JPH03107434A - Method for working superplasticity silicon nitride short fiber reinforced aluminum matrix composite - Google Patents
Method for working superplasticity silicon nitride short fiber reinforced aluminum matrix compositeInfo
- Publication number
- JPH03107434A JPH03107434A JP24476889A JP24476889A JPH03107434A JP H03107434 A JPH03107434 A JP H03107434A JP 24476889 A JP24476889 A JP 24476889A JP 24476889 A JP24476889 A JP 24476889A JP H03107434 A JPH03107434 A JP H03107434A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- matrix composite
- short fiber
- superplasticity
- aluminum matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 21
- 239000011159 matrix material Substances 0.000 title claims abstract description 12
- 239000000835 fiber Substances 0.000 title claims abstract description 11
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 title claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 6
- 229910052782 aluminium Inorganic materials 0.000 title claims description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 6
- 239000011812 mixed powder Substances 0.000 claims abstract description 5
- 238000005245 sintering Methods 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 5
- 239000012778 molding material Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 229910001094 6061 aluminium alloy Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000001192 hot extrusion Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical class [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は複合材料の成形方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for molding composite materials.
(従来の技術) この発明は複合材料の成形方法に関する。(Conventional technology) The present invention relates to a method for molding composite materials.
(従来の技術)
セラミックス短繊維強化アルミニウム基複合材料は比強
度・比弾性率が高く、耐摩耗性・耐熱性にも優れており
、航空宇宙用構造材料等として将来に利用が期待されて
いる。しかし、この複合材料は加工性に劣9、板状のよ
うな素形材から複雑な形状の構造物に成形加工できるよ
うな成形加工法の開発が望1れている。特に、大量生産
に適した超塑性加工法がこれらの要望に対応できる成形
加工法と考えられる。(Conventional technology) Ceramic short fiber reinforced aluminum matrix composite materials have high specific strength and specific modulus, as well as excellent wear resistance and heat resistance, and are expected to be used in the future as structural materials for aerospace, etc. . However, this composite material has poor workability9, and there is a need for the development of a molding method that can mold a plate-like material into a complex-shaped structure. In particular, the superplastic forming method, which is suitable for mass production, is considered to be a forming method that can meet these demands.
例えば、(1)炭化ケイ素ウィスカを強化材とした21
24アルミニウム合金複合材料の超塑性加工、(2)炭
化ケイ素粒子を強化材とした7064アルミニウム複合
材料の超塑性加工などが挙げられる。For example, (1) 21 with silicon carbide whiskers as a reinforcement material.
(2) superplastic working of a 7064 aluminum composite material using silicon carbide particles as a reinforcing material.
(発明が解決しようとする問題点)
(1)の例では、超塑性温度領域が固相線以上であるた
め、母相は部分的に液相化しておシ、キャビティなどの
欠陥を生じ、超塑性変形後機械的性質が劣化すると考え
られる。(2)では、超塑性変形時の歪速度の範囲が1
0−4程度(1/秒)であシ、加工速度が遅く、この複
合材料の機械部品の量産化には適さず、製造原価の低減
が難しい。また、上記の複合材料の共通の問題点として
、複合材料製造後結晶粒微細化処理のため加工熱処理(
溶体化処理−時効処理一温間圧延一再結晶処理)が必要
である。これは製造プロセスを複雑にしている。(Problems to be Solved by the Invention) In the example (1), since the superplastic temperature region is above the solidus line, the matrix partially becomes a liquid phase, causing defects such as holes and cavities. It is thought that the mechanical properties deteriorate after superplastic deformation. In (2), the strain rate range during superplastic deformation is 1
The processing speed is about 0-4 (1/sec), which is slow, making it unsuitable for mass production of mechanical parts made of this composite material, and making it difficult to reduce manufacturing costs. In addition, as a common problem with the above composite materials, processing heat treatment (
Solution treatment - aging treatment, warm rolling and recrystallization treatment) are required. This complicates the manufacturing process.
従って、複合材料から機械部品を大量生産するには、簡
素化した方法で製造された複合材料に対し量産化に適し
た条件の超塑性加工方法の発明は重要と考えられる。本
発明者等は微細なアルミニウム合金粉末にセラミックス
短繊維を均一にしかも適度に分散させることにより、ア
ルミニウム合金の結晶粒の成長を抑制できるものと考え
た。Therefore, in order to mass produce mechanical parts from composite materials, it is considered important to invent a superplastic processing method that provides conditions suitable for mass production of composite materials manufactured by a simplified method. The present inventors thought that the growth of aluminum alloy crystal grains could be suppressed by uniformly and appropriately dispersing short ceramic fibers in fine aluminum alloy powder.
