[go: up one dir, main page]

JPH03106275A - Solid state image pickup device - Google Patents

Solid state image pickup device

Info

Publication number
JPH03106275A
JPH03106275A JP1244304A JP24430489A JPH03106275A JP H03106275 A JPH03106275 A JP H03106275A JP 1244304 A JP1244304 A JP 1244304A JP 24430489 A JP24430489 A JP 24430489A JP H03106275 A JPH03106275 A JP H03106275A
Authority
JP
Japan
Prior art keywords
exposure
circuit
screen
signal
video signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1244304A
Other languages
Japanese (ja)
Other versions
JPH0777439B2 (en
Inventor
Yoshihito Higashitsutsumi
良仁 東堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1244304A priority Critical patent/JPH0777439B2/en
Publication of JPH03106275A publication Critical patent/JPH03106275A/en
Publication of JPH0777439B2 publication Critical patent/JPH0777439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To accurately decide exposure in accordance with the state of a target even if the target is arranged at any position of a screen by dividing a receiving screen into plural areas and deciding the exposure from the respective states of the plural divided areas. CONSTITUTION:A video signal X(t) obtained from a CCD 1 is inputted to prescribed period integrating circuits 31 to 34 at respective timings of divided signals DS1 to DS4 and their integration values I1(t) to I4(t) are respectively applied to comparators 41 to 44. The comparators 41 to 44 compare the integration values I1(t) to I4(t) with the upper limit value VH and lower limit value VL of a proper exposure range and applies the compared results to an arithmetic circuit 8. The combination of four evaluation values is stored in a decoder 50, an exposure accelerating signal OPEN or an exposure suppressing signal CLOSE outputted from the decoder 50 is applied to a timing control circuit 6 and the expansion/contraction of the accumulation period of optical charge of the CCD 1 is controlled. Even when the target is not positioned at the center part of the screen, the exposure can be accurately decided.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、自動露光制御機能を備えた固体撮像装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a solid-state imaging device equipped with an automatic exposure control function.

(口)従来の技術 従来、COD固体撮像素子を用いた撮像装置に於いては
、CCDの駆動原理を活用して電子的に露光制御を行う
ことが提案されている。例えば、特開昭63−2476
4号公報に於いては、CCDの垂直走査期間毎の光電変
換期間の途中でそれまで撮像部に蓄積した光電荷を転送
排出し、残余の光電変換期間に光電変換して得た光電荷
を蓄積することで蓄積期間の伸縮制御を行っている.即
ち、光電荷の排出タイミングをCODの露光量に対応し
て変更することで、光電荷の蓄積期間が被写体の照度に
対応して伸縮制御される.このような露光制御手段では
、CCDの正確な露光量の検知が望まれ、種々の露光量
検知方法(測光方法)が考えられている.例えば、本願
出願人に依る特願昭63−35663号では、CCDか
ら得られる映像信号を1画面単位で積分し、その積分値
を上限値及び下限値の2値と夫々比較して露光量が適正
範囲内にあるか否かを判定している. 第6図は、自動露光制御機能を備えた固体撮像?置のブ
ロック図であり、第7図はその動作タイミング図である
(Example) Prior Art Conventionally, in an imaging device using a COD solid-state imaging device, it has been proposed to electronically control exposure by utilizing the driving principle of a CCD. For example, JP-A-63-2476
In Publication No. 4, in the middle of the photoelectric conversion period of each vertical scanning period of the CCD, the photocharges accumulated in the imaging section up to that point are transferred and discharged, and the photocharges obtained by photoelectric conversion are transferred during the remaining photoelectric conversion period. By accumulating it, we control the expansion and contraction of the accumulation period. That is, by changing the photocharge discharge timing in accordance with the COD exposure amount, the photocharge accumulation period is controlled to expand or contract in accordance with the illuminance of the subject. In such an exposure control means, it is desired to accurately detect the exposure amount of the CCD, and various exposure amount detection methods (photometry methods) have been considered. For example, in Japanese Patent Application No. 63-35663 filed by the present applicant, the exposure amount is determined by integrating the video signal obtained from the CCD in units of one screen and comparing the integrated value with two values, an upper limit value and a lower limit value. It is determined whether it is within the appropriate range. Figure 6 shows solid-state imaging with automatic exposure control function? FIG. 7 is a block diagram of the device, and FIG. 7 is a timing diagram of its operation.

