JPH06235032A - Method for developing superplasticity of titanium carbide reinforced aluminum alloy composite material - Google Patents
Method for developing superplasticity of titanium carbide reinforced aluminum alloy composite materialInfo
- Publication number
- JPH06235032A JPH06235032A JP4450793A JP4450793A JPH06235032A JP H06235032 A JPH06235032 A JP H06235032A JP 4450793 A JP4450793 A JP 4450793A JP 4450793 A JP4450793 A JP 4450793A JP H06235032 A JPH06235032 A JP H06235032A
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- temperature
- solvent
- aluminum alloy
- superplasticity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は炭化チタン粒子を強化材
として含むアルミニウム合金で、しかも、超塑性変形の
特徴を生ずる複合金属材料の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy containing titanium carbide particles as a reinforcing material, which is also characterized by superplastic deformation.
【0002】[0002]
【従来の技術】セラミックスウイスカ又は粒子強化アル
ミニウム複合材料は比弾性率が従来の金属材料の約2
倍、比強度はチタン合金に匹敵する程高く、また、耐熱
性や耐摩耗性、熱的寸法安定性、熱伝導性に優れてお
り、ピストン等の中高温機械部品ばかりでなく航空宇宙
分野での構造物への応用が図られている。また、半導体
等の電子機器のパッケージへの応用も期待されている。2. Description of the Related Art Ceramic whiskers or particle reinforced aluminum composite materials have a specific modulus of about 2 that of conventional metal materials.
The strength is twice as high as that of titanium alloy, and it has excellent heat resistance, wear resistance, thermal dimensional stability, and thermal conductivity. Is being applied to structures. Further, it is also expected to be applied to packages of electronic devices such as semiconductors.
【0003】近年、セラミックスウイスカや粒子強化ア
ルミニウム複合材料に約0.1毎秒の高歪速度で超塑性
が発現することが見い出されてきた。そして、この高速
超塑性現象を利用した効率的なニィヤーネットシェイプ
成形により、航空宇宙分野等において、複雑な形状で表
面積が広く、しかも、立体的な構造物を高効率生産でき
る技術の確立が可能になってきた。In recent years, it has been found that ceramic whiskers and particle-reinforced aluminum composite materials develop superplasticity at a high strain rate of about 0.1 per second. In addition, by the efficient near net shape molding that utilizes this high-speed superplasticity phenomenon, in the aerospace field, etc., the establishment of a technology that can produce a three-dimensional structure with a complicated surface shape and a large surface area with high efficiency has been established. It has become possible.
【0004】しかし、従来開発された超塑性セラミック
スウイスカまたは粒子強化アルミニウム複合材料で用い
られていた強化材料は炭化ケイ素SiCや窒化ケイ素S
i3N4セラミックスウイスカ又は粒子及び窒化アルミニ
ウムAlN粒子に限られている。製造方法はこれらのS
iCやSi3N4とアルミニウム合金粉末とを混合後加圧
焼結し、更に、加工熱処理(溶体化処理ー時効処理ー温
間圧延加工ー再結晶処理)によりマトリックスの結晶粒
を微細化し超塑性が発現されている。例えば、炭化け
い素ウイスカ強化2124アルミニウム複合材料は、鍛
造後圧延加工により板形状にされ、約0.2毎秒で約3
50%の超塑性伸びを生じている。炭化けい素粒子強
化7064アルミニウム複合材料がと同じ方法で製造
され、約0.0001毎秒の歪速度で約500%の超塑
性伸びを生じている。又、発明者らは微細なアルミニウ
ム合金粉末と窒化けい素ウイスカや粒子及び窒化アルミ
ニム粒子の強化材料を混合し、粉末冶金法により窒化け
い素ウイスカおよび粒子強化アルミニウム合金複合材料
及び窒化アルミニウム粒子強化アルミニム合金複合材料
を造った。窒化けい素ウイスカ強化2124、606
1、7064アルミニウム複合材料に対し、押し出しの
み、鍛造後熱間押出し加工、または、押し出し加工後圧
延加工を行い、約0.1毎秒に歪速度で250以上%か
ら600%の全伸びを達成した。そして、窒化アルミ
ニウム粒子AlN強化アルミニウム合金複合材料に対し
熱間押し出し加工と熱間圧延加工を行い、0.03から
1.0毎秒の高歪速度で約300%以上の全伸びを生じ
ることを見い出した。However, the reinforcing material used in the conventionally developed superplastic ceramic whiskers or particle-reinforced aluminum composite materials is silicon carbide SiC or silicon nitride S.
i 3 N 4 ceramic whiskers or particles and aluminum nitride AlN particles only. The manufacturing method is S
After mixing iC or Si 3 N 4 and aluminum alloy powder, pressurizing and sintering, and further refine the matrix crystal grains by processing heat treatment (solution treatment-aging treatment-warm rolling-recrystallization treatment). Plasticity is developed. For example, a silicon carbide whisker reinforced 2124 aluminum composite material is formed into a plate shape by rolling after forging, and it is about 3 at about 0.2 per second.
Superplastic elongation of 50% has occurred. A silicon carbide particle reinforced 7064 aluminum composite was produced in the same manner as above, producing a superplastic elongation of about 500% at a strain rate of about 0.0001 per second. In addition, the inventors mixed fine aluminum alloy powder with a reinforcing material of silicon nitride whiskers and particles and aluminum nitride particles, and by powder metallurgy, a silicon nitride whisker and a particle-reinforced aluminum alloy composite material and an aluminum nitride particle-reinforced aluminum alloy. Alloy composite material was made. Silicon nitride whisker reinforced 2124, 606
For 1,7064 aluminum composite material, only extrusion, hot extrusion after forging, or rolling after extrusion was performed to achieve a total elongation of 250% to 600% at a strain rate of about 0.1 per second. . Then, the aluminum nitride particles AlN reinforced aluminum alloy composite material was subjected to hot extrusion and hot rolling, and found to have a total elongation of about 300% or more at a high strain rate of 0.03 to 1.0 per second. It was
【0005】従来はSiCとSi3N4で強化されたアル
ミニム合金複合材料の超塑性に関する研究開発は活発に
行われてきた。しかし、発明者がAlN粒子強化アルミ
ニウム合金複合材料に超塑性発現を見い出した以外、一
般のセラミックス粒子強化アルミニウム合金複合材料に
超塑性が発現する可能性については実験的に示した報告
はほとんど見られず、それらに対する超塑性加工の適用
は考えられなかった。Conventionally, research and development on superplasticity of an aluminum alloy composite material reinforced by SiC and Si 3 N 4 have been actively conducted. However, except that the inventors have found that superplasticity appears in AlN particle-reinforced aluminum alloy composite materials, there are almost no reports that show experimentally the possibility that superplasticity appears in general ceramic particle-reinforced aluminum alloy composite materials. Therefore, application of superplastic working to them was not considered.
【0006】[0006]
【発明が解決しようとする課題】アルミニウム基複合材
料の強化材としては炭化けい素SiCや窒化けい素Si
3N4ウイスカや粒子、窒化アルミニウムAlN粒子、以
外にも炭化チタンTiC粒子、アルミナ粒子、ボライド
TiB2粒子等が用いられている。この内、TiC粒子
はSiCに劣らない程極めて硬く、高温においても安定
であり、又、電気絶縁性が高く、TiC粒子強化複合材
料は比弾性率が高く又、高温強度に優れているといわれ
ており、SiCやSi3N4ウイスカや粒子強化複合材料
に劣らない高強度複合材料が製造できると期待される。
しかし、TiC粒子はアルミニウム溶湯と反応し、脆い
Al3C4ができ易く、超塑性は簡単には発現しないよう
に考えられていた。Silicon carbide SiC or silicon nitride Si is used as a reinforcing material for aluminum-based composite materials.
In addition to 3 N 4 whiskers and particles, aluminum nitride AlN particles, titanium carbide TiC particles, alumina particles, boride TiB 2 particles and the like are used. Among them, TiC particles are extremely hard as inferior to SiC, stable even at high temperature, and have high electric insulation. TiC particle reinforced composite materials are said to have high specific elastic modulus and high temperature strength. Therefore, it is expected that a high-strength composite material comparable to SiC, Si 3 N 4 whiskers, and particle-reinforced composite materials can be manufactured.
However, it was thought that the TiC particles react with molten aluminum to easily form brittle Al 3 C 4 , and superplasticity does not easily develop.
【0007】これらの複合材料に超塑性を発現させるに
は 超塑性発現温度において、強化材料とアルミニウム
マトリックスとの界面上で滑り変形が起こらないとこの
界面で亀裂が生じ、大きな伸びを発生できないことにな
る。従って、マトリックスの結晶粒が微細であり、且つ
この界面での滑り変形が可能になる界面を形成すること
が超塑性発現には重要である。In order to develop superplasticity in these composite materials, at the superplasticity temperature, if slip deformation does not occur on the interface between the reinforcing material and the aluminum matrix, cracks will occur at this interface and large elongation cannot occur. become. Therefore, it is important for superplasticity expression that the crystal grains of the matrix are fine and that an interface that allows slip deformation at this interface is formed.
【0008】[0008]
【課題を解決するための手段】そこで、本発明では、上
記問題点を解決すべく、炭化チタン粒子を強化材として
含むアルミニウム複合材料を製造するプロセスにおいて
TiC粒子とアルミニウムマトリックスとの界面に脆い
Al4C3が生じないようにアルミニウム合金が固相状態
で加圧焼結する。又、押し出し後圧延加工の超塑性発現
プロセスではできるだけ加工時間を短くなるように行
い、界面に反応生成物が生じないようにした。TiC粒
子でも界面に脆いAl4C3が形成されなければ、炭化け
い素ウイスカや粒子と同じ炭化物であるので界面に滑り
変形を可能にする固相温度が低いアルミニウム固溶体を
形成できる化学的条件を備えていると考えられる。又、
押し出し加工と圧延加工を組合せた加工熱処理法はマグ
ネシウムMgの濃度が高いアルミニウム固溶体の薄い相
を複合材料の界面に形成させる力学的条件を与えると考
えられる。そして、炭化チタン粒子はアルミニウムマト
リックスとはAl4C3等の反応生成物が生ずることが知
られているが、アルミニウムが固相状態の場合には、
又、半溶融状態のアルミニウムとの接触時間が短けれ
ば、クリーンな界面をつくることができる。In order to solve the above problems, therefore, in the present invention, in the process of producing an aluminum composite material containing titanium carbide particles as a reinforcing material, fragile Al at the interface between the TiC particles and the aluminum matrix. The aluminum alloy is pressure-sintered in the solid state so as not to generate 4 C 3 . In the superplasticity development process of rolling after extrusion, the processing time was shortened as much as possible so that reaction products were not generated at the interface. Even if TiC particles do not form brittle Al 4 C 3 at the interface, they are the same carbides as silicon carbide whiskers and particles, so the chemical conditions under which the solid solution with low solidus temperature that allows sliding deformation at the interface can be formed. It is considered to be equipped. or,
It is considered that a thermo-mechanical treatment method combining extrusion and rolling gives mechanical conditions for forming a thin phase of an aluminum solid solution having a high concentration of magnesium Mg at the interface of the composite material. It is known that titanium carbide particles produce a reaction product such as Al 4 C 3 with an aluminum matrix. However, when aluminum is in a solid state,
Also, if the contact time with aluminum in a semi-molten state is short, a clean interface can be formed.
【0009】超塑性発現温度においてこの固溶体の固相
温度は地の母相のそれより低いのでマトリックスが固相
または半溶融状態でも容易に液相になり、この液相界面
でマトリックスと強化粒子とは容易にすべり変形が生じ
る。又、TiC粒子が高い温度において結晶粒の粗大化
を抑制し、マトリックスの結晶粒が微細化する。この二
つの効果により、この複合材料に高速度で超塑性が発現
する。尚、超塑性発現温度は、TiC粒子とアルミニウ
ムマトリックスとの界面で液相が生ずる固相線より高い
が、高歪速度で超塑性が発現するので、界面での液相状
態のアルミニウム固溶体とTiC粒子との接触時間は短
く、界面に反応生成物の発生は抑制できると考えられ
る。At the superplasticity temperature, the solid phase temperature of this solid solution is lower than that of the ground matrix, so that the matrix easily becomes a liquid phase even in a solid or semi-molten state. Slips easily occur. Further, the TiC particles suppress the coarsening of crystal grains at a high temperature, and the crystal grains of the matrix become fine. Due to these two effects, superplasticity is developed at high speed in this composite material. The superplasticity temperature is higher than the solidus line at which the liquid phase is generated at the interface between the TiC particles and the aluminum matrix, but since superplasticity is developed at a high strain rate, the aluminum solid solution in the liquid state at the interface and the TiC It is considered that the contact time with the particles is short and the generation of reaction products at the interface can be suppressed.
【0010】[0010]
【実施例】以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.
【0011】実施例1 平均粒子径が45μm以下の粗いTiC粒子と2124
アルミニウム合金粉末をTiC粒子の体積含有率が0.
20になるように混合し、粉末冶金法で造った直径40
mmの棒状の炭化チタン粒子強化2124アルミニウム
複合材料に対し500℃で押し出し加工をで行い6mm
の線材に加工し、更に、この素材を、ステンレスの板と
管にくるみ、500℃から580℃の温度範囲で加熱
し、歪量約0.1以下になるような小さな圧下率で圧延
する。これを繰り返し約1mmの厚さにになるまで圧延
を行う。Example 1 Coarse TiC particles having an average particle size of 45 μm or less and 2124
The aluminum alloy powder has a TiC particle volume content of 0.
Diameter of 40 mixed by powder metallurgy
mm extruded from titanium carbide particles reinforced 2124 aluminum composite material at 500 ° C for 6 mm
Then, the material is wrapped in a stainless steel plate and a tube, heated in a temperature range of 500 ° C. to 580 ° C., and rolled at a small reduction rate such that the strain amount is about 0.1 or less. This is repeated and rolling is performed until the thickness becomes about 1 mm.
【0012】図1にこの複合材料の変形抵抗と歪速度と
の関係を示す。引っ張り試験温度は545℃である。図
1から押し出し加工後圧延加工を加えた炭化チタン粒子
強化2124アルミニウム複合材料の変形抵抗の歪速度
感受性指数、m値は歪速度が1.0毎秒の時0.5であっ
た。m値が0.3以上あるので、この複合材料は超塑性
変形が生じていることを示している。FIG. 1 shows the relationship between the deformation resistance and strain rate of this composite material. The tensile test temperature is 545 ° C. From FIG. 1, the strain rate sensitivity index of the deformation resistance of the titanium carbide particle reinforced 2124 aluminum composite material subjected to the rolling process after the extrusion process, the m value was 0.5 when the strain rate was 1.0 per second. Since the m value is 0.3 or more, this indicates that the composite material has undergone superplastic deformation.
【0013】図2は同じ複合材料の全伸びと歪速度との
関係を示す。図2から押し出し加工後圧延加工を加えた
炭化チタン粒子強化2124アルミニウム複合材料の全
伸びは歪速度が1.0毎秒の時200%であった。実用
的に用いることができる全伸びを生じていることを示し
ている。 実施例2FIG. 2 shows the relationship between total elongation and strain rate for the same composite material. From FIG. 2, the total elongation of the titanium carbide particle-reinforced 2124 aluminum composite material subjected to extrusion and rolling was 200% at a strain rate of 1.0 per second. It shows that the total elongation that can be practically used is generated. Example 2
【0014】平均粒子径が約1μmの微細な炭化チタン
TiCと2014アルミニウム合金粉末とを加圧焼結に
よりつくり、実施例1と同じ条件で押し出し加工した
後、818Kで圧延加工を行い、約1mmの厚さの板状
の複合材料にする。これを818Kの温度で0.01か
ら1.5Sー1の歪速度で引っ張り試験を行った結果を図
3に示す。Fine titanium carbide TiC having an average particle diameter of about 1 μm and 2014 aluminum alloy powder were prepared by pressure sintering, and extruded under the same conditions as in Example 1, and then rolled at 818K to obtain about 1 mm. A plate-shaped composite material having a thickness of. FIG. 3 shows the result of a tensile test conducted at a strain rate of 0.01 to 1.5 S -1 at a temperature of 818K.
【0015】図3はTiC粒子強化2014アルミニウ
ム合金複合材料の歪速度と全伸びとの関係を示す。全伸
びは1.3Sー1の歪速度で350%を示しており、超塑
性が生じたことが分かった。 実施例3FIG. 3 shows the relationship between strain rate and total elongation of a TiC particle reinforced 2014 aluminum alloy composite material. The total elongation is 350% at a strain rate of 1.3 S -1 , which indicates that superplasticity has occurred. Example 3
【0016】平均粒子径が45μm以下の粗いTiC粒
子と6061アルミニウム合金粉末を用い粉末冶金法で
製造し、温度500℃・押し出し比44で押し出し加工
し、6mmの棒材にした後、温度853K(580℃)
で厚さが1mm以下になるように圧延加工を行った。こ
の板状複合材料を温度873K(600℃)で引っ張り
試験を行った時の全伸びと歪速度との関係を図4に示
す。この複合材料でも1.5毎秒で200%以上の全伸
びを生じており、TiC粒子強化アルミニウム合金複合
材料は著しい高歪速度で超塑性が発現することが実証さ
れた。Coarse TiC particles having an average particle diameter of 45 μm or less and 6061 aluminum alloy powder were used for powder metallurgical production, and extruded at a temperature of 500 ° C. and an extrusion ratio of 44 to form a 6 mm bar, and then a temperature of 853 K ( (580 ° C)
Then, rolling was performed so that the thickness was 1 mm or less. FIG. 4 shows the relationship between the total elongation and the strain rate when the plate-shaped composite material was subjected to a tensile test at a temperature of 873K (600 ° C). This composite material also produced a total elongation of 200% or more at 1.5 per second, demonstrating that the TiC particle reinforced aluminum alloy composite material exhibits superplasticity at a significantly high strain rate.
【0017】[0017]
【発明の効果】以上述べた本発明において、薄板状複合
材料を545℃ー600℃で引張試験を行い、0.3か
ら1.5Sー1の著しく速い歪速度で、160%から30
0%以上の高い全伸びの超塑性が発現することが分かっ
た。従って、高比強度・高比弾性率が期待される炭化チ
タン粒子強化アルミニウム合金複合材料を高速度で超塑
性成形することにより航空宇宙分野等での大型構造物を
高効率に成形するニィヤーネットシェイプ成形技術の確
立が可能なると考えられる。INDUSTRIAL APPLICABILITY In the present invention described above, the thin plate composite material is subjected to a tensile test at 545 ° C. to 600 ° C., and at a significantly high strain rate of 0.3 to 1.5 S −1 , 160% to 30%.
It was found that superplasticity with a high total elongation of 0% or more was developed. Therefore, a near net that efficiently molds a large structure in the aerospace field by superplastically forming a titanium carbide particle reinforced aluminum alloy composite material, which is expected to have high specific strength and high specific elastic modulus, at high speed. It is considered possible to establish shape molding technology.
【0018】[0018]
【 図1】炭化チタン粒子強化2124アルミニウム複
合材料に対し818K(545℃)の温度で引張試験を
行った時の変形抵抗と歪速度との関係を表すグラフであ
る。FIG. 1 is a graph showing the relationship between deformation resistance and strain rate when a tensile test is performed on a titanium carbide particle reinforced 2124 aluminum composite material at a temperature of 818K (545 ° C.).
【 図2】炭化チタン粒子強化2124アルミニウム複
合材料に対し818K(545℃)の温度で引張試験を
行った時の全伸びと歪速度との関係を表すグラフであ
る。FIG. 2 is a graph showing the relationship between total elongation and strain rate when a tensile test is performed on a titanium carbide particle reinforced 2124 aluminum composite material at a temperature of 818K (545 ° C.).
【 図3】炭化チタン粒子強化2014アルミニウム合
金複合材料に対し818K(545℃)の温度で引っ張
り試験を行った時の全伸びと歪速度との関係を表すグラ
フである。FIG. 3 is a graph showing the relationship between total elongation and strain rate when a tensile test is performed on a titanium carbide particle reinforced 2014 aluminum alloy composite material at a temperature of 818K (545 ° C.).
【 図4】炭化チタン粒子強化6061アルミニウム合
金複合材料に対し600℃の温度で引っ張り試験を行っ
た時の全伸びと歪速度との関係を表すグラフである。FIG. 4 is a graph showing the relationship between total elongation and strain rate when a tensile test is performed on a titanium carbide particle reinforced 6061 aluminum alloy composite material at a temperature of 600 ° C.
Claims (3)
子と粒度45μm以下の2000系、6000系、50
00系、7000系及び8000系アルミニウム合金粉
末とをTiC粒子の体積含有率が0.10から0.30に
なるようにエタノールのごとき有機溶媒中に入れ、プラ
スチックボールと共に24時間以上均一に混合後溶媒を
蒸発させ,その混合粉末を真空中にて温度450℃から
600℃で20分間200MPaから500MPaの圧
力加え、加圧焼結させた後、温度450℃から600℃
の温度で、押し出し比10以上で押し出し加工を加えた
超塑性複合材料の製造法。1. Titanium carbide TiC particles having a particle size of 45 μm or less and 2000 series, 6000 series, 50 having a particle size of 45 μm or less.
00 series, 7000 series and 8000 series aluminum alloy powders were placed in an organic solvent such as ethanol so that the volume content of TiC particles was from 0.10 to 0.30, and mixed uniformly with plastic balls for 24 hours or more. After evaporating the solvent and applying a pressure of 200 MPa to 500 MPa to the mixed powder in vacuum at a temperature of 450 ° C. to 600 ° C. for 20 minutes and pressure sintering, the temperature is 450 ° C. to 600 ° C.
A method for producing a superplastic composite material, which has been extruded at an extrusion ratio of 10 or more at the temperature.
温度で歪量1.0から4.0で圧延加工を加え、0.1m
m以上の厚さの板状複合材料に加工した超塑性複合材料
の製造法。2. The composite material is rolled at a temperature of 300 ° C. to 580 ° C. with a strain amount of 1.0 to 4.0 to obtain 0.1 m
A method for manufacturing a superplastic composite material processed into a plate-shaped composite material having a thickness of m or more.
度で、0.03から1.5毎秒以上の歪速度で引っ張り試
験を行うと、200%以上の全伸びを生ずる超塑性の発
現条件。3. A superplasticity developing condition that causes a total elongation of 200% or more when a tensile test is performed on the composite material at a temperature of 450 to 600 ° C. at a strain rate of 0.03 to 1.5 per second or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4450793A JPH0823051B2 (en) | 1993-02-09 | 1993-02-09 | Manufacturing method of superplasticity titanium carbide particle reinforced aluminum alloy composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4450793A JPH0823051B2 (en) | 1993-02-09 | 1993-02-09 | Manufacturing method of superplasticity titanium carbide particle reinforced aluminum alloy composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06235032A true JPH06235032A (en) | 1994-08-23 |
JPH0823051B2 JPH0823051B2 (en) | 1996-03-06 |
Family
ID=12693472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4450793A Expired - Lifetime JPH0823051B2 (en) | 1993-02-09 | 1993-02-09 | Manufacturing method of superplasticity titanium carbide particle reinforced aluminum alloy composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0823051B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104372190A (en) * | 2014-11-24 | 2015-02-25 | 哈尔滨工业大学 | Preparation method of titanium alloy particle-reinforced aluminium-based composite material |
KR20160072943A (en) * | 2014-12-15 | 2016-06-24 | 한국기계연구원 | Aluminum alloy matrix composite clad and fabrication method thereof |
JP2021523012A (en) * | 2018-05-08 | 2021-09-02 | マテリオン コーポレイション | How to heat strip products |
JP2021523011A (en) * | 2018-05-08 | 2021-09-02 | マテリオン コーポレイション | How to Make Metal Matrix Composite Strip Products |
-
1993
- 1993-02-09 JP JP4450793A patent/JPH0823051B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104372190A (en) * | 2014-11-24 | 2015-02-25 | 哈尔滨工业大学 | Preparation method of titanium alloy particle-reinforced aluminium-based composite material |
KR20160072943A (en) * | 2014-12-15 | 2016-06-24 | 한국기계연구원 | Aluminum alloy matrix composite clad and fabrication method thereof |
JP2021523012A (en) * | 2018-05-08 | 2021-09-02 | マテリオン コーポレイション | How to heat strip products |
JP2021523011A (en) * | 2018-05-08 | 2021-09-02 | マテリオン コーポレイション | How to Make Metal Matrix Composite Strip Products |
Also Published As
Publication number | Publication date |
---|---|
JPH0823051B2 (en) | 1996-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion | |
Pakdel et al. | A comprehensive microstructural analysis of Al–WC micro-and nano-composites prepared by spark plasma sintering | |
Koch | Intermetallic matrix composites prepared by mechanical alloying—a review | |
JP4890262B2 (en) | Titanium alloy microstructure refinement method and superplastic formation of titanium alloy at high temperature and high strain rate | |
Konstantinov et al. | Ti-B-based composite materials: Properties, basic fabrication methods, and fields of application | |
CN111500911A (en) | Preparation method of high-toughness nano reinforced metal matrix composite material | |
JPH0159343B2 (en) | ||
CN110592412B (en) | Nano-AlN particle reinforced mixed crystal heat-resistant aluminum matrix composite material and preparation method | |
JP2866917B2 (en) | Superplasticity Development Method for Ceramic Particle Reinforced Magnesium Matrix Composite by Melt Stirring Method | |
US4699849A (en) | Metal matrix composites and method of manufacture | |
Bhaumik et al. | Reaction sintering of NiAl and TiB2–NiAl composites under pressure | |
US4797155A (en) | Method for making metal matrix composites | |
Goswami et al. | Extrusion characteristics of aluminium alloy/SiCpmetal matrix composites | |
CN102021473B (en) | A kind of preparation method of Fe3Al-Al2O3 composite material | |
JP2560234B2 (en) | Method for producing foil of ceramic whisker and particle reinforced aluminum alloy composite material | |
JP2569418B2 (en) | Manufacturing method of superplastic aluminum nitride particle reinforced aluminum alloy composite material by hot extrusion and hot rolling and its processing method | |
JPH06235032A (en) | Method for developing superplasticity of titanium carbide reinforced aluminum alloy composite material | |
CN108149096A (en) | A kind of preparation method of nano-SiC particle enhancing magnesium-based composite material | |
JPWO2008123258A1 (en) | Binary aluminum alloy powder sintered material and method for producing the same | |
CN117062924A (en) | Metal matrix polymer derived ceramic composite material and method for producing and using the same | |
Golla | Highly strong aluminum via ball milling and high pressure hot press | |
JP3859224B2 (en) | Titanium diboride ceramic sintered body and manufacturing method | |
JPH0635631B2 (en) | Manufacturing method of superplastic silicon nitride whisker reinforced aluminum alloy composite material. | |
JPH0742531B2 (en) | A method for producing superplastic silicon nitride whisker reinforced aluminum plate composites by hot forging and hot rolling. | |
JP2657979B2 (en) | Forming method for composite ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |