[go: up one dir, main page]

JPH03104262A - Vibration-proof heat transfer structure - Google Patents

Vibration-proof heat transfer structure

Info

Publication number
JPH03104262A
JPH03104262A JP1242460A JP24246089A JPH03104262A JP H03104262 A JPH03104262 A JP H03104262A JP 1242460 A JP1242460 A JP 1242460A JP 24246089 A JP24246089 A JP 24246089A JP H03104262 A JPH03104262 A JP H03104262A
Authority
JP
Japan
Prior art keywords
heat transfer
cooling
displacement
transfer laminate
arm section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1242460A
Other languages
Japanese (ja)
Inventor
Hideto Ueno
秀人 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1242460A priority Critical patent/JPH03104262A/en
Publication of JPH03104262A publication Critical patent/JPH03104262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To make it possible to improve vibration protection characteristic without damaging cooling characteristic by curving a heat transfer laminated material which is L-shaped on the surface so that both ends of the laminated material may cross each other and fixing respectively both ends which are broken into two elements to be thermally coupled. CONSTITUTION:A heat transfer laminated material 30 comprises 10 and more L-shaped oxygen free copper foils piled up. Parts 30a and 30b on the both ends are pasted together by soldering. The part 30a on one end is vertically fixed with the side of a mounting rib 3b vertically installed to the part 30b on a cooling end 3 while the part 30b on the opposite end is horizontally fixed with a lower surface of a support base 10. The end parts 30a and 30b are positioned so that they may cross each other. An arm section 30d is curved as for Z axis while an arm section 30e is also curved as for X axis. When a cooling end is subjected to displacement in X direction, the arm section 30e is freely bent in the direction of thickness. When subjected to displacement in Y1 direction, the arm section 30e is freely bent in the direction of thickness, thereby absorbing the displacement simultaneously. When subjected to displacement in Z1 direction, the arm section 30e is freely bent in the direction of thickness, thereby absorbing the displacement. It is, therefore, possible to improve vibration protection characteristic without damaging cooling characteristic.

Description

【発明の詳細な説明】 〔概要〕 赤外線検出素子等の半導体素子を伝熱ラミネート材を介
して冷却器により冷却する防振型伝熱構造に関し、 冷却特性を損なわずに、防振特性の改善を可能とするこ
とを目的とし、 平面形状がL字形の伝熱ラミネート材を、その両端が互
いに直交する如く湾曲させ、該伝熱ラミネート材の各端
部を熱的に結合すべき2つの要素にそれぞれ接続固定し
て構成する。
[Detailed Description of the Invention] [Summary] Regarding a vibration-proof heat transfer structure in which a semiconductor element such as an infrared detection element is cooled by a cooler via a heat-transfer laminate material, improvement of vibration-proof characteristics without impairing the cooling property. A heat transfer laminate material having an L-shaped planar shape is curved so that its ends are perpendicular to each other, and each end of the heat transfer laminate material is connected to two elements to be thermally connected. Connect and configure each.

〔産業上の利用分野〕[Industrial application field]

本発明は赤外線検出素子等の半導体素子を伝熱ラミネー
ト材を介して冷却器により冷却する防振型伝達構造に関
する。
The present invention relates to a vibration-proof transmission structure in which a semiconductor element such as an infrared detection element is cooled by a cooler via a heat-transfer laminate material.

第6図はこの種の半導体素子冷却装置の一般的な構造を
示す。
FIG. 6 shows the general structure of this type of semiconductor device cooling device.

1は循環冷却器であり、基台2上に設けてある。Reference numeral 1 denotes a circulation cooler, which is provided on a base 2.

3は冷却端部であり、冷却器1より上方に延出している
3 is a cooling end, which extends upward from the cooler 1.

4は内筒部、5は外筒部であり、夫々のフランジ部6が
光学部7に固定してある。
Reference numeral 4 designates an inner cylinder portion, and reference numeral 5 represents an outer cylinder portion, each of which has a flange portion 6 fixed to an optical portion 7.

8はベローズであり、冷W器1の振動の内筒部4等への
伝播を防止し、且つ内筒部4内を真空状態の気密に保つ
Reference numeral 8 denotes a bellows, which prevents the vibrations of the cold water heater 1 from propagating to the inner cylinder part 4 and the like, and keeps the inside of the inner cylinder part 4 airtight in a vacuum state.

冷却端部3は内筒部4内に突出している。The cooling end portion 3 projects into the inner cylinder portion 4 .

9は光学窓であり、外筒部5の上端を塞いでいる。Reference numeral 9 denotes an optical window, which closes the upper end of the outer cylinder portion 5.

10は支持台であり、内筒部4の上端に固定してある。Reference numeral 10 denotes a support stand, which is fixed to the upper end of the inner cylinder part 4.

11は赤外線検出素子であり、支持台10上に固定して
ある。
Reference numeral 11 denotes an infrared detection element, which is fixed on the support base 10.

この赤外線検出素子11は−200℃程度の極く低潟に
冷却することにより、高い検出特性が発揮される。
This infrared detection element 11 exhibits high detection characteristics by cooling it to a very low temperature of about -200°C.

12は伝熱ラミネートであり、支持台10と冷却端部3
との間に設けてある。
12 is a heat transfer laminate, which includes a support base 10 and a cooling end portion 3;
It is placed between.

冷却端部3は冷却器1により−200℃程度の掻く低温
とされており、赤外線検出素子11は伝熱ラミネート1
2を介して−200℃程度に冷却される。
The cooled end portion 3 is kept at a low temperature of about -200°C by the cooler 1, and the infrared detection element 11 is heated to a low temperature of about -200°C by the cooler 1.
2 to about -200°C.

冷却器1は例えば逆スターリングサイクルによるヘリウ
ム%環型冷即器であり、冷却器内部にモータ,クランク
ーピストン機構部からなる振動源を有しており動竹時に
振動する。冷却器1が振動すると、冷即端部3も振動す
る。
The cooler 1 is, for example, a helium % ring type refrigerator based on a reverse Stirling cycle, and has a vibration source consisting of a motor and a crank piston mechanism inside the cooler, and vibrates during operation. When the cooler 1 vibrates, the cold end portion 3 also vibrates.

伝熱ラミネート12は、■ 熱抵抗が低いこと、■ 可
撓性を有し冷却端部3の振動を素子11に伝達しないよ
うな構成である必要がある。
The heat transfer laminate 12 needs to be configured such that: (1) it has low thermal resistance; (2) it has flexibility and does not transmit vibrations of the cooling end portion 3 to the element 11;

〔従来の技術〕[Conventional technology]

第7図は従来例の要部を示す。 FIG. 7 shows the main part of the conventional example.

伝熱ラミネート20は、幅W1が6〜7aw.長さL1
が30am+程度の長方形状であり、極く簿い無酸素銅
製の箔を10数枚重ねて両端側だけを半田付けして固定
した構成であり、U字状に湾曲させて一端(ll20a
が冷却端部3の上面3aに固定され、他端側20aが支
持台10の下面に固定されている。
The heat transfer laminate 20 has a width W1 of 6 to 7 aw. length L1
It has a rectangular shape with a diameter of about 30 am+, and is made by stacking more than 10 very cheap oxygen-free copper foils and fixing them by soldering only on both ends.
is fixed to the upper surface 3a of the cooling end 3, and the other end 20a is fixed to the lower surface of the support base 10.

両方の固定部分は平行な位置関係にある。Both fixed parts are in a parallel position.

冷即端部3は、矢印x.y,z方向に振動する。The cold end portion 3 is indicated by the arrow x. It vibrates in the y and z directions.

(発明が解決しようとする課題) 冷郎端部3の矢印Y方向の振動及び矢印Z方向の振動に
対しては、伝熱ラミネート20は厚さ方向に柔軟に撓む
(Problems to be Solved by the Invention) The heat transfer laminate 20 flexibly bends in the thickness direction in response to vibrations of the cold end portion 3 in the direction of the arrow Y and in the direction of the arrow Z.

しかし、矢印X方向は伝熱ラミネート20の幅方向であ
るため、伝熱ラミネート20は撓みにくい。
However, since the arrow X direction is the width direction of the heat transfer laminate 20, the heat transfer laminate 20 is difficult to bend.

このため、矢印X方向の振動成分の・一部が赤外線検出
素子11に不要に伝達され、素子11を通して再生され
た画像が劣化してしまう。
Therefore, a part of the vibration component in the direction of arrow X is unnecessarily transmitted to the infrared detection element 11, and the image reproduced through the element 11 is deteriorated.

また、伝熱ラミネート20の固定部分に応力が繰り返し
作用して、この部分が予定よりも早い時期に破断し、寿
命の点でも問題があった。
Furthermore, stress repeatedly acts on the fixed portion of the heat transfer laminate 20, causing this portion to break earlier than expected, which also poses a problem in terms of service life.

なお、上記伝熱ラミネート20の幅を狭くし、長さを長
くすると、伝熱ラミネートは矢印X方向にも可動の自由
度が増えて上記問題は改善されるけれども、このように
すると伝熱性が悪化してしまう。
Note that by narrowing the width and increasing the length of the heat transfer laminate 20, the degree of freedom of movement of the heat transfer laminate in the direction of the arrow X increases and the above problem is improved; It gets worse.

本発明は、冷却特性を損なわずに、防振特性の改善を可
能とした防振型伝熱構造を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a vibration-isolating heat transfer structure that can improve vibration-isolating characteristics without impairing cooling characteristics.

(課題を解決するための手段) 本発明は、平面形状がL字形の伝熱ラミネート材を、そ
の両端が互いに直交する如く湾曲させ、該伝熱ラミネー
ト材の各端部を熱的に結合すべき2つの要素にそれぞれ
接続固定してqる構成である。
(Means for Solving the Problems) The present invention curves a heat transfer laminate material having an L-shaped planar shape so that its ends are perpendicular to each other, and thermally connects each end of the heat transfer laminate material. This is a configuration in which the two elements are connected and fixed to each other.

〔作用〕[Effect]

L字形の伝熱ラミネート材をその両端を実質上直交する
位8%係で固定したことにより、伝熱ラミネート材は、
冷却端部の直交する三方向の振動の全部に対して厚さ方
向に撓むことが可能となる。
By fixing the L-shaped heat transfer laminate material with an 8% tension at substantially orthogonal positions at both ends, the heat transfer laminate material is
It becomes possible to bend the cooling end in the thickness direction in response to vibrations in all three orthogonal directions.

〔実施例〕〔Example〕

第1図は本発明の一実施例の要部を示す。 FIG. 1 shows a main part of an embodiment of the present invention.

30は伝熱ラミネート材であり、第2図(A),(B)
に示すように、!Wzが6〜7 eta ,長さL2が
30m,厚さt+が0.05屠程度のL字形の無酸素銅
製の@31を10数枚積み重ね、両端の部分30a.3
0bを半田により貼り合せてなる構造である。
30 is a heat transfer laminate material, as shown in Figs. 2 (A) and (B).
As shown,! Ten or more L-shaped oxygen-free copper @31 with Wz of 6 to 7 eta, length L2 of 30 m, and thickness t+ of about 0.05 min are stacked, and the end portions 30a. 3
It has a structure in which 0b is bonded together with solder.

伝熱ラミネート材30は、第2図(A)に示すように、
両端側の部分30a.30bと、L字形の中央部30c
と、この中央部30cと端部30a,30bとの間の腕
部30d.30eとよりなる。
The heat transfer laminate material 30, as shown in FIG. 2(A),
Both end portions 30a. 30b and L-shaped central part 30c.
and an arm portion 30d between this central portion 30c and end portions 30a, 30b. 30e and more.

この伝熱ラミネート材30は、第1図に示すように、一
の端部30aを冷!]端部3上に垂直に立設してある取
付用リブ3bの垂直な側面に垂直に固定し、反対側の端
部30bを支持台10の下面に水平に固定して取り付け
てある。
As shown in FIG. 1, this heat transfer laminate material 30 has one end 30a cooled! ] It is fixed perpendicularly to the vertical side surface of the mounting rib 3b vertically provided on the end 3, and the opposite end 30b is fixed horizontally to the lower surface of the support base 10.

端部30aと30bとは直交する位置関係にある。The end portions 30a and 30b are in a perpendicular positional relationship.

腕部30dは、Z軸に関して湾曲しており、腕部30e
は、X軸に関して湾曲している。
The arm portion 30d is curved with respect to the Z axis, and the arm portion 30e
is curved about the X axis.

次に、伝熱ラミネート030を上記のように組み込んだ
赤外線検出素子冷が装置の冷却特性及び防振特性につい
て説明する。
Next, the cooling characteristics and vibration damping characteristics of the infrared detection element cooling device incorporating the heat transfer laminate 030 as described above will be explained.

まず、冷却特性について説明する。First, the cooling characteristics will be explained.

上記伝熱ラミネート材30は形状がL字状である以外は
、幅w2,長さL2共第2図の伝熱ラミネート12と同
一であり、冷却装置は従来と同程度の優れた冷却特性を
有する。
The heat transfer laminate material 30 has the same width w2 and length L2 as the heat transfer laminate 12 shown in FIG. 2, except that it has an L-shape, and the cooling device has excellent cooling characteristics comparable to the conventional one. have

次に防振特性について説明する。Next, the anti-vibration characteristics will be explained.

冷却端部3が第1図中矢印×1方向に変位したときには
、第3図に示すように、腕部30dが厚さ方向に自由に
撓んで上記の変位を吸収する。
When the cooling end portion 3 is displaced in the x1 direction of the arrow in FIG. 1, the arm portion 30d freely bends in the thickness direction to absorb the displacement, as shown in FIG.

冷却端部3が第1図中矢印Y1方向に変位したときには
、第4図に示すように、腕部30dが厚さ方向に自由に
撓み、同時に腕部30eが厚さ方向に撓んで、上記の変
位を吸収する。
When the cooling end portion 3 is displaced in the direction of arrow Y1 in FIG. 1, the arm portion 30d bends freely in the thickness direction, and at the same time the arm portion 30e bends in the thickness direction, as shown in FIG. absorbs the displacement of

冷即端部3が第1図中矢印z1方向に変位したときには
、第5図に示すように、腕部30eが厚さ方向に自由に
撓んで、上記の変位を吸収する。
When the cold fastening end portion 3 is displaced in the direction of arrow z1 in FIG. 1, the arm portion 30e is freely bent in the thickness direction to absorb the above displacement, as shown in FIG.

従って、伝熱ラミネート材30は、冷却端部の矢印X,
Y.Zの全部の方向の振動に対して自由に撓み、冷却端
部3の振動は素子11に伝達されず、素j’11を冷即
端部3に対して防振する特性は従来より優れている。
Therefore, the heat transfer laminate material 30 is
Y. It bends freely against vibrations in all directions of Z, the vibrations of the cooled end 3 are not transmitted to the element 11, and the properties of vibration isolation of the element j'11 against the cooled end 3 are superior to conventional ones. There is.

これにより、素子11を通して再生される画像は従来に
比べて画像劣化の少ない高品質の画像となる。
As a result, the image reproduced through the element 11 becomes a high-quality image with less image deterioration than in the past.

また、冷却端部3の互いに直交する三方向の振動に対し
て、伝熱ラミネート30は厚さ方向に自由に撓むため、
固定端部分30a,30bに不要な応力が作用すること
が無く、伝熱ラミネート30が早期に破断して、寿命が
不当に短くなるような不都合は生じない。
In addition, the heat transfer laminate 30 bends freely in the thickness direction in response to vibrations of the cooling end 3 in three mutually orthogonal directions.
Unnecessary stress is not applied to the fixed end portions 30a, 30b, and the heat transfer laminate 30 does not break at an early stage and its life is unduly shortened.

なお、本発明の冷却装置は、赤外線検出素子に限らず、
他の冷却を必要とする部品の冷郎にも適用しうる。
Note that the cooling device of the present invention is not limited to infrared detection elements.
It can also be applied to other parts that require cooling.

また、冷却のみならず、その他2要素間の熱伝導にも適
用可能である。
Moreover, it is applicable not only to cooling but also to heat conduction between two other elements.

〔発明の効果) 以上説明した様に、本発明によれば、伝熱ラミネート材
は互いに直交する三方向の振動に対していずれも厚さ方
向に撓むことが出来、然して、冷却特性を何ら損なわず
に、防振特性を改善することが出来、特に被冷却素子が
赤外線検出素子のように画像を再生する素子である場合
には、従来に比べて画像劣化が少なく高品質の画像を得
ることが出来る。また、伝熱ラミネート材の一部に応力
が作用することが無く、伝熱ラミネート材の早期の破断
を防止し得、長寿命を得ることが出来る。
[Effects of the Invention] As explained above, according to the present invention, the heat transfer laminate material can be bent in the thickness direction in response to vibrations in three directions perpendicular to each other, and the cooling properties are not affected in any way. It is possible to improve the anti-vibration characteristics without sacrificing image quality, and especially when the cooled element is an element that reproduces images, such as an infrared detection element, it is possible to obtain high-quality images with less image deterioration than before. I can do it. Moreover, stress does not act on a part of the heat transfer laminate material, and early breakage of the heat transfer laminate material can be prevented and a long life can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の防振型伝熱構造の一実施例の要部を示
す図、 第2図は第1図中の伝熱ラミネート材を展開して示す図
、 第3図は冷却端部の矢印X+方向変位時の伝熱ラミネー
ト材の変形状態を示す図、 第4図は冷却端部の矢印Y1方向変位時の伝熱ラミネー
ト材の変形状態を示す図、 第5図は冷却端部の矢印Z1方内変位時の伝熱ラミネー
ト材の変形状態を示す図、 第6図は赤外線検出素子冷却構造の一般的な構成を示す
図、 第7図は従来例を示す図である。 図において、 1は循環冷却器、 3は冷即端部、 3bは取付用リブ、 4は内簡部、 10は支持台、 11は赤外線検出素子、 30は伝熱ラミネート材、 30a.30bは端部、 30cは中央部、 30d.30eは腕部 を示す。
Fig. 1 is a diagram showing the main parts of an embodiment of the vibration-proof heat transfer structure of the present invention, Fig. 2 is an expanded view of the heat transfer laminate material in Fig. 1, and Fig. 3 is a cooling end. Figure 4 is a diagram showing the deformation state of the heat transfer laminate material when the cooling end is displaced in the direction of arrow Y1. Figure 5 is a diagram showing the deformation state of the heat transfer laminate material when the cooling end is displaced in the direction of arrow Y1. FIG. 6 is a diagram showing a general configuration of an infrared detection element cooling structure, and FIG. 7 is a diagram showing a conventional example. In the figure, 1 is a circulation cooler, 3 is a cooling end, 3b is a mounting rib, 4 is an inner part, 10 is a support base, 11 is an infrared detection element, 30 is a heat transfer laminate material, 30a. 30b is an end portion, 30c is a central portion, 30d. 30e indicates an arm.

Claims (1)

【特許請求の範囲】[Claims] 平面形状がL字形の伝熱ラミネート材を、その両端(3
0a、30b)が互いに直交する如く湾曲させ、該伝熱
ラミネート材の各端部(30a、30b)を熱的に結合
すべき2つの要素にそれぞれ接続固定してなることを特
徴とする防振型伝熱構造。
A heat transfer laminate material with an L-shaped planar shape is placed at both ends (3
0a, 30b) are curved so as to be orthogonal to each other, and each end (30a, 30b) of the heat transfer laminate material is connected and fixed to two elements to be thermally coupled. Type heat transfer structure.
JP1242460A 1989-09-19 1989-09-19 Vibration-proof heat transfer structure Pending JPH03104262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242460A JPH03104262A (en) 1989-09-19 1989-09-19 Vibration-proof heat transfer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242460A JPH03104262A (en) 1989-09-19 1989-09-19 Vibration-proof heat transfer structure

Publications (1)

Publication Number Publication Date
JPH03104262A true JPH03104262A (en) 1991-05-01

Family

ID=17089422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242460A Pending JPH03104262A (en) 1989-09-19 1989-09-19 Vibration-proof heat transfer structure

Country Status (1)

Country Link
JP (1) JPH03104262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142647A (en) * 1993-11-15 1995-06-02 Nec Corp Semiconductor device
WO1999019908A1 (en) * 1997-10-14 1999-04-22 Matsushita Electric Industrial Co., Ltd. Thermal conductive unit and thermal connection structure using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142647A (en) * 1993-11-15 1995-06-02 Nec Corp Semiconductor device
WO1999019908A1 (en) * 1997-10-14 1999-04-22 Matsushita Electric Industrial Co., Ltd. Thermal conductive unit and thermal connection structure using same
US6257328B1 (en) 1997-10-14 2001-07-10 Matsushita Electric Industrial Co., Ltd. Thermal conductive unit and thermal connection structure using the same

Similar Documents

Publication Publication Date Title
US5031689A (en) Flexible thermal apparatus for mounting of thermoelectric cooler
KR101384426B1 (en) Base for power module
US10980151B2 (en) Flexible heat transfer mechanism configurations
JP6409690B2 (en) Cooling module
JP2010161203A (en) Heat dissipation device, power module, and method of manufacturing power module
US20120097372A1 (en) Heat sink
JP2010245265A (en) Thermoelectric module
JPH03104262A (en) Vibration-proof heat transfer structure
EP1208343A1 (en) Heat exchanger and method of constructing same
JP3665508B2 (en) Heat sink with fins
US20040066814A1 (en) Semiconductor laser module and optical Transmitter
JP4140138B2 (en) Printed circuit board cooling structure
JP5065202B2 (en) Semiconductor device
JP2010016025A (en) Superconducting device
JP2009111171A (en) Circuit board support structure for electronic equipment
TWI272703B (en) Semiconductor device
JPS60235430A (en) semiconductor equipment
JP3960264B2 (en) Manufacturing method of semiconductor device
TWI805404B (en) Lens module and electronic device
JPH0571871B2 (en)
JPH02242079A (en) Flexible heat transfer member
KR100418685B1 (en) Heat Transfer Absorber for Cryocooler
JP2000269391A (en) Thermal distortion absorber and power semiconductor device using the same
JP5206330B2 (en) Power module
WO2016079970A1 (en) Cooling module