すなわち、前述の複雑な加工熱処理を加えることなく、
単純な粉末冶金法で製造した当該複合材に対して高温変
形挙動の研究を重ねた結果、温度と変形速度を適切に限
定することにより、−軸引張試験において変形量が20
0%を超える高い延性を示すことを見い出した。In other words, without adding the complicated heat treatment mentioned above,
As a result of repeated research on the high-temperature deformation behavior of the composite material manufactured using a simple powder metallurgy method, it was found that by appropriately limiting the temperature and deformation rate, the amount of deformation could be reduced to 20% in the -axial tensile test.
It has been found that this material exhibits high ductility exceeding 0%.
しかも、この場合、超塑性温度領域は固相線以下である
ので母相は固相状態であシ、超塑性歪速度領域も10−
’ (1/f#)の範囲と著しく速い変形速度で発現し
た。Moreover, in this case, the superplastic temperature region is below the solidus line, so the parent phase is in a solid state, and the superplastic strain rate region is also 10-
'(1/f#) and a significantly high deformation rate.
このように高延性の発現は微細結晶粒相互の粒界すベシ
に起因していると考えられる。微細結晶粒が得られた理
由として、短繊維強化材の結晶粒の粒成長抑制作用の他
に短繊維強化材の周囲に転位がたい積されやすく、母相
全体が高い転位密度の状態になシ動的再結晶が発生した
と考えられる。In this way, the development of high ductility is thought to be due to the grain boundaries between fine crystal grains. The reason why fine crystal grains were obtained is that in addition to the effect of suppressing the growth of the crystal grains of the short fiber reinforcement, dislocations tend to accumulate around the short fiber reinforcement, and the entire matrix becomes a state of high dislocation density. It is thought that dynamic recrystallization occurred.
また、変形後もわずかの粒成長しか認められず、変形中
も強化材による粒成長抑制作用が有効に働き、粒成長が
抑えられたと考えられる。In addition, only slight grain growth was observed even after deformation, and it is thought that the grain growth suppressing effect of the reinforcing material worked effectively even during deformation, suppressing grain growth.
当該複合材料は温度と変形速度を適切に限定することに
よシ加工荷重を低くでき、変形速度も従来の超塑性アル
ミニウム合金に比べ著しく速く、塑性加工に適している
。The composite material can reduce the processing load by appropriately limiting the temperature and deformation rate, and the deformation rate is significantly faster than that of conventional superplastic aluminum alloys, making it suitable for plastic working.
(問題点を解決するための手段)
この発明は発明者等の得た上記知見を基に完成したもの
である。その構成は窒化ケイ素短繊維とアルミニウム合
金粉末との混合粉末を真空中で加圧焼結し、その後大気
中での圧縮と熱間押出し加工及び熱処理することにより
微細な結晶粒を有する当該複合材料を製造する。この複
合材料の母相が固相線以下の超塑性温度領域において応
力作用下で変形させて、従来のアルミニウム合金よシも
かなシ速い歪速度において、機械的性質に優れた複雑形
状部品や構造物を精密熱間成形加工することである。(Means for Solving the Problems) This invention was completed based on the above knowledge obtained by the inventors. Its composition is made by sintering a mixed powder of silicon nitride short fibers and aluminum alloy powder under pressure in a vacuum, and then compressing it in the air, hot extrusion processing, and heat treating it to create a composite material with fine crystal grains. Manufacture. The matrix of this composite material is deformed under the action of stress in the superplastic temperature region below the solidus line, allowing complex-shaped parts and structures with superior mechanical properties to be produced at higher strain rates than conventional aluminum alloys. It involves precision hot forming of objects.
(発明の効果)
この発明において、当該複合材料の超塑性温度領域はい
ずれのアルミニウム合金においても500〜560°C
であった。従って、比較的高い固相線温度を示す600
0系や7000系アルミニウム合金は母相材料として最
適である。固相線以下の温度において、超塑性変形を発
現させることにより、成形中におけるキャビティの発生
をかなシ抑制し、機械的性質の劣化を防ぐことができる
。(Effect of the invention) In this invention, the superplastic temperature range of the composite material is 500 to 560°C in any aluminum alloy.
Met. Therefore, 600°C shows a relatively high solidus temperature.
0 series and 7000 series aluminum alloys are optimal as matrix materials. By developing superplastic deformation at a temperature below the solidus line, it is possible to suppress the formation of cavities during molding and prevent deterioration of mechanical properties.
また、成形は10−1(1/秒)以上の速い歪速度に
−
おいて行うので、この超塑性成形による生産性は高いと
言える。In addition, forming can be performed at a high strain rate of 10-1 (1/sec) or more.
- It can be said that the productivity of this superplastic forming is high.
(実施例1)
窒化ケイ素ウィスカと6061アルミニウム合金粉末と
をアルコールのごとき有機溶媒に入れ均一に混合する。(Example 1) Silicon nitride whiskers and 6061 aluminum alloy powder are placed in an organic solvent such as alcohol and mixed uniformly.
この混合粉末を真空中、温度6006C1圧力2QQM
Paの条件で加圧焼結させた後の焼結体を大気中にて、
温度600°C1圧力890MPaを加え、再圧縮する
。 更に、温度500°C1押出し比44での熱間押出
し加工によシ塑性変形を加え、T6熱処理(500°C
に3時間保持し水冷、190℃で19,5時間保持後空
冷)によシ素形材とする。This mixed powder is heated in vacuum at a temperature of 6006C and a pressure of 2QQM.
The sintered body after pressure sintering under the conditions of Pa is
A temperature of 600° C. and a pressure of 890 MPa are applied to recompress. Furthermore, plastic deformation was applied by hot extrusion at a temperature of 500°C and an extrusion ratio of 44, followed by T6 heat treatment (500°C
After holding at 190°C for 3 hours and cooling with water, and after holding at 190°C for 19.5 hours and cooling with air), it is made into a silicon material.
この素形材を545°Cにて1.5 X 10−” (
1/秒)の歪速度で引張変形させると、全伸びが250
%に達した。6061アルミニウム合金の固相線温度は
582°Cであシ、この場合母相が固相状態での超塑性
変形である。すなわち、超塑性変形後の機械的性質の劣
化は抑制でき、しかも超塑性変形速度は著しく速く、量
産化に適した加工方法である。This material was heated at 545°C to 1.5 x 10-” (
When tensile deformation is performed at a strain rate of 1/s), the total elongation is 250
% has been reached. The solidus temperature of 6061 aluminum alloy is 582°C, and in this case, the matrix is superplastically deformed in a solid state. That is, the deterioration of mechanical properties after superplastic deformation can be suppressed, and the superplastic deformation rate is extremely high, making it a processing method suitable for mass production.
(実施例2)
窒化ケイ素つイヌカと7064アルミニウム合金とを実
施例1と同様な条件で混合、焼結、熱処理する事によシ
素形材とする。この素形材を大気中にて、525°C,
1,7X10−’ (1/秒)の歪速度で変形させると
、全伸びが200%以上に達し、超塑性変形の特徴を示
した。この場合も、超塑性温度領域は固相線以下であり
、実施例1とほぼ同じ速い歪速度で超塑性変形が生じた
。(Example 2) Silicon nitride and 7064 aluminum alloy were mixed, sintered, and heat treated under the same conditions as in Example 1 to produce a silicon shape. This material was placed in the atmosphere at 525°C.
When deformed at a strain rate of 1,7 x 10-' (1/sec), the total elongation reached more than 200%, exhibiting characteristics of superplastic deformation. In this case as well, the superplastic temperature region was below the solidus line, and superplastic deformation occurred at almost the same fast strain rate as in Example 1.
指定代理人 工業技術院名古屋工業技術試験所長 磯谷三男 = 7designated agent Director, Nagoya Industrial Technology Testing Institute, Agency of Industrial Science and Technology Mitsuo Isoya =7
Claims (2)
粉末を真空中で加圧焼結し製造したアルミニウム基複合
材料を素形材とし超塑性が発現する温度域において応用
作用下で変形させ、成形することを特徴とする窒化ケイ
素短繊維強化アルミニウム基複合材料の成形方法。(1) An aluminum matrix composite material produced by pressurizing and sintering a mixed powder of aluminum alloy powder and silicon nitride short fibers in a vacuum is used as a molding material, and is deformed under applied action in a temperature range where superplasticity is expressed, and then molded. A method for forming a silicon nitride short fiber reinforced aluminum matrix composite material.
強化アルミニウム基複合材料からなる素形料の成形を5
00℃〜560℃の温度範囲で、10^−^1(1/秒
)以上の歪速度で行うことを特徴とする方法。(2) In claim 1, the molding of a material made of a silicon nitride short fiber reinforced aluminum matrix composite material is
A method characterized in that it is carried out at a temperature range of 00°C to 560°C and at a strain rate of 10^-^1 (1/sec) or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24476889A JPH03107434A (en) | 1989-09-20 | 1989-09-20 | Method for working superplasticity silicon nitride short fiber reinforced aluminum matrix composite |
US07/582,337 US5051231A (en) | 1989-09-20 | 1990-09-14 | Method for fabrication of superplastic composite material having metallic aluminum reinforced with silicon nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24476889A JPH03107434A (en) | 1989-09-20 | 1989-09-20 | Method for working superplasticity silicon nitride short fiber reinforced aluminum matrix composite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03107434A true JPH03107434A (en) | 1991-05-07 |
Family
ID=17123618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24476889A Pending JPH03107434A (en) | 1989-09-20 | 1989-09-20 | Method for working superplasticity silicon nitride short fiber reinforced aluminum matrix composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03107434A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018065158A (en) * | 2016-10-18 | 2018-04-26 | サムテック株式会社 | Spinning method, and container manufactured by using the same |
CN112919923A (en) * | 2021-01-21 | 2021-06-08 | 周煜 | Metal matrix composite material and preparation method and application thereof |
-
1989
- 1989-09-20 JP JP24476889A patent/JPH03107434A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018065158A (en) * | 2016-10-18 | 2018-04-26 | サムテック株式会社 | Spinning method, and container manufactured by using the same |
CN112919923A (en) * | 2021-01-21 | 2021-06-08 | 周煜 | Metal matrix composite material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5580665A (en) | Article made of TI-AL intermetallic compound, and method for fabricating the same | |
KR101237122B1 (en) | Titanium alloy microstructural refinement method and high temperature-high strain superplastic forming of titanium alloys | |
JPH04154933A (en) | Production of aluminum alloy having high strength and high toughness and alloy stock | |
JPH07179974A (en) | Aluminum alloy and its production | |
CN107130197B (en) | A kind of deformation heat treatment method of Ultra-fine Grained AZ80 magnesium alloys | |
US5768679A (en) | Article made of a Ti-Al intermetallic compound | |
JPH03107434A (en) | Method for working superplasticity silicon nitride short fiber reinforced aluminum matrix composite | |
KR100666478B1 (en) | Low Temperature Superplastic Nano Grain Titanium Alloy and Manufacturing Method Thereof | |
Hanamantraygouda et al. | Effect of cold forging on microstructure and mechanicalproperties of al/sic composites | |
CN112210728B (en) | Ultrahigh-strength nanocrystalline 3Cr9W2MoSi die steel and preparation method thereof | |
KR100570905B1 (en) | Method of increasing ductility of magnesium alloy through control of texture | |
JPH08269589A (en) | Production of superplastic az91 magnesium alloy | |
JPH0635631B2 (en) | Manufacturing method of superplastic silicon nitride whisker reinforced aluminum alloy composite material. | |
US5051231A (en) | Method for fabrication of superplastic composite material having metallic aluminum reinforced with silicon nitride | |
JPH06306508A (en) | Production of low anisotropy and high fatigue strength titanium base composite material | |
JPH0320423A (en) | Production of superplastic silicon nitride whisker reinforced 2124 aluminum composite material | |
JP2657979B2 (en) | Forming method for composite ceramics | |
Avtokratova et al. | Effect of cold/warm rolling following warm ECAP on superplastic properties of an Al 5.8% Mg-0.32% Sc alloy | |
JPH01177340A (en) | Thermo-mechanical treatment of high-strength and wear-resistant al powder alloy | |
KR100252277B1 (en) | The manufacturing method for composite material | |
JPH0617486B2 (en) | Method for forging powder-made Ni-base superalloy | |
JPH06235032A (en) | Method for developing superplasticity of titanium carbide reinforced aluminum alloy composite material | |
KR100215003B1 (en) | Manufacturing method of composite material | |
Jiang et al. | Evolution of microstructure and mechanical properties of Mg-3Al-1Zn alloy through the corner of a deep cup-shaped forged part | |
JPH06184663A (en) | Ceramic-reinforced aluminum alloy composite material |