COD(1)は受光した映像を一定期間単位で光電変換
し、画面単位で連続する映像信号X ,t)を出力する
もので、後述するクロック発生回路(7)に依ってパル
ス駆動される.COD(1)から得られる映像信号X 
,t,は、信号処理回路(2)でサンプルホールド、ガ
ンマ補正等の処理が施されてビデオ信号Y ,t)とし
て外部機器に出力される.また、映像信号X (t)は
積分回路(3)で1画面単位で積分され、積分値I c
t:lが比較回路(4)に入力される.積分値I (t
,は、第8図に示す如く時間tの経過に従って増大し、
水平走査期間の1周期(IV)毎のタイミングt1で比
較回路(4)に取り込まれると共に積分回路<3)がリ
セットされて基準レベルとなる.比較回路(4〉では、
適正露光範囲の上限値VH及び下限値VL( VL< 
Vl1)とタイミングt■での積分値I(tl)とが比
較され、その判定データEDがデコーダ(5〉に入力さ
れる.積分値I(tl)が第8図の破線Aの如<VI4
より高い場合、デコーダ(5〉は露光抑圧信号CLOS
Eをタイミング制御回路(6〉に供給し、逆に破線Bの
如くvLより低い場合、デコーダ(5)は露光促進信号
OPENをタイミング制御回路(6)に供給する.そし
て、積分値I(tl)がvLからVwの間にあると、デ
コーダ(5〉は何れの信号も発生せず、タイミング制御
回路ク6)の各タイミングは変化しない。タイミング制
御回路(6〉は、CCD(1)の光電荷の読出タイミン
グを決定する読出タイミング信号FTと光電荷の排出タ
イミングを決定する排出タイミング信号BTとを発生す
るもので、読出タイミング信号FTは、垂直走査信号V
Dのプランキング期間毎にタイミングパルス(イ)を有
していると共に、排出タイミング信号BTは、垂直走査
期間の所定のタイミングにタイミングパルス(口)を有
している.このタイミングパルス(口)は、デコーダ(
5〉からの露光抑圧信号CLOSEで発生タイミングが
水平走査信号HDの1周期(IH)毎に遅らせられ、露
光促進信号OPENでIH毎に早められ、CCD(1)
の光電荷の排出タイミングが可変設定される.即ち、ク
ロック発生回路(7)の発生する読出クロックφ,及び
排出クロックφ.は、読出タイミング信号FTのタイミ
ングバルスくイ)及び排出タイミング信号BTのタイミ
ンクハルス(ロ)4.1応してクロックパルス(ハ),
(二)を有しており、排出クロックφ,のクロックバル
ス(二〉から読出クロックφ,のクロックパルス(ハ)
までの期間Lで光電荷が蓄積される。従って、CC D
 (1)の露光量が少なくなって積分値1(tl)がV
,より小さくなると、排出クロックφ9のクロックパル
ス(二)の発生するタイミングが早くなり、光電荷の蓄
積期間Lが長くなる.逆にC O D (1)の露光量
が多くなって積分値I(tl)がv8より大きくなると
、クロックパルス(二)の発生タイミングが遅くなり蓄
積期間Lが短くなる. (ハ〉発明が解決しようとする課題 上述の如き固体撮像装置に於いては、被写体の照度に応
じてCODの光電荷の蓄積期間が伸縮制御され、COD
の露光状態が適正に保たれるが、光源を背にした被写体
を撮像するような場合露光量が適正範囲にあるにも拘わ
らず被写体自体は暗く写るような場合がある。これは、
被写体の照度が背景の照度に比して極端に低い場合、背
景部分を示す高レベルの映像信号が抑圧されることにな
るため、被写体部分を示す映像信号が適正レベルにあっ
たとしても抑圧されることになるからである, このような映像信号の不必要な抑圧を防止するため、一
般のビデオカメラ等に於いては、画面の中央部分の映像
信号を選択的に取り出し、画面中央部の露光量を測定す
るように構成されている。
The COD (1) photoelectrically converts the received image for a certain period of time and outputs a continuous image signal (X, t) for each screen, which is pulse-driven by a clock generation circuit (7) to be described later. Video signal X obtained from COD (1)
, t, is subjected to processing such as sample hold and gamma correction in the signal processing circuit (2), and is output to an external device as a video signal Y , t). In addition, the video signal
t:l is input to the comparison circuit (4). Integral value I (t
, increases as time t passes, as shown in FIG.
At timing t1 of every cycle (IV) of the horizontal scanning period, the signal is taken into the comparator circuit (4), and the integrating circuit <3) is reset to become the reference level. In the comparison circuit (4),
Upper limit value VH and lower limit value VL of the appropriate exposure range (VL<
Vl1) and the integral value I(tl) at timing t■ are compared, and the judgment data ED is input to the decoder (5>).
If higher, the decoder (5>) outputs the exposure suppression signal CLOS
E is supplied to the timing control circuit (6>), and conversely, when it is lower than vL as shown by the broken line B, the decoder (5) supplies the exposure promotion signal OPEN to the timing control circuit (6).Then, the integral value I(tl ) is between vL and Vw, the decoder (5> does not generate any signals and the timings of the timing control circuit (6) do not change.The timing control circuit (6>) It generates a readout timing signal FT that determines the readout timing of photocharges and a discharge timing signal BT that determines the discharge timing of photocharges. The readout timing signal FT is based on the vertical scanning signal V.
The discharge timing signal BT has a timing pulse (A) for each blanking period D, and the discharge timing signal BT has a timing pulse (A) at a predetermined timing of the vertical scanning period. This timing pulse (mouth) is passed to the decoder (
The generation timing is delayed by each cycle (IH) of the horizontal scanning signal HD by the exposure suppression signal CLOSE from 5>, and is advanced by each IH by the exposure promotion signal OPEN,
The discharge timing of the photocharge is variably set. That is, the read clock φ and the discharge clock φ. generated by the clock generation circuit (7). are the timing pulses of the read timing signal FT (a) and the timing pulses of the discharge timing signal BT (b) 4.1 correspondingly, the clock pulses (c),
(2) The clock pulse of the discharge clock φ, (2) The clock pulse of the read clock φ, (c)
Photocharges are accumulated during the period L up to this point. Therefore, C.C.D.
(1) The exposure amount becomes smaller and the integral value 1 (tl) becomes V
, the timing at which the clock pulse (2) of the discharge clock φ9 is generated becomes earlier, and the photocharge accumulation period L becomes longer. Conversely, when the exposure amount of C O D (1) increases and the integral value I(tl) becomes larger than v8, the timing of generation of the clock pulse (2) becomes delayed and the accumulation period L becomes shorter. (c) Problems to be Solved by the Invention In the solid-state imaging device as described above, the COD photocharge accumulation period is controlled to expand or contract depending on the illuminance of the subject, and the COD
However, when photographing a subject with its back to the light source, the subject itself may appear dark even though the exposure level is within the appropriate range. this is,
If the illuminance of the subject is extremely low compared to the background illuminance, the high-level video signal representing the background will be suppressed, so even if the video signal representing the subject is at an appropriate level, it will be suppressed. In order to prevent such unnecessary suppression of video signals, in general video cameras, etc., the video signals in the center of the screen are selectively extracted, and the video signals in the center of the screen are The device is configured to measure exposure.

即ち、通常のビデオカメラでは、操作者が被写体を画面
の中央部に写すように操作するために被写体は画面の中
央部に位置する場合が極めて多く、その中央部分の露光
量を検知すれば良いことになる。
In other words, with a normal video camera, the subject is often located in the center of the screen because the operator operates the camera to capture the subject in the center of the screen, and it is only necessary to detect the amount of exposure in that center. It turns out.

ところが、監視カメラやドアホン等の様に位置の固定さ
れたカメラでは被写体が必ずしも画面の中央部分に位置
するとは限らず、中央部分の映像信号から露光量を検知
することで被写体の露光量を検知できるとは限らなかっ
た. そこで本発明は、被写体の位置に拘わらず的確な露光量
を検知すると共に、被写体を示す映像信号を常に適正レ
ベルに保つように露光制御を行うことを目的とする. <二)課題を解決するための手段 本発明は上述の課題を解決するためのもので、受光した
画像を所定期間毎に光電変換して画面単位で連続す映像
信号を得る固体撮像素子、受光画面を複数の領域に分割
して各領域に対応する上記映像信号を夫々積分する積分
回路、この積分回路の1画面毎の積分値を適正露光範囲
の上限値及び下限値と比較して上記各分割領域の露光量
を過剰、適正、不足の3値で夫々評価する比較回路、こ
の比較回路の評価値を受けて適正露光領域の数を得ると
共に各評価値の総和を得る演算回路、上記適正露光領域
の数及び上記評価値の総和に応じて露光抑圧信号又は露
光促進信号を発生する露光制御回路、上記固体撮像素子
の所定期間毎の実効光電変換期間を上記露光抑圧信号で
短縮すると共に上記露光促進信号で伸長する駆動回路と
、を備えたことを特徴とする。
However, with fixed-position cameras such as surveillance cameras and doorbells, the subject is not necessarily located in the center of the screen, and the subject's exposure is detected by detecting the exposure from the video signal in the center. It wasn't necessarily possible. Therefore, an object of the present invention is to detect an accurate amount of exposure regardless of the position of the subject, and to perform exposure control so that the video signal representing the subject is always kept at an appropriate level. <2) Means for Solving the Problems The present invention is intended to solve the above-mentioned problems, and includes a solid-state image sensor that photoelectrically converts a received light image at predetermined intervals to obtain a continuous video signal for each screen, and a light receiving device. An integrating circuit that divides the screen into a plurality of regions and integrates the above-mentioned video signals corresponding to each region, and compares the integrated value of this integrating circuit for each screen with the upper and lower limits of the appropriate exposure range, and calculates the above-mentioned values. A comparator circuit that evaluates the exposure amount of the divided areas as three values: excessive, appropriate, and insufficient; an arithmetic circuit that receives the evaluation value of this comparison circuit to obtain the number of appropriate exposure areas and also calculates the sum of each evaluation value; an exposure control circuit that generates an exposure suppression signal or an exposure promotion signal according to the number of exposure areas and the sum of the evaluation values; The present invention is characterized by comprising a drive circuit that expands with an exposure promotion signal.

(*)作用 本発明に依れば、分割された複数の領域の夫々の状態か
ら露光量の判定が行われるため、被写体が画面上のどこ
に位置したとしても、被写体の状況に応じて的確な判定
が行われる。
(*) Effect According to the present invention, since the exposure amount is determined based on the state of each of the plurality of divided areas, no matter where the subject is located on the screen, the exposure amount can be determined accurately according to the situation of the subject. A judgment is made.

(へ〉実施例 本発明の一実施例を図面に従って説明する。(to) Example An embodiment of the present invention will be described with reference to the drawings.

第1図は本発明固体撮像装置のブロック図であり、4つ
の領域からの映像信号から露光状態の判定を行う場合を
示している。この図に於いて、CCD(1)、信号処理
回路(2)、タイミング制御回路(6)及びクロック発
生回路(7)は第6図と同一であり、説明は省略する. C C D (1)から得られる映像信号X(t)Iま
、分割信号DS.−DS.の各タイミングで所定の期間
積分回路(31〉〜(34)に取り込まれ、その積分値
h(1)〜I 4(t)が比較回路(41〉〜(44〉
に夫々与えられる。これら積分回路は、第2図に示す如
く、アナログスイッチ<301)、抵抗<302)、コ
ンデンサ(303)及びリセットトランジスタ(304
)からなるもので、分割信号DSに依ってアナログスイ
ッチ(301)が才ンしている期間のみに映像信号X 
(t)を取り込んでコンデンサ(303)に蓄積し、こ
のコンデンサ(303)の電位がトランジスタ(305
)及び抵抗(306)からなるソースフオロワ回路を介
して比較回路に出力される.そして、垂直走査信号VD
に同期したリセット信号RSに依って垂直走査期間毎に
コンデンサ(303)がリセットされて接地電位に引下
げられる。
FIG. 1 is a block diagram of the solid-state imaging device of the present invention, showing a case where the exposure state is determined from video signals from four regions. In this figure, the CCD (1), signal processing circuit (2), timing control circuit (6), and clock generation circuit (7) are the same as in FIG. 6, and their explanation will be omitted. The video signal X(t)I obtained from CCD (1) and the divided signal DS. -DS. are taken into the integration circuits (31> to (34)) for a predetermined period at each timing, and the integral values h(1) to I4(t) are input to the comparison circuits (41> to (44)
are given to each. As shown in FIG.
), the video signal
(t) and accumulates it in a capacitor (303), and the potential of this capacitor (303) changes to the transistor (305).
) and a resistor (306) to the comparison circuit via a source follower circuit. And vertical scanning signal VD
The capacitor (303) is reset and lowered to the ground potential every vertical scanning period by a reset signal RS synchronized with .

比較回路(41〉〜(44〉は、積分回路(31〉〜(
34)からの積分値1f(t)〜I 4(t)を適正露
光範囲の上限値Vイ及び下限値V,と比較し、その比較
結果を演算回路(8)に与える。これら比較回路仕、積
分値I +(1−)〜I a(t)をVM及びvLト夫
々比較する2つの差動アンプ(401 )(402)と
その比較出力をリセット信号RSの各タイミングで出力
するプリツブプロップ(403>(404)からなり、
2ビットの信号L,〜L4を出力して積分値L(’I−
)〜I 4(t)の判定結果を、露光不足’0,0,、
適正露光「01」、過剰露光’1,1.の3値何れかで
表わす.これら2ビットの信号L,〜L4は、演算回路
(8〉に入力され、’o,o,に対しては「0」、’0
,1,に対しては「1」、’1,1,に対しては「2」
が評価値として与えられる.演算回路(8)は、4つの
評価値を加算して総合評価データEDを得ると共に、適
正露光を示す評価値1″1」の数を適正数データQDと
して出力する.従って、評価データEDと適正数データ
QDとに依ってC O D (1)の露光状態が表わさ
れることになる. 即ち、信号L,〜L4に対する4つの評価値の組合せは
全部で3’(81)通り考えられるが、各信号L,〜L
4を入れ替えたものが同等とすれば、例えばr0120
Jと’2100,とが同等とすれば第3図に示す15通
りとなる。この図は、評価値の総和(評価データED)
が1だけ変化する場合に於いての’oooo,からr2
222Jまでの流れを示しており、評価データEDと適
正数データQDとで全てが表わされる.例えばEDが5
のときQDが1であれば’0122Jを示し、同じ<E
Dが5でもQDが3であれば’1112」を示すことに
なる. このような4つの評価値の組合せ番士、デコーダ(50
)に記憶され、評価データEDと適正数データQDとで
何れか1つが指定される.そこで、第3図に破線で示す
如く、露光量を促進するデータ(OPEN)、固定する
データ(HOLD)、抑圧するデータ(CLOSE)と
してデコーダ(50)に与えておくことに依り、指定さ
れた評価値の組合せがOPENにあれば露光促進信号O
PEN,CLOSEにあればデコーダ(50)が露光抑
圧信号CLOSEを出力し、}10LDにあれば何れの
信号も出力しない。このようなOPENSHOLD,C
LOSEの区分けは、基本的には評価データEDの小さ
い場合にOPEN,大きい場合にはCLOSEで、適正
数データQDが大きければHOLDとし、細部は必要に
応じて設定すれば良い. そして、デコーダ(50〉の出力する露光促進信号OP
EN或いは露光抑圧信号CLOSEは、タイミング制御
回路(6)に与えられ、第6図と同様にCOD(1)の
光電荷の蓄積期間が伸縮制御されることになる。
The comparison circuits (41>~(44>) are the integration circuits (31>~(44>)
The integrated values 1f(t) to I4(t) from 34) are compared with the upper limit value Vi and lower limit value V, of the appropriate exposure range, and the comparison result is provided to the arithmetic circuit (8). These comparison circuits include two differential amplifiers (401 and 402) that compare the integral values I+(1-) to Ia(t) with VM and vL, respectively, and their comparison outputs at each timing of the reset signal RS. Consists of output pritubprop (403>(404),
Output the 2-bit signals L, ~L4 and obtain the integral value L('I-
) ~ I 4 (t) judgment results as underexposure '0, 0, .
Proper exposure '01', overexposure '1, 1. It is expressed as one of the three values. These 2-bit signals L, ~L4 are input to the arithmetic circuit (8), and '0' and '0' are input to 'o' and 'o' respectively.
,1, is "1", and '1,1, is "2"
is given as the evaluation value. The arithmetic circuit (8) adds the four evaluation values to obtain comprehensive evaluation data ED, and outputs the number of evaluation values 1"1" indicating appropriate exposure as appropriate number data QD. Therefore, the exposure state of C O D (1) is represented by the evaluation data ED and the appropriate number data QD. That is, a total of 3' (81) combinations of the four evaluation values for the signals L, ~L4 are possible, but for each signal L, ~L4,
If 4 is replaced and it is equivalent, for example, r0120
If J and '2100 are equivalent, there will be 15 ways shown in FIG. This figure shows the sum of evaluation values (evaluation data ED)
'oooo, to r2 when changes by 1
It shows the flow up to 222J, and everything is expressed by evaluation data ED and appropriate number data QD. For example, the ED is 5
If QD is 1, it indicates '0122J, and the same <E
Even if D is 5, if QD is 3, it will indicate '1112'. A combination number of these four evaluation values, a decoder (50
), and one of the evaluation data ED and the appropriate number data QD is specified. Therefore, as shown by the broken line in FIG. 3, by providing data to the decoder (50) as data for promoting the exposure amount (OPEN), data for fixing it (HOLD), and data for suppressing it (CLOSE), the specified If the combination of evaluation values is OPEN, the exposure promotion signal O
If it is at PEN or CLOSE, the decoder (50) outputs the exposure suppression signal CLOSE, and if it is at }10LD, it does not output any signal. OPENSHOLD like this, C
The LOSE classification is basically OPEN if the evaluation data ED is small, CLOSE if it is large, and HOLD if the appropriate number data QD is large, and the details can be set as necessary. Then, the exposure promotion signal OP outputted from the decoder (50)
EN or the exposure suppression signal CLOSE is given to the timing control circuit (6), and the storage period of the photocharge of COD (1) is controlled to be expanded or contracted in the same way as in FIG.

上述のような手段に依れば、評価データEDのみで露光
量を判定していた従来の手段とは異なり、例えばEDが
3であってもQDが3であれば適正露光と判定されるが
、QDが1であれば露光不足と判定されるような場合が
生ずる。
According to the above-mentioned means, unlike the conventional means in which the exposure amount is determined only based on the evaluation data ED, for example, even if ED is 3, if QD is 3, it is determined that the exposure is appropriate. , if QD is 1, there may be cases where it is determined that the exposure is insufficient.

第4図は、ドアホンに本発明固体撮像装置を採用した場
合の画面の分割方法の一例を示すもので、第5図は第4
図のように画面を分割したときの各分割信号DS.〜D
S.のタイミング図である. 画面は、垂直方向に3分割され、そのうちの中央部が水
平方向に4つに均等分割されて合計6つの領域0ト■に
分割される。このうち領域■及び■に対応する映像信号
を積分して積分値1t(t)を得ると共に同じく領域■
及び■、領域■及び■、領域■及び■の映像信号から夫
々積分値工1(JyI act). I 4(t)を得
る.以上のように領域■を除く領域■〜■及び■から積
分値I,(t)〜I.(t)を得て第1図に示すように
自動露光制御を行う。
FIG. 4 shows an example of a screen dividing method when the solid-state imaging device of the present invention is adopted in a doorbell, and FIG.
Each divided signal DS when the screen is divided as shown in the figure. ~D
S. This is a timing diagram. The screen is divided vertically into three parts, and the central part of the screen is equally divided into four parts horizontally, resulting in a total of six areas. Of these, the video signals corresponding to areas ■ and ■ are integrated to obtain an integral value 1t(t), and the same area ■
Integral value act 1 (JyI act). We obtain I 4(t). As described above, from the regions ■ to ■ and ■ excluding the region ■, the integral values I, (t) to I. (t) and performs automatic exposure control as shown in FIG.

ドアホンの場合、画面の上部には、常に空が写ることに
なるために明暗の差が大きい空の写る領域■は露光量の
判定に用いられない. このような画面の分割は、実際には各積分回路(31)
〜(34)への映像信号X (t)の取り込みのタイミ
ングの設定で行われるものであり、第5図の如き4種類
の分割信号DS!〜DS.に依って分割される。即ち、
領域■を走査する期間工で辻、分割信号DS.〜DS.
が水平走査期間中「0」となり、各積分回路(31〉〜
(34〉には映像信号X(t)が取り込まれず、続く■
〜■を走査する期間Iでは、水平走査期間の%毎に分割
信号DS.−DS.が順次「1,となり、映像信号X 
(t)が水平走査期間のκ毎に各積分回路(31〉〜(
34〉に取り込まれる。そして、領域■を走査する期間
■では、分割信号DS.−DS.が水平走査期間中に「
1」となり、映像信号X (t)が水平走査期間毎に各
積分回路(31〉〜(34〉に取り込まれる.従って、
各積分回路(31)〜(34〉には、領域■〜■に対応
する映像信号X ,t)が夫々蓄積され、さらに領域■
に対応する映像信号X (t)が各積分回路(31)〜
〈34)に蓄積される. 以上のように、4つの積分値を得るために4つの積分回
路(31)〜(34)を設けることの他に、積分回路を
1つとし、この積分回路を4つのフィールドに亘って4
種類の領域の映像信号を順次取り込むようにタイミング
(分割信号)を設定し、演算回路(8)をバラレルな入
力からシリアルな入力に変更すれば、第1図と同様の動
作が可能となる.この場合、露光量の判定に4フィール
ドを要するため応答速度は遅くなるが、回路規模を大幅
に縮小することができるため、安価で小型の固体撮像装
置への採用に極めて有効となる. 尚、以上の実施例に於いては、4種類の領域から4つの
積分値を得て露光量の判定を行う場合を例示したが、3
種類の領域或いは5種類以上の領域から夫々積分値を得
て露光量の判定をすることも同様に行うことができる. (ト〉発明の効果 本発明に依れば、被写体が必ならずしも画面中央部に位
置しない監視カメラやドアホン等に於いても、的確な露
光量の判定が行われ、常に被写体に応じた自動露光制御
を実現でき、再生画面の画質の向上が望める.
In the case of a doorbell, the sky is always reflected at the top of the screen, so the area ■ where the sky is visible, where there is a large difference in brightness, is not used to determine the exposure amount. This kind of screen division is actually done by each integrating circuit (31).
This is done by setting the timing of taking in the video signal X (t) to (34), and the four types of divided signals DS! ~DS. It is divided according to That is,
During the period of scanning the area ■, the divided signal DS. ~DS.
becomes “0” during the horizontal scanning period, and each integration circuit (31〉~
(34> does not receive the video signal X(t), and continues ■
In period I during which ~■ is scanned, the divided signal DS. -DS. sequentially becomes ``1,'' and the video signal
(t) is each integrating circuit (31〉~(
34>. Then, during the period (■) in which the area (■) is scanned, the divided signal DS. -DS. during the horizontal scanning period.
1'', and the video signal
In each of the integrating circuits (31) to (34), video signals X, t) corresponding to areas ■ to ■ are accumulated, respectively, and
The video signal X (t) corresponding to each integrating circuit (31) to
It is accumulated in <34). As described above, in addition to providing four integration circuits (31) to (34) to obtain four integral values, one integration circuit is provided, and this integration circuit is connected to four fields over four fields.
By setting the timing (divided signals) to sequentially capture the video signals of different regions and changing the arithmetic circuit (8) from parallel input to serial input, the same operation as shown in Figure 1 is possible. In this case, the response speed is slow because four fields are required to determine the exposure amount, but the circuit scale can be significantly reduced, making it extremely effective for use in inexpensive and compact solid-state imaging devices. In the above embodiment, the case where the exposure amount is determined by obtaining four integral values from four types of areas was exemplified, but three
It is also possible to determine the exposure amount by obtaining integral values from each type of area or five or more types of areas. (G) Effects of the Invention According to the present invention, even in surveillance cameras, door phones, etc. where the subject is not necessarily located in the center of the screen, accurate exposure determination can be made, and the exposure is always adjusted according to the subject. It is possible to realize automatic exposure control and improve the image quality of the playback screen.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明に係り、第1図はブロック図
、第2図は積分回路と比較回路との回路図、第3図は評
価値の組合せを示す図、第4図は画面分割の一例を示す
図、第5図は第4図の分割を行うタイミング図である.
第6図は従来の固体撮像装置のプIffック図、第7図
はその動作タイミング図、第8図は積分値の経時変化を
示す図である。 (1〉・・・COD,  (2)・・・信号処理回路、
 (3) (31〉〜《34〉・・・積分回路、 (4
)(41)〜〈44〉・・・比較回路、  (5)(5
0)・・・デコーダ、 (6〉・・・タイミング制御回
路、 回路. (7)・・・クロック発生回路、 (8)・・・演算
1 to 5 relate to the present invention, FIG. 1 is a block diagram, FIG. 2 is a circuit diagram of an integrating circuit and a comparison circuit, FIG. 3 is a diagram showing combinations of evaluation values, and FIG. 4 is a diagram showing a combination of evaluation values. A diagram showing an example of screen division, and FIG. 5 is a timing diagram for performing the division shown in FIG.
FIG. 6 is a schematic diagram of a conventional solid-state imaging device, FIG. 7 is an operation timing diagram thereof, and FIG. 8 is a diagram showing changes in integral values over time. (1>...COD, (2)...signal processing circuit,
(3) (31>~<34>...integrator circuit, (4
)(41) to <44>...Comparison circuit, (5)(5
0)...Decoder, (6>...Timing control circuit, circuit. (7)...Clock generation circuit, (8)...Calculation

Claims (3)

【特許請求の範囲】[Claims] (1)受光した画像を所定期間毎に光電変換して画面単
位で連続する映像信号を得る固体撮像素子、 受光画面を複数の領域に分割して各領域に対応する上記
映像信号を夫々積分する積分回路、 この積分回路の1画面毎の積分値を適正露光範囲の上限
値及び下限値と比較して上記各分割領域の露光量を過剰
、適正、不足の3値で夫々評価する比較回路、 この比較回路の評価値を受けて適正露光領域の数を得る
と共に各評価値の総和を得る演算回路、上記適正露光領
域の数及び上記評価値の総和に応じて露光抑圧信号又は
露光促進信号を発生する露光制御回路、 上記固体撮像素子の所定期間毎の実効光電変換期間を上
記露光抑圧信号で短縮すると共に上記露光促進信号で伸
長する駆動回路、 を備えたことを特徴とする固体撮像装置。
(1) A solid-state image sensor that photoelectrically converts the image it receives at predetermined intervals to obtain continuous video signals for each screen, and divides the light-receiving screen into multiple areas and integrates the video signals corresponding to each area, respectively. an integrating circuit; a comparison circuit that compares the integrated value of this integrating circuit for each screen with an upper limit value and a lower limit value of an appropriate exposure range and evaluates the exposure amount of each divided area as three values: excessive, appropriate, and insufficient; An arithmetic circuit that receives the evaluation value of this comparison circuit to obtain the number of appropriate exposure areas and the sum of each evaluation value, and outputs an exposure suppression signal or an exposure promotion signal according to the number of appropriate exposure areas and the sum of the evaluation values. A solid-state imaging device comprising: an exposure control circuit that generates photoelectric conversion, and a drive circuit that shortens an effective photoelectric conversion period of the solid-state imaging device for each predetermined period using the exposure suppression signal and extends it using the exposure promotion signal.
(2)適数個の上記積分回路に1垂直走査期間内の映像
信号を異なるタイミングで順次取り込み、分割された複
数の領域に対応する映像信号を各積分回路に夫々蓄積し
て複数の積分値を同一の垂直走査期間に得ることを特徴
とする請求項第1項記載の固体撮像装置。
(2) Sequentially capture video signals within one vertical scanning period into an appropriate number of the above-mentioned integrating circuits at different timings, accumulate video signals corresponding to the plurality of divided regions in each integrating circuit, and obtain a plurality of integral values. 2. The solid-state imaging device according to claim 1, wherein the images are obtained during the same vertical scanning period.
(3)各垂直走査期間毎に夫々異なるタイミングで映像
信号を一つの上記積分回路に取り込み、分割された複数
の領域に対応する映像信号を複数の垂直走査期間に亘っ
て上記積分回路に順次蓄積して複数の積分値を垂直走査
期間毎に連続して得ることを特徴とする請求項第1項記
載の固体撮像装置。
(3) Video signals are taken into one of the integration circuits at different timings for each vertical scanning period, and video signals corresponding to the plurality of divided areas are sequentially accumulated in the integration circuit over a plurality of vertical scanning periods. 2. The solid-state imaging device according to claim 1, wherein a plurality of integrated values are continuously obtained in each vertical scanning period.
JP1244304A 1989-09-20 1989-09-20 Solid-state imaging device Expired - Fee Related JPH0777439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1244304A JPH0777439B2 (en) 1989-09-20 1989-09-20 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1244304A JPH0777439B2 (en) 1989-09-20 1989-09-20 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH03106275A true JPH03106275A (en) 1991-05-02
JPH0777439B2 JPH0777439B2 (en) 1995-08-16

Family

ID=17116748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1244304A Expired - Fee Related JPH0777439B2 (en) 1989-09-20 1989-09-20 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JPH0777439B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386231A (en) * 1990-04-09 1995-01-31 Sony Corporation Video camera

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212083A (en) * 1988-02-18 1989-08-25 Sanyo Electric Co Ltd Solid-state image pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212083A (en) * 1988-02-18 1989-08-25 Sanyo Electric Co Ltd Solid-state image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386231A (en) * 1990-04-09 1995-01-31 Sony Corporation Video camera

Also Published As

Publication number Publication date
JPH0777439B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US20110080494A1 (en) Imaging apparatus detecting foreign object adhering to lens
JPS6032488A (en) Image pickup device
CN102821249A (en) Imaging apparatus and exposure control method
JP2006005520A (en) Imaging apparatus
WO2003105467A1 (en) Digital still camera apparatus, video camera apparatus, and information terminal apparatus
US8279304B2 (en) Photography apparatus that selects optimal photography methods and obtains dynamic range expanded images based on images obtained by photography
JPH0614236A (en) Electronic still camera
JPH0399589A (en) solid camera
CN102857700A (en) Image capturing apparatus and method for controlling the image capturing apparatus
JPH077651A (en) Exposure control circuit
JPH0564083A (en) Solid-state electronic imaging device
RU59923U1 (en) CCD CAMERA
US20020030151A1 (en) Method and apparatus for instantaneous exposure control in digital imaging devices
JP3384818B2 (en) Camera, preliminary photometric method thereof, preliminary photometric device and method
JPH03106275A (en) Solid state image pickup device
US8195041B2 (en) Exposure control unit and imaging apparatus
JP2001339633A (en) Solid image pickup device for still image
JP3397384B2 (en) Imaging device
JP3123884B2 (en) Solid-state imaging device
JP2878708B2 (en) Exposure control method
JPH09116805A (en) Automatic focus adjustment device
JPH02134986A (en) Image pickup device
JP2527956B2 (en) Imaging device
JP2579159B2 (en) Imaging device
JP2003008983A (en) Image pickup device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees