the sample stage;
A current value measuring unit including a pair of electrodes for measuring a current value flowing through a sample mounted on the sample stage;
A surface property measurement unit that measures the distribution of the electric field on the surface of the sample in a state where a voltage is applied to the sample mounted on the sample stage in the voltage application unit;
An image generating unit that generates an image of the sample based on a distribution of an electric field on the surface of the sample measured by the surface property measuring unit;
An electrical characteristic measuring apparatus comprising: a display unit configured to display current value data measured by the current value measuring unit and an image of the sample generated by the image generating unit.
請求項1記載の電気特性測定装置であって、前記電流値計測部は直流電源を備え、前記直流電源を作動させた状態で前記1対の電極を前記試料に接触させて前記1対の電極間に流れる電流を計測することを特徴とする電気特性測定装置。   2. The electrical characteristic measuring apparatus according to claim 1, wherein the current value measuring unit includes a DC power source, and the pair of electrodes are brought into contact with the sample in a state where the DC power source is operated. An electrical characteristic measuring device for measuring a current flowing between them. 請求項1記載の電気特性測定装置であって、前記表面特性計測部は、先端部分にプローブを装着した支持板と、前記支持板に電圧を印加する電圧印加部と、前記支持板のたわみを検出するたわみ検出部と前記たわみ検出部で検出した前記支持板のたわみに応じて前記支持板の高さを調整する高さ調整部とを備えることを特徴とする電気特性測定装置。   The electrical property measurement apparatus according to claim 1, wherein the surface property measurement unit includes a support plate having a probe attached to a tip portion, a voltage application unit that applies a voltage to the support plate, and a deflection of the support plate. An electrical property measuring apparatus comprising: a deflection detecting unit to detect; and a height adjusting unit for adjusting a height of the supporting plate according to the deflection of the supporting plate detected by the deflection detecting unit. 請求項3記載の電気特性測定装置であって、前記画像生成部は、前記支持板の高さを調整する高さ調整部の信号に基づいて前記画像を生成することを特徴とする電気特性測定装置。   The electrical property measurement apparatus according to claim 3, wherein the image generation unit generates the image based on a signal from a height adjustment unit that adjusts a height of the support plate. apparatus. 請求項1記載の電気特性測定装置であって、前記表示部は、前記表示した試料の画像上で指定した領域の電流値のデータを前記試料の画像と並べて表示することを特徴とする電気特性測定装置。   The electrical property measuring apparatus according to claim 1, wherein the display unit displays the current value data of a specified region on the displayed sample image side by side with the sample image. measuring device. 試料ステージに搭載した試料に1対の電極を接触させて前記1対の電極間に流れる電流値を計測することを前記試料上で所定のピッチごとに行って前記1対の電極間に流れる電流値が異常な領域を抽出し、
前記抽出した電流値が異常な領域について前記1対の電極間に流れる電流値を前記所定のピッチよりも細かいピッチで計測し、
前記試料に電圧を印加した状態で前記抽出した電流値が異常な領域の上部を電圧を印加した支持板の先端部分に装着したプローブで走査して前記電流値が異常な領域における前記試料の表面の電界の分布を計測し、
前記計測した電界の分布に基づく画像を生成し、
前記生成した電界の分布に基づく画像と前記電流値が異常な領域について計測した電流値のデータとを画面上に表示する
ことを特徴とする電気特性測定方法。
A current flowing between the pair of electrodes is measured on the sample at a predetermined pitch by bringing a pair of electrodes into contact with a sample mounted on the sample stage and measuring a current value flowing between the pair of electrodes. Extract areas with abnormal values,
For the region where the extracted current value is abnormal, measure the current value flowing between the pair of electrodes at a pitch finer than the predetermined pitch,
The surface of the sample in the region where the current value is abnormal by scanning the upper part of the region where the extracted current value is abnormal with a voltage applied to the sample with a probe attached to the tip of the support plate to which the voltage is applied Measure the electric field distribution of
Generating an image based on the measured electric field distribution;
An electrical characteristic measurement method comprising: displaying an image based on the generated electric field distribution and current value data measured for an area where the current value is abnormal on a screen.
請求項6記載の電気特性測定方法であって、前記1対の電極間に流れる電流値を計測する前記所定のピッチを徐々に狭くして複数回繰返して行うことにより前記1対の電極間に流れる電流値が異常な領域を抽出することを特徴とする電気特性測定方法。   The electrical property measurement method according to claim 6, wherein the predetermined pitch for measuring a current value flowing between the pair of electrodes is gradually narrowed and repeatedly performed a plurality of times, thereby performing the measurement between the pair of electrodes. A method for measuring electrical characteristics, characterized by extracting a region where a flowing current value is abnormal. 請求項6記載の電気特性測定方法であって、前記試料の表面の電界の分布を計測することを、前記プローブが前記電界から受ける引力または斥力による前記支持板の反りを光学的に検出することにより行うことを特徴とする電気特性測定方法。   The electrical property measurement method according to claim 6, wherein measuring the distribution of the electric field on the surface of the sample optically detects warping of the support plate due to attractive force or repulsive force that the probe receives from the electric field. A method for measuring electrical characteristics, characterized in that 請求項8記載の電気特性測定方法であって、前記試料の表面の電界の分布を計測することを、前記支持板の反りを光学的に検出した情報に基づいて前記支持板の高さを補正する信号を用いて計測することを特徴とする電気特性測定方法。   9. The electrical property measurement method according to claim 8, wherein measuring the distribution of the electric field on the surface of the sample corrects the height of the support plate based on information obtained by optically detecting the warp of the support plate. A method for measuring electrical characteristics, characterized in that measurement is performed using a signal to be transmitted. 請求項6記載の電気特性測定方法であって、前記画面上に表示する電流値のデータは、前記画面上に表示した電界の分布に基づく画像上で指定した領域の電流値のデータであることを特徴とする電気特性測定方法。   7. The electrical property measurement method according to claim 6, wherein the current value data displayed on the screen is data of a current value of a region designated on the image based on an electric field distribution displayed on the screen. An electrical property measuring method characterized by the above.
JP2016117847A 2016-06-14 2016-06-14 Electrical characteristic measuring apparatus and electrical characteristic measuring method Expired - Fee Related JP6561920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016117847A JP6561920B2 (en) 2016-06-14 2016-06-14 Electrical characteristic measuring apparatus and electrical characteristic measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016117847A JP6561920B2 (en) 2016-06-14 2016-06-14 Electrical characteristic measuring apparatus and electrical characteristic measuring method

Publications (2)

Publication Number Publication Date
JP2017223493A JP2017223493A (en) 2017-12-21
JP6561920B2 true JP6561920B2 (en) 2019-08-21

Family

ID=60686865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117847A Expired - Fee Related JP6561920B2 (en) 2016-06-14 2016-06-14 Electrical characteristic measuring apparatus and electrical characteristic measuring method

Country Status (1)

Country Link
JP (1) JP6561920B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325220B (en) * 2021-06-29 2022-09-20 三峡大学 Micro-current detection device based on electric field geometric effect and micro-current measurement method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290565A (en) * 1985-07-16 1987-04-25 Fujitsu Ltd Surface potential distribution measuring device
JPH07159465A (en) * 1993-12-10 1995-06-23 Dainippon Printing Co Ltd Surface potential reading device
JPH0862229A (en) * 1994-08-22 1996-03-08 Ryoden Semiconductor Syst Eng Kk Thin-film quality measuring instrument and method, and manufacture of semiconductor device
JP2003121459A (en) * 2001-10-15 2003-04-23 Shimadzu Corp Electrical property measuring device and measuring method
US6912892B2 (en) * 2002-04-30 2005-07-05 Hewlett-Packard Development Company, L.P. Atomic force microscope

Also Published As

Publication number Publication date
JP2017223493A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP4095669B2 (en) Electrostatic drive capacitive transducer
US8339130B2 (en) Method and apparatus for evaluating length of defect in eddy current testing
JP5387818B2 (en) Circuit pattern inspection device
JP2006105960A (en) Sample inspection method and sample inspection apparatus
US20140092716A1 (en) Method and apparatus for inspecting thermal assist type magnetic head
TWI436078B (en) Inspection method and inspection apparatus for circuit substrate
US7187166B2 (en) Electrical property evaluation apparatus
JP6561920B2 (en) Electrical characteristic measuring apparatus and electrical characteristic measuring method
US6613209B2 (en) Toner characterization cell
CN106104278A (en) Scanning probe microscopy
US20140096293A1 (en) Method and apparatus for inspecting thermal assist type magnetic head
US9118331B2 (en) Contact state detection apparatus
KR102104059B1 (en) Conductive atomic force microscope and method for operating the same
JP2007189113A (en) Probe stylus detection method and apparatus
JPH11108976A (en) Permittivity measuring apparatus
EP0449221B1 (en) Scanning probe microscope
TWI571648B (en) System for detecting megnetic field distribution
CN109313215B (en) Data processing device for scanning probe microscope
JPH0545141B2 (en)
JPH09251026A (en) Scanning probe microscope
JP2012202840A (en) Adhesion tester
JPH03122514A (en) Observing apparatus for surface
JP6531975B2 (en) Micro-object electrical characteristic measuring apparatus and micro-object electrical characteristic measuring method
JP7444017B2 (en) scanning probe microscope
JP6783422B2 (en) Measurement method of sample surface shape and physical properties, and scanning probe microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R151 Written notification of patent or utility model registration

Ref document number: 6561920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees