[go: up one dir, main page]

JPH0298352A - Internal shunt type artificial vein - Google Patents

Internal shunt type artificial vein

Info

Publication number
JPH0298352A
JPH0298352A JP63252469A JP25246988A JPH0298352A JP H0298352 A JPH0298352 A JP H0298352A JP 63252469 A JP63252469 A JP 63252469A JP 25246988 A JP25246988 A JP 25246988A JP H0298352 A JPH0298352 A JP H0298352A
Authority
JP
Japan
Prior art keywords
fibers
artificial blood
blood vessel
needle
polyurethane elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63252469A
Other languages
Japanese (ja)
Inventor
Etsuo Yoshikawa
吉川 悦雄
Yoshikazu Kondo
義和 近藤
Yasuhiro Ogawa
康弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP63252469A priority Critical patent/JPH0298352A/en
Publication of JPH0298352A publication Critical patent/JPH0298352A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels

Landscapes

  • Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

PURPOSE:To obtain an internal shunt type artificial vein which can be easily pierced by a syringe and which can bear against frequent piercing of syringes by having a porous pipe-like member in which polyurethane elastic fibers are joined together and which includes a plurality of covering layers made of fibers in a part of the wall thereof, and by setting the amount of leakage after piercing of a syringe to a value less than 200ml/min. CONSTITUTION:Polyurethane elastic fibers applied for an artificial vein, are obtained by reaction among 500 to 600 molecular weights of polyol, block copolymer thereof or the like, less than 500 molecular weights of organic diisocyanate or the like, and a chain elongating agent such as, water, hydrazine, diamine, grycol or the like. The vein is made of a porous pipe-like member while the amount of leakage after piercing of a syringe should be less than 200ml/min. The polyurethane elastic fiber forming the artificial vein is monofilament preferably having an averaged diameter of less than 30mu, more preferably 5 to 20mu. With this arrangement, blood is rapidly blocked by slightly pressing the vein. Further, the recovery of a damage part is rapid after piercing of a syringe, and there are no increase in the thickness of the inner membrane and no blockage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、人工血管に関する。さらに詳しくは、人工血
液透析を始めとする血液体外循環用内シャント式ブラン
ドアクセス作製に好適な人工血管に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an artificial blood vessel. More specifically, the present invention relates to an artificial blood vessel suitable for producing an internal shunt type access for extracorporeal blood circulation such as artificial hemodialysis.

(従来の技術) 不治の病と言われていた腎不全患者に対して、透析器を
用いた人工透析療法が定着し、腎不全患者の生存率は年
々延長している。慢性透析療法を施行するに当り、患者
より血液を導き出し、透析器を介して、老廃物を透析除
去し返血する血液の出入口は、ブラッドアクセスと呼ば
れる。このブラッドアクセスには、種々の種類(第1表
参照)があり、治療目的や対象患者の状態によりそれぞ
れの方法が選択されるが、慢性透析患者に対しては患者
の行動上の制限あるいは管理上の問題から、主に患者の
皮下に動静脈吻合を作る内シャントが使用されている。
(Prior Art) Artificial dialysis therapy using a dialyzer has become established for patients with renal failure, which was said to be an incurable disease, and the survival rate of patients with renal failure is increasing year by year. When performing chronic dialysis therapy, the blood inlet and outlet through which blood is taken out from the patient, waste products are dialysed and returned to the patient via a dialyzer is called a blood access. There are various types of blood access (see Table 1), and each method is selected depending on the treatment purpose and the condition of the target patient. Because of the above problems, internal shunts are mainly used to create an arteriovenous anastomosis under the patient's skin.

内シャントは、患者自身の末梢動静脈吻合、自家静脈移
植、人工血管移植等により造設される。通常は患者自身
の血管を用いるが、近年高齢の患者あるいは糖尿病性腎
症を持った患者が増加し1、患者自身の血管を用いた内
シャント造設がおこなえない場合が認められている。こ
のような患者においては、動脈硬化による将来のACバ
イパス術も有り得るため、自家静脈移植を行うことがで
きず、人工血管移植を行なわなければならない、また、
内シャント造設による他の血管の圧迫ないし閉塞を防止
するためにも、長さおよび径が自由に選択できる人工血
管移植がおこなわれている。
An internal shunt is created by the patient's own peripheral arteriovenous anastomosis, autologous vein grafting, artificial blood vessel grafting, etc. Usually, the patient's own blood vessels are used, but in recent years the number of elderly patients or patients with diabetic nephropathy has increased,1 and it has been recognized that there are cases in which it is not possible to construct an internal shunt using the patient's own blood vessels. In such patients, there is a possibility of future AC bypass surgery due to arteriosclerosis, so autologous vein grafting cannot be performed and artificial blood vessel grafting must be performed.
In order to prevent compression or occlusion of other blood vessels due to the creation of an internal shunt, artificial blood vessel transplantation is performed in which the length and diameter can be freely selected.

(発明が解決しようとする問題点) 第2表に、ブラッドアクセスとして用いられるグラフト
を記した。このうち、入手しやすさ、太さおよび長さの
選択が自由であることなど比較的取扱やすいという理由
から、現在では主にE−PTFE製のグラフトが用いら
れている。しかしながら、この延伸ポリテトラフルオロ
エチレン(EP T F E)人工血管には、いくつか
の問題点が認められている。すなわち、第一に、移植後
の血漿漏洩と漿液腫の発生であり、第二に、剛直なE−
PTFEを素材として用いているため、透析療法に当た
って穿針時に穿針部位に大きな穴が生じてしまい、この
穿針部位に血栓の発生、内膜の肥厚、栓塞等が生しやす
いということである。また、この穿針により離断した部
位に動脈瘤の発生も認このように、従来使用されている
人工血管は、穿針により大きな影響を受けるので、これ
を改良し、穿針に耐え得る人工血管の開発を考えるに至
った。すなわち、穿針に耐える人工血管の条件としては
、 +l)穿刺時に針による…傷部位ができるだけ小さいこ
とが望ましく、このため穿針による内膜の肥厚、栓塞が
生じない、 (2)穿針抜去後の針穴が小さく、軽い押圧により速や
かに止血する、 (3)穿針により離断された繊維が原因で、はつれ、破
裂等が生じない。
(Problems to be Solved by the Invention) Table 2 lists grafts used as blood access. Among these, grafts made of E-PTFE are currently mainly used because they are relatively easy to handle, such as easy availability and freedom of choice in thickness and length. However, several problems have been recognized with this expanded polytetrafluoroethylene (EP T F E) artificial blood vessel. Firstly, plasma leakage and seroma development after transplantation, and secondly, rigid E-
Because PTFE is used as a material, a large hole is created at the needle puncture site during dialysis therapy, which is prone to the formation of blood clots, thickening of the intima, and emboli. . In addition, the occurrence of aneurysms has been observed at the site of transection caused by this puncture.As the conventionally used artificial blood vessels are greatly affected by the puncture, we have developed an artificial blood vessel that can withstand the puncture. This led me to consider the development of blood vessels. In other words, the conditions for an artificial blood vessel that can withstand puncture are as follows: +l) It is desirable that the wound site caused by the needle at the time of puncture be as small as possible, so that thickening of the intima and occlusion due to the puncture do not occur; (2) Removal of the puncture needle; The subsequent needle hole is small and bleeding stops quickly with light pressure. (3) No tearing or rupture occurs due to the fibers severed by the puncture needle.

(4)周囲生体組織との結合が強固で、穿針後血腫を形
成しない、 ことなどが挙げられる。
(4) It has a strong bond with the surrounding living tissue and does not form a hematoma after needle puncture.

前述の様な従来のブラッドアクセス用(シャント用)人
工血管の欠点を改良し、穿針に耐える人工血管として、
少なくとも血液接触面をポリウレタン又はポリウレタン
ウレアで構成した人工血管で壁内にポリエステル繊維を
[%したチューブ状の補強材を配してなる人工血管(特
開昭625354号公報参照)が提案されている。しか
し、この人工血管においてはポリエステル繊維をW織し
たチューブ状の補強材により穿針抵抗が大きくなること
が考えられる。
By improving the drawbacks of conventional blood access (shunt) artificial blood vessels as mentioned above, we have created an artificial blood vessel that can withstand needle puncture.
An artificial blood vessel has been proposed in which at least the blood contact surface is made of polyurethane or polyurethane urea, and a tube-shaped reinforcing material made of polyester fibers is disposed within the wall (see Japanese Patent Laid-Open No. 625354). . However, in this artificial blood vessel, it is thought that the needle puncture resistance becomes large due to the tubular reinforcing material made of W-woven polyester fibers.

また、穿針耐性を上げることを目的としていないが、エ
ラストマー製の人工血管のコンプライアンスおよび応力
−歪曲線を生体血管に近似させようとして多孔性エラス
トマー管状体の一部に繊維で構成された管状物を複合さ
セた人工血管も提案されている(特開昭61−1763
53号公報特開昭61−185271号公報、特開昭6
1244345号公報参照)。さらに、これと同じ技術
を用いて高圧蒸気滅菌可能な人工血管の提案もなされて
いる(特開昭62−64361号公報参照)。
In addition, although the purpose is not to increase needle puncture resistance, in order to approximate the compliance and stress-strain curve of an elastomer artificial blood vessel to that of a biological blood vessel, a tubular structure made of fibers is used as a part of a porous elastomer tubular body. Artificial blood vessels with a combination of
No. 53, JP-A-61-185271, JP-A-6
(See Publication No. 1244345). Furthermore, an artificial blood vessel that can be sterilized using high-pressure steam has also been proposed using the same technique (see Japanese Patent Laid-Open No. 64361/1983).

しかしながら、これらの提案においては多孔性を得るた
めに成形時に造孔剤を用いる。このため、成形後これら
が除去不十分であれば生体に悪影響を及ぼすことが考え
られる。
However, in these proposals, a pore-forming agent is used during molding to obtain porosity. For this reason, if these are insufficiently removed after molding, it may have an adverse effect on the living body.

また、近年、合成人工血管においては開存性に対する有
孔性(透水率)の重要性が認識されてきている。即ち、
抗血栓性にすぐれたセグメント化ポリウレタンを用いて
人工血管を製造しても透水率が低いものは開存性に劣る
という指摘がなされている。
Furthermore, in recent years, the importance of porosity (water permeability) to patency in synthetic artificial blood vessels has been recognized. That is,
It has been pointed out that even if artificial blood vessels are manufactured using segmented polyurethane with excellent antithrombotic properties, those with low water permeability will have poor patency.

しかるに、前記提案においては、透水率を上げ組織の侵
入が容易な人工血管を得ることは困難である。また透水
率を上げようとすると管壁が極端に弱くなり補強を強化
することが必要である。これは、穿針抵抗の増加につな
がるものである。
However, in the above proposal, it is difficult to obtain an artificial blood vessel with increased water permeability and easy tissue penetration. Additionally, if you try to increase the water permeability, the pipe walls will become extremely weak and reinforcement will need to be strengthened. This leads to an increase in needle puncture resistance.

本発明の目的は前記欠点を解消し、十分な有孔性(i3
水率)を有し、穿針が容易でかつ顧問の穿針に耐える内
シャント用人工血管として最適の人工血管を堤供するこ
とにある。
The object of the present invention is to overcome the above-mentioned drawbacks and to provide sufficient porosity (i3
The purpose of the present invention is to provide an artificial blood vessel suitable for use as an internal shunt artificial blood vessel, which has a high water content), is easy to puncture, and is resistant to puncture by a consultant.

(問題点を解決するための手段) すなわち本発明は、ポリウレタン弾性繊維が相互に接合
された多孔性の管状体であって、該管状体の管壁の一部
に繊維よりなる被覆層を有し、かつ穿針後漏水量が20
0m//分以下である内シャント用人工血管である。
(Means for Solving the Problems) That is, the present invention provides a porous tubular body in which polyurethane elastic fibers are mutually bonded, and a part of the wall of the tubular body has a coating layer made of fibers. and the amount of water leaked after needle puncture is 20
This is an artificial blood vessel for internal shunt with a flow rate of 0 m//min or less.

(作用) 本発明の人工血管に適用するポリウレタン弾性繊維は、
公知の熱可り性ポリウレタン弾性体よりなる繊維であり
、分子量500〜6,000のポリオール、例えばジヒ
ドロキシポリエーテル、ジヒドロキシポリエステル、ジ
ヒドロキシシリコーン、ジヒドロキシポリカーボネート
、ジヒドロキシポリエステルアミド、またはこれらのプ
ロ・7り共重合体等、分子量500以下の有機ジイソシ
アネート、例えばp、p’ −ジフェニルメタンジイソ
シアノート、トリレンジイソシアネート、イソホロンジ
イソシアネート、2.6−ジイツシア不−トメチルカプ
ロエート、ヘキサメチレンジイソシアネート、ジシクロ
ヘキシルメタンジイソシア不−ト、メタキシリレンジイ
ソシアネート等と、鎖伸長剤、例えば水、ヒドラジン、
ジアミン、グリコール等との反応により得られるポリマ
ーからなる繊維である。これらのポリマーのうち特に良
好なものは、ポリオールとしてポリテトラメチレングリ
コール、ポリテトラメチレングリコールとシリコーンの
ブロック共重合体またはポリエチレングリコールとシリ
コーンのブロック共重合体を用いたポリマーである。ま
た有機ジイソシアネートとしてはp、p’ −ジフェニ
ルメタンジイソシアネートが好適である。また、鎖伸長
剤としてはグリコールが好適で、1.4−ブタンジオー
ルまたはビス−β−ヒドロキシエトキシベンゼンが特に
好適である。
(Function) The polyurethane elastic fiber applied to the artificial blood vessel of the present invention is
These fibers are made of a known thermoplastic polyurethane elastomer, and contain polyols with a molecular weight of 500 to 6,000, such as dihydroxy polyether, dihydroxy polyester, dihydroxy silicone, dihydroxy polycarbonate, dihydroxy polyester amide, or a combination of these compounds. Polymers, etc., organic diisocyanates with a molecular weight of 500 or less, such as p,p'-diphenylmethane diisocyanate, tolylene diisocyanate, isophorone diisocyanate, 2,6-diythiomethylcaproate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate inert, metaxylylene diisocyanate, etc., and a chain extender such as water, hydrazine, etc.
It is a fiber made of a polymer obtained by reaction with diamine, glycol, etc. Particularly good among these polymers are those using polytetramethylene glycol, a block copolymer of polytetramethylene glycol and silicone, or a block copolymer of polyethylene glycol and silicone as the polyol. Moreover, p,p'-diphenylmethane diisocyanate is suitable as the organic diisocyanate. Moreover, glycol is suitable as a chain extender, and 1,4-butanediol or bis-β-hydroxyethoxybenzene is particularly suitable.

本発明による人工血管の基本構造は、上記ポリウレタン
弾性繊維の集合体がその接触点において相互に接合され
てなる多孔性の管状体である。
The basic structure of the artificial blood vessel according to the present invention is a porous tubular body in which the above-mentioned polyurethane elastic fiber aggregates are joined to each other at their contact points.

この基本となる管状体は種々の方法によって製造できる
が、−例を挙げると、例えばつぎのような方法がある。
This basic tubular body can be manufactured by various methods, including, for example, the following method.

tll熱可塑性ポリウレタン弾性体を溶融紡糸後、高温
気体を噴流し、細化して得られた実質的に連続したフィ
ラメントをシート状に積層し、積層されたフィラメント
の接触点を該フィラメント自体により接合されたポリウ
レタン弾性繊維不織布を8棒に積層して加熱成形して管
状体を形成させる方法(特開昭61.−136,085
号公報参照)。
After melt-spinning the thermoplastic polyurethane elastomer, the substantially continuous filaments obtained by jetting high-temperature gas and thinning are laminated into a sheet, and the contact points of the laminated filaments are joined by the filaments themselves. A method of laminating 8 rods of polyurethane elastic fiber nonwoven fabric and forming a tubular body by heating and forming the same
(see publication).

(2)ポリウレタンよりなる繊維形成重合体を含有する
液体組成物を静電気的に紡糸して繊維を形成させ、この
ようにして形成された繊維を形付き成形具上に補集する
ことにより管状体を形成させる方法(特開昭52−11
0.977号、特開昭54151.675号、特開昭5
9−11.864号および特開昭60−190,947
号の各公報参照)。
(2) A liquid composition containing a fiber-forming polymer made of polyurethane is electrostatically spun to form fibers, and the thus-formed fibers are collected on a shaped molding tool to form a tubular body. Method of forming
No. 0.977, JP-A No. 54151.675, JP-A No. 5
No. 9-11.864 and JP-A-60-190,947
(Refer to each publication in issue).

(3)芯捧上にポリウレタン弾性繊維を押出しながら該
8棒を回転させて巻取ることにより管状体を形成させる
方法(特開昭58−157,465号公報参照) (4)ポリマー溶液をノズルを通してスプレーすること
により単繊維を形成させ、このIll、繊維を8棒に巻
きつけて管状体を形成させる方法(特開昭59181.
149号公報参照) (5)その他の方法。
(3) A method of forming a tubular body by rotating and winding the eight rods while extruding polyurethane elastic fibers onto a core (see Japanese Patent Laid-Open No. 157,465/1983) (4) Spreading the polymer solution through a nozzle A method in which a single fiber is formed by spraying through a fiber, and the fiber is wound around eight rods to form a tubular body (Japanese Patent Application Laid-open No. 59181.
(See Publication No. 149) (5) Other methods.

しかして、前記方法のうち、+11の方法が最も好まし
い。
Therefore, among the above methods, method +11 is the most preferred.

本発明による人工血管は前記ポリウレタン弾性繊維が相
互に接合された多孔性の管状体の管壁の一部に繊維より
なる被imを有する0本発明にいう管状体の管壁の一部
とは、管状体の管壁の内部のみならず内面、外面をも含
む、即ち、被覆層は外面および/または内面に位置して
いても良い。
The artificial blood vessel according to the present invention has a porous tubular body in which the polyurethane elastic fibers are mutually bonded, and a part of the tube wall of the tubular body is provided with a coating made of fibers. , includes not only the inside but also the inner and outer surfaces of the tube wall of the tubular body, that is, the coating layer may be located on the outer surface and/or the inner surface.

顧問の穿針後も高い強力を維持するためには、被覆層は
管状体と強固に一体化していることが好ましい、また、
穿針による被覆層の繊維の切断、はつれの発生を考慮す
ると、これらが血流にさらされないことが好ましい。こ
れらの事情を勘案すれば被覆層が管壁の内部に存在する
ことが好ましい。
In order to maintain high strength even after the puncture of the advisor, it is preferable that the coating layer is firmly integrated with the tubular body, and
Considering the occurrence of cutting and fraying of the fibers of the coating layer by the puncture needle, it is preferable that these fibers are not exposed to blood flow. Taking these circumstances into consideration, it is preferable that the coating layer exists inside the tube wall.

本発明の被覆層を構成する繊維は、生体に対して支全て
かつ生体内劣化性が低く、滅菌可能でありかつ目的とす
る被覆層を形成できるものであれば特に限定されない。
The fibers constituting the coating layer of the present invention are not particularly limited as long as they are fully resistant to living organisms, have low in vivo deterioration, are sterilizable, and can form the intended coating layer.

しかし、加工性、入手の容易さ、しなやかさ、均一性な
どの点からすると再生繊維、半合成繊維、合成繊維が好
ましい、具体例としては、セルロース系、蛋白質系、ポ
リアミド系、ポリエステル系、ポリウレタン系、ポリエ
チレン系、ポリプロピレン系、ポリ塩化ビニル系、ポリ
塩化ビニリデン系、ポリアクリル系、ポリビニルアルコ
ール系、ポリフルオロエチレン系、ポリビニルアルコー
ル系などの繊維があげられる。
However, from the viewpoint of processability, ease of availability, flexibility, and uniformity, recycled fibers, semi-synthetic fibers, and synthetic fibers are preferred; specific examples include cellulose-based, protein-based, polyamide-based, polyester-based, and polyurethane-based fibers. Examples include fibers of polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyacrylic, polyvinyl alcohol, polyfluoroethylene, and polyvinyl alcohol.

これらのうちでは、ポリウレタン弾性繊維、ポリエステ
ル弾性繊維のように繊維自体が伸縮性を有するものや、
ウーリーナイロン、ウーリーポリエステルに代表される
高高加工糸や、ゴムあるいは弾性糸を芯として他の紡績
糸あるいはフィラメント糸を巻きつけたカバード糸の様
な伸縮性を有するものが管状体の伸縮特性を損なわない
ので通しており、さらに、管状体を構成するポリウレタ
ン弾性繊維と同じ繊維または該繊維とほぼ同じ軟化点を
有するポリウレタン弾性繊維が好適である。
Among these, the fibers themselves have elasticity, such as polyurethane elastic fibers and polyester elastic fibers,
Highly processed yarns such as woolly nylon and woolly polyester, and covered yarns made of rubber or elastic yarns wrapped around other spun yarns or filament yarns, have elastic properties that can improve the elasticity of the tubular body. The polyurethane elastic fibers are preferably the same as the polyurethane elastic fibers constituting the tubular body or have approximately the same softening point as the polyurethane elastic fibers.

この理由は前述した最も好ましい製造方法(特開昭61
−136,085号公報参照)を用いて本発明の人工血
管を製造する際、加熱処理によってより強固に一体化す
るので、人工血管の強度が向上し、穿針後も高い強度を
維持できるからである。
The reason for this is the above-mentioned most preferred manufacturing method (Japanese Unexamined Patent Publication No. 61
When manufacturing the artificial blood vessel of the present invention using the artificial blood vessel (see Publication No. 136,085), the strength of the artificial blood vessel is improved because it is more firmly integrated by heat treatment, and high strength can be maintained even after puncture. It is.

また、一方体体内において長期安定であるポリエステル
繊維、ポリ−4−フン化エチレン繊維、ポリエチレン繊
維、ポリプロピレンIli維が強度向上効果が大きいの
で好ましく、さらにこれらのうちでは管状体との接着一
体化という点でポリエステル繊維が最も好ましい。
On the other hand, polyester fibers, poly-4-fluorinated ethylene fibers, polyethylene fibers, and polypropylene Ili fibers, which are stable for a long time in the body, are preferable because they have a large strength-improving effect. In this respect, polyester fibers are most preferred.

本発明の被覆層は前記繊維よりなる糸条、あるいはこれ
ら糸条の少なくとも、1種以上を用いた織物、編物、組
物あるいは前記繊維よりなる不織布あるいはこれらを組
み合わせたものである。
The coating layer of the present invention is a yarn made of the above-mentioned fibers, a woven fabric, a knitted fabric, a braided fabric using at least one kind of these yarns, a non-woven fabric made of the above-mentioned fibers, or a combination thereof.

管状体との一体化という点では、前記被覆層のうち糸条
、目の粗い織物または編物が適しており、なかでも管状
体の最も好ましい製造方法である前記の不織布積層加熱
成形法においては、各不織布層の密着化及び、透水率の
調節がはがれるという点において、糸条により被覆層を
形成するのが最適である。糸条による被覆層の形成は前
記製造法においては、8棒へのポリウレタン弾性繊維不
織布の積層中に少なくとも1回糸条をらせん状に巻き付
は加熱成形するか、又は不織布を少量積層した後−旦加
熱成形しその上から糸条をらせん状に巻き付け、さらに
不織布を積層し加熱成形することにより達成される。従
って、被IIi!層は1層以上の複雑層の存在も可能で
ある。
In terms of integration with the tubular body, among the coating layers, threads, coarse woven fabrics, or knitted fabrics are suitable, and in the nonwoven fabric lamination heat forming method, which is the most preferable manufacturing method for the tubular body, It is optimal to form the coating layer with threads in terms of adhesion of each nonwoven fabric layer and adjustment of water permeability by peeling. In the above production method, the coating layer is formed by threads by wrapping the threads in a spiral shape at least once during the lamination of the polyurethane elastic fiber nonwoven fabric around the eight rods, or by heating and forming the threads, or after laminating a small amount of the nonwoven fabric. - Achieved by first heating and forming, then spirally winding a yarn thereon, then laminating a nonwoven fabric and heating and forming. Therefore, IIi! The existence of one or more complex layers is also possible.

本発明の人工血管は、前記多孔性の管状体よりなり穿針
後面水量が200m17分以下であることを特徴とする
。この穿針後面水量とは、次のように定義される看であ
る。すなわち、給水装置により内腔が水で120mmH
gに加圧された有効長5cmの人工血管片を37℃の恒
温水槽に浸し、これを漏水しないように穴を詰めた14
Gプラスチツク外套付留置針にて侵入角30°で針が先
端より2cmまで人工血管内に入るように穿針し5時間
放置する。この時、針で人工血管の対壁に傷をつけない
ように注意する。5時間後、恒温水槽より取り出して抜
針する。抜針後針穴から漏出する水の量を測定し、抜針
直後から1分間に漏出した水の量をもって穿針後面水量
という。なお、多孔性の人工血管の場合、前もって犬、
牛等の血液でブレクロノティングを施したものを用いる
。また、給水装置は12QmmHgで2000mJ!/
分以上の能力を有するものを用いる。穿針後面装置は、
200m1/分以下であれば内シャントとして用いた場
合、抜針後の止血性が十分であるが、さらに150m1
/分であればより良好な止血性を有し、さらに100m
1/分以下であれば万全である。穿針後漏水量が200
m1/分より大きいと内シャントとして用いた場合、止
血性が低下する。
The artificial blood vessel of the present invention is characterized in that it is made of the porous tubular body and has a water volume after puncture of 200 m17 minutes or less. This amount of water after puncturing the needle is defined as follows. In other words, the inner cavity is filled with water at 120 mmH by the water supply device.
A piece of artificial blood vessel with an effective length of 5 cm pressurized to
Puncture the artificial blood vessel with an indwelling needle with a G plastic jacket at an entry angle of 30° so that the needle enters the artificial blood vessel 2 cm from the tip and leave it for 5 hours. At this time, be careful not to damage the opposite wall of the artificial blood vessel with the needle. After 5 hours, remove it from the constant temperature water bath and remove the needle. The amount of water leaking from the needle hole after needle removal is measured, and the amount of water leaking for one minute from immediately after needle removal is called the amount of water after needle puncture. In addition, in the case of porous artificial blood vessels, the dog,
Use blood from cows, etc. that has been subjected to brecronoting. Also, the water supply device is 2000mJ at 12QmmHg! /
Use a device with a capacity of more than 1 minute. The puncture device is
If it is less than 200 m1/min, when used as an internal shunt, hemostasis after needle removal is sufficient, but if it is less than 150 m1/min,
/min has better hemostasis, and even 100 m
If it is less than 1/min, it is safe. Water leakage after needle puncture is 200
When it is larger than m1/min, when used as an internal shunt, hemostasis is reduced.

本発明の人工血管を構成するポリウレタン弾性繊維の平
均直径はモノフィラメントとして30ミクロン以下が好
ましく特に5〜20ミクロンが好適である。繊維の平均
直径が30ミクロンを越えると人工血管内壁の粗度が大
きくなり、血栓が生成しやすくなるとともに管全体の柔
軟性が低下する。さらに、穿針時の抵抗も増加し、穿針
困難になることもある。また、該ポリウレタン弾性繊維
の100%伸長回復率は50%以上、好ましくは85%
以上、さらに好ましくは90%以上、最も好ましくは9
5%以上である。さらに、本人工血管の見掛は密度は0
.3〜0.8 g / c m ’であることが好まし
く、さらに0.5〜0.8B/cm3であることが好ま
しい、すなわち、見掛は密度が0.8g/cm’を越え
る場合には穿針が困難となり、0.3g/Cm’未満の
場合には強度が不足する。
The average diameter of the polyurethane elastic fibers constituting the artificial blood vessel of the present invention is preferably 30 microns or less as a monofilament, and particularly preferably 5 to 20 microns. If the average diameter of the fibers exceeds 30 microns, the roughness of the inner wall of the artificial blood vessel will increase, making it easier for thrombi to form and reducing the flexibility of the entire tube. Furthermore, the resistance during needle puncturing may also increase, making puncturing difficult. Further, the 100% elongation recovery rate of the polyurethane elastic fiber is 50% or more, preferably 85%.
or more, more preferably 90% or more, most preferably 9
It is 5% or more. Furthermore, the apparent density of this artificial blood vessel is 0.
.. It is preferably 3 to 0.8 g/cm', and more preferably 0.5 to 0.8 B/cm3, that is, the apparent density exceeds 0.8 g/cm'. It becomes difficult to puncture the needle, and if it is less than 0.3 g/Cm', the strength is insufficient.

本人工血管の内腔の直径は特に規定するものではないが
2〜20mm、好ましくは3〜10 m m、壁の厚み
は0.2〜3mm、0.4〜1.5mmであることが特
に好ましい。
Although the diameter of the lumen of the present artificial blood vessel is not particularly specified, it is 2 to 20 mm, preferably 3 to 10 mm, and the wall thickness is particularly preferably 0.2 to 3 mm, 0.4 to 1.5 mm. preferable.

本発明において「多孔性の管状体」とは、繊維間の空隙
により構成され、I:J通孔をその壁面に多数有してい
る管状体を言う、管状体の多孔性は、−Sには孔径分布
と気孔率で表わせるが、人工血管の場合透水率で表現す
るのが一般的でありかつ実際的でもある。i3水率とは
、120mm1gの圧力下で人工血管の管壁1cm” 
当り1分間に通過する水jl(ml)をいう0本発明に
おいては、この透水率は使用する不織布の繊維径、厚さ
、積層量さらには被覆層により容易にコントロールでき
る。この1水率は3000ml/分以下、好ましくは1
0”1500mA/分更に好ましくは150〜1000
 m (1/分である。3000m1lZ分を超えると
、ブリクロットが困難でかつ内シャントとしての使用ま
でに時間がかかる。
In the present invention, a "porous tubular body" refers to a tubular body that is composed of voids between fibers and has many I:J holes on its wall surface.The porosity of the tubular body is -S. can be expressed in terms of pore size distribution and porosity, but in the case of artificial blood vessels, it is common and practical to express it in terms of water permeability. The i3 water rate is 1cm of the wall of an artificial blood vessel under 120mm and 1g of pressure.
In the present invention, this water permeability can be easily controlled by adjusting the fiber diameter, thickness, amount of lamination, and coating layer of the nonwoven fabric used. This 1 water rate is 3000 ml/min or less, preferably 1
0"1500mA/min more preferably 150-1000
m (1/min.) If it exceeds 3000 ml/min, it will be difficult to briclot and it will take time to use it as an internal shunt.

以下、本発明の好適な実施態様をまとめて記しておく。Hereinafter, preferred embodiments of the present invention will be summarized.

(イ)ポリウレタンが熱可塑性である特許請求の範囲第
1項に記載の内シャント用人工血管。
(a) The artificial blood vessel for internal shunt according to claim 1, wherein the polyurethane is thermoplastic.

(0)ポリウレタン弾性繊維の平均直径が30ミクロン
以下である特許請求の範囲第1項に記載の内シャント用
人工血管。
(0) The artificial blood vessel for internal shunt according to claim 1, wherein the polyurethane elastic fibers have an average diameter of 30 microns or less.

(ハ)見掛は密度が0.3〜0.8 g / c m 
’ テある特許請求の範囲第1項に記載の内シャント用
人工血管。
(c) The apparent density is 0.3 to 0.8 g/cm
The artificial blood vessel for internal shunt according to claim 1.

(ニ)被覆層が管状体の管壁の内部に位置している特許
請求の範囲第1項に記載の内シャント用人工血管。
(d) The artificial blood vessel for internal shunt according to claim 1, wherein the coating layer is located inside the wall of the tubular body.

($)被覆層がポリウレタン弾性繊維よりなる特許請求
の範囲第1項に記載の内シャント用人工血管。
($) The artificial blood vessel for internal shunt according to claim 1, wherein the covering layer is made of polyurethane elastic fibers.

(へ)被覆層がポリウレタン弾性糸をらせん状に巻いて
なる特許請求の範囲第1項に記載の内シャント用人工血
管。
(f) The artificial blood vessel for internal shunt according to claim 1, wherein the covering layer is formed by spirally winding polyurethane elastic thread.

(ト)被覆層がポリエステル繊維よりなる特許請求の範
囲第1項に記載の内シャント用人工血管。
(g) The artificial blood vessel for internal shunt according to claim 1, wherein the covering layer is made of polyester fiber.

(チ)被覆層がポリエステル糸をらせん状に巻いてなる
特許請求の範囲第1項記載の内シャント用人工血管。
(h) The artificial blood vessel for internal shunt according to claim 1, wherein the covering layer is formed by spirally wound polyester thread.

(ヌ)穿針後漏水盪が150me1分以下である特許請
求の範囲第1項に記載の内ソヤント用人工血管。
(n) The artificial blood vessel for internal soyant according to claim 1, wherein water leakage after puncture is 150 me1 minute or less.

(ル)穿針後漏水量がl OOmf/分以下である特許
請求の範囲第1項に記載の内シャント用人工血管。
(l) The artificial blood vessel for internal shunt according to claim 1, wherein the amount of water leakage after puncture is 1 OOmf/min or less.

(t) i3水率が3000mA!/分以下である特許
請求の範囲第1項に記載の内シャント用人工血管。
(t) i3 water rate is 3000mA! The artificial blood vessel for internal shunt according to claim 1, which has a flow rate of less than /min.

(ワ)透水率が10〜15QQm17分である特許請求
の範囲第1項に記載の内シャント用人工血管。
(iv) The artificial blood vessel for internal shunt according to claim 1, which has a water permeability of 10 to 15QQm17 minutes.

(力)内径が2−20 m mかつ厚みが0.2〜3 
m mである特許請求の範囲第1項に記載の内シャント
用人工血管。
(Force) Inner diameter is 2-20 mm and thickness is 0.2-3
The artificial blood vessel for internal shunt according to claim 1, which is m m.

(3)ポリウレタン弾性繊維の伸長回復率が50%以上
である特許請求の範囲第1項に記載の内シャント用人工
血管。
(3) The artificial blood vessel for internal shunt according to claim 1, wherein the polyurethane elastic fiber has an elongation recovery rate of 50% or more.

(実施例) つぎに、実施例を挙げて本発明をさらに詳細に説明する
(Example) Next, the present invention will be described in further detail by giving examples.

実施例1 脱水した水酸基価102のポリテトラメチレングリコー
ル5548部(以下、部はすべて重量部を意味する)と
、p 、  p / −ビスヒドロキシエトキシベンゼ
ン499部とをジャケット付のニーグーに仕込み、撹拌
しながら充分に溶解した後、90℃の温度に保ちこれに
p、p’ −ジフェニルメタンジイソシアネート195
3部を加えて反応させた。撹拌を続けると約30分で粉
末状のポリウレタンが得られ、これを押出機によりベレ
ット状に成形しジメチルホルムアミド中、25℃で測定
した濃度1 g / 100 m lの相対粘度が2.
50のポリウレタン弾性体を得た。
Example 1 5548 parts of dehydrated polytetramethylene glycol having a hydroxyl value of 102 (hereinafter, all parts mean parts by weight) and 499 parts of p,p/-bishydroxyethoxybenzene were charged into a jacketed Nigu and stirred. After thoroughly dissolving the mixture while maintaining the temperature at 90°C, p,p'-diphenylmethane diisocyanate 195
3 parts were added and allowed to react. When stirring was continued, a powdered polyurethane was obtained in about 30 minutes, which was molded into a pellet shape using an extruder and had a relative viscosity of 2.5 g/100 ml at a concentration of 1 g/100 ml as measured in dimethylformamide at 25°C.
50 polyurethane elastomers were obtained.

このようにして得たポリウレタン弾性体のペレットを原
料とし、1列に配列した直径0.8 m mのノズルの
両側に加熱気体の噴射用スリ7)を存する溶融ブロー紡
糸装置を用い、溶融温度235℃ノズル当り毎分0.5
0 gの割合でポリマーを吐出し、200℃に加熱した
空気を4.0kg/cm”の圧力でスリットから噴射し
て細化した。細化したフィラメントをノズル下方25c
mに設置した30メツシユの金網からなるコンベア上で
補集し、ローラーではさんで引取り不織布を得た。この
不織布はポリウレタン弾性繊維のモノフィラメントが開
繊されて積層しており、フィラメント間の交絡点は互に
融着により接合されていた。この不織布の物性値はつぎ
のとおりであった。
Using the polyurethane elastic pellets obtained in this way as a raw material, a melt blow spinning device was used, which had nozzles with a diameter of 0.8 mm arranged in a row, and slots 7) for injecting heated gas on both sides. 235℃ 0.5 per minute per nozzle
The polymer was discharged at a rate of 0 g, and air heated to 200°C was injected through the slit at a pressure of 4.0 kg/cm'' to make it thin.
The nonwoven fabric was collected on a conveyor consisting of a wire mesh of 30 meshes installed at 300 m, and then sandwiched between rollers to obtain a nonwoven fabric. This nonwoven fabric was made up of opened and laminated monofilaments of polyurethane elastic fibers, and the intertwining points between the filaments were joined together by fusion. The physical properties of this nonwoven fabric were as follows.

目付           25g/m”引張強度  
      0.18 k g / c m破断伸度 
       550% 100%伸長回復率   92% 剛軟度         15mm フィラメント直径    15ミクロンついで、この不
織布20cmを直径8mmのフッ素樹脂をコーティング
した8棒に巻きつけ、この上に、不織布を製造する際に
用いたポリウレタン弾性体のペレットを溶融紡糸して得
た35デニールのポリウレタンモノフィラメント糸を1
,3mm間隔でらせん状に巻きつけた。このら・Uん状
に巻きつける操作を15回くり返した。その際ポリウレ
タン弾性糸はほぼ同じ位置に重なるようにし、−本のら
せんが形成されるようにした。
Fabric weight: 25g/m” Tensile strength
0.18 kg/cm breaking elongation
550% 100% elongation recovery rate 92% Bending resistance 15 mm Filament diameter 15 microns Next, 20 cm of this nonwoven fabric was wrapped around 8 rods coated with fluororesin and 8 mm in diameter, and the polyurethane used in manufacturing the nonwoven fabric was wrapped on top of this. 1 piece of 35 denier polyurethane monofilament yarn obtained by melt spinning elastic pellets
, spirally wound at 3 mm intervals. This operation of winding in a U-shape was repeated 15 times. At this time, the polyurethane elastic threads were overlapped at approximately the same position, so that a -strand spiral was formed.

次いで、この上から前記不織布を28cm巻きつけ、更
に離型紙を巻きつけた後内径10mmの円筒状の型枠に
入れ150℃で30分間加熱した。
Next, 28 cm of the above-mentioned nonwoven fabric was wound on top of this, and a release paper was further wound around it, and then it was placed in a cylindrical mold with an inner diameter of 10 mm and heated at 150° C. for 30 minutes.

冷却後型枠からとり出し離型紙を剥離し、8棒を引き抜
いてポリウレタンの多孔性の管状体を得た。
After cooling, it was taken out from the mold, the release paper was peeled off, and eight rods were pulled out to obtain a porous polyurethane tubular body.

この管状体は、不織布及びポリウレタン弾性糸が互に強
固に接合され一体化した構造であり、ポリウレタンモノ
フィラメント糸は完全に一体化し一本のらせん状のゾー
ンを形成していた。
This tubular body had a structure in which the nonwoven fabric and the polyurethane elastic thread were firmly bonded to each other and integrated, and the polyurethane monofilament thread was completely integrated to form a single helical zone.

この管状体は、本明細書に述べた方法で穿針後漏水量を
測定したところ25mA/分であった。
The water leakage rate of this tubular body after puncturing was measured using the method described in this specification, and was found to be 25 mA/min.

見掛は密度は0.6g/cm’、i!氷水率185ml
/分であった。穿針後の内外面の電子S!Ili微鏡観
察微行観察ところ、針穴は極めて小さいものであった。
The apparent density is 0.6 g/cm', i! Ice water ratio 185ml
/minute. Electronic S of the inner and outer surfaces after puncturing! Ili microscopic observation revealed that the needle hole was extremely small.

この管状体をプレクロノI・し、雑種成人の頚動静脈に
端々吻合してバイパスを作った。このバイパスに16G
留置針を用いて穿刺抜針−止血等のシャント用人工血管
として評価を行なった。比較のため市販ポリ4−フッ化
エチレン製人工血管でも同様の試験を行なった0本発明
のものは縫合時の針の刺入抵抗が少なく、また血流再開
に当って針穴からの出直も認められなかった。さらに、
留置針による穿針時は刺通抵抗が少なくプラスチック針
の先端捲れ、刺入時の金属針による血管内壁模傷の危険
がポリ4−フン化エチレン製のものより少なかった。留
置針の保持力も太き(留置脱落の危険も少なかった。波
計時は直後より出血はわずかで5分以内に止血が完了し
た。これに対し、ポリ4−フン化エチレン製のものは抜
針後の出血が激しく止血には30分を要した。
This tubular body was pre-cloned and anastomosed end-to-end to the carotid artery and vein of an adult mongrel to create a bypass. 16G for this bypass
Using an indwelling needle, we evaluated it as an artificial blood vessel for shunts such as puncture and removal and hemostasis. For comparison, a similar test was conducted using a commercially available artificial blood vessel made of poly(4-fluoroethylene). was also not recognized. moreover,
When puncturing with an indwelling needle, there was less penetration resistance and the risk of tip curling of the plastic needle and damage to the inner wall of the blood vessel caused by the metal needle during insertion was lower than with poly(4-fluorinated ethylene) needles. The retention force of the indwelling needle was also strong (there was little risk of it falling out. Wave timing showed that there was only slight bleeding immediately after, and hemostasis was completed within 5 minutes. In contrast, the needle made of poly(4-fluorinated ethylene) was easily removed. The subsequent bleeding was so intense that it took 30 minutes to stop the bleeding.

実施例2 実施例1と同じ不織布20cmを直径8mmのフッ素樹
脂をコーティングした8棒に巻きつけ、さらにその上か
ら離型紙を巻き付けた後、145℃で25分間加熱した
。冷却後離型紙を剥離し、上から#50ポリエステルミ
シン糸を実施例1と同じ様に3回らせん状に巻き付け、
さらに不織布を28cm!きつけた0次いで、この上か
ら離型紙を巻きつけた後、内径10mmの円筒状の型枠
に入れ25分間加熱した。冷却後型枠からとり出し離型
紙を剥離し、8棒を引き抜いてポリウレタンの多孔性管
状体を得た。この管状体は不織布及びポリエステルミシ
ン糸が互いに強固に接合され一体化した構造を有してい
た。
Example 2 20 cm of the same nonwoven fabric as in Example 1 was wrapped around eight fluororesin-coated rods each having a diameter of 8 mm, and a release paper was further wrapped over the rods, followed by heating at 145° C. for 25 minutes. After cooling, the release paper was peeled off, and #50 polyester sewing thread was wound spirally 3 times from above in the same manner as in Example 1.
Furthermore, 28cm of non-woven fabric! Next, a release paper was wrapped over this, and then it was placed in a cylindrical mold with an inner diameter of 10 mm and heated for 25 minutes. After cooling, it was taken out from the mold, the release paper was peeled off, and eight rods were pulled out to obtain a porous polyurethane tubular body. This tubular body had a structure in which the nonwoven fabric and polyester sewing thread were firmly bonded to each other and integrated.

この管状体は、穿針後面水量が30mm!/分であった
。見掛は密度は0.1g/cm”、透水率は260m1
/分であった。穿針後の電子B微行観察では実施例1と
同様針穴は極めて小さいものであった。さらにこの管状
体を実施例1と同様に雑種犬を用いてシャント用人工血
管としての評価を行なったところ、実施例1と同様の良
好な取り扱い性、止血性を示した。
This tubular body has a water volume of 30mm at the back of the puncture needle! /minute. The apparent density is 0.1 g/cm" and the water permeability is 260 m1.
/minute. Electron B microscopic observation after puncturing revealed that the needle hole was extremely small as in Example 1. Furthermore, when this tubular body was evaluated as an artificial blood vessel for shunting using a mongrel dog in the same manner as in Example 1, it showed good handling properties and hemostatic properties similar to those in Example 1.

(穿針耐久性試験) 実施例1,2の管状体を1cm切りとり、この半周に1
4G留置針でランダムに15ケ所(15回)穿針した。
(Needle puncture durability test) The tubular bodies of Examples 1 and 2 were cut 1 cm, and 1 cm was cut on the half circumference.
Punctures were made at random at 15 locations (15 times) using a 4G indwelling needle.

穿針後の管状体に直径1mmの焼き入れピンを2本挿入
し、各々のビンの両端を保持し定速引張り試験機にてl
 Oc rn 7分の速度で上下に引っ張り強力を測定
した。別に、未穿針の管状体の同様の強力を測定し穿針
後の強力とその穿針前の強力に対する強力保持率により
耐久性を評価した。結果は第3表に示す通りであり、本
発明による管状体は穿針後の強力が高く開口穿針後も安
全に使用できる。また、強力保持率の面においてもすぐ
れており、さらに穿針後も管壁の剥離、第  3  表 (発明の効果) 以上述べたように、本発明による内シャント用人工血管
は、つぎのごとき効果を奏するものである。
Insert two hardened pins with a diameter of 1 mm into the tubular body after puncturing, hold both ends of each bottle, and test with a constant speed tensile tester.
The strength was measured by pulling it up and down at a speed of 7 minutes. Separately, the similar strength of the tubular body without puncturing was measured, and the durability was evaluated based on the strength after puncturing and the strength retention rate relative to the strength before puncturing. The results are shown in Table 3, and the tubular body according to the present invention has high strength after puncture with a needle, and can be used safely even after puncturing with an open needle. In addition, the artificial blood vessel for internal shunt according to the present invention is excellent in terms of strength retention, and even after puncture, the tube wall does not peel off.Table 3 (Effects of the Invention) It is effective.

(1)ポリウレタン弾性繊維が相互に接合された多孔性
の管状体よりなり、穿針後泪水■が200mj/分以下
であるため穿針抜去後のの針穴が最小となり、軽い押圧
により速やかに止血する。
(1) It is made of a porous tubular body in which polyurethane elastic fibers are bonded to each other, and the water leakage after puncturing is less than 200 mj/min, so the needle hole after the puncturing needle is removed is minimized, and it can be quickly removed by light pressure. Stop bleeding.

(2)穿針時、針による損傷部位が極小でありがっ抜針
後弾性回復するため、m傷部位の修復が速(、内膜の肥
厚、栓塞が生じない。
(2) During needle puncture, the injury site caused by the needle is minimal and elastically recovers after the needle is removed, so the injury site can be repaired quickly (no thickening of the intima or occlusion).

(3)ポリウレタン弾性体繊維は相互に接合されており
、かつ多孔性構造であるため、穿針抵抗が少なく穿針が
容易でがっ穿針による繊維の離断は最小で、はつれ、破
裂を生じない、したがって、顧問穿針に耐えることがで
きる。
(3) Polyurethane elastic fibers are mutually bonded and have a porous structure, so they have low needle puncture resistance and are easy to puncture, minimizing tearing and rupture of the fibers due to needle puncture. does not occur, and therefore can withstand invasive needle puncture.

(4)管壁内部に強固に一体化した繊維よりなる被覆層
を存するため、開園の穿針後も高い強力を維持できる。
(4) Since there is a coating layer made of tightly integrated fibers inside the pipe wall, high strength can be maintained even after puncturing at opening.

(5)  繊維よりなる多孔体構造で十分な透水率を持
つため周囲M織の侵入が容易でかつ結合が強固であるた
め、穿針後血腫の形成がない。また、内面においても新
生内膜の人工血管との結合が強固であるため、穿針によ
る内膜の剥離もない。
(5) Since it has a porous structure made of fibers and has sufficient water permeability, it is easy to invade the surrounding M weave and the bond is strong, so there is no formation of hematoma after needle puncture. Furthermore, since the neointima is strongly bonded to the artificial blood vessel on the inner surface, there is no peeling of the intima due to the puncture needle.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリウレタン弾性繊維が相互に接合された多孔性
の管状体であって、該管状体の管壁の一部に繊維よりな
る被覆層を有し、かつ穿針後漏水量が200ml/分以
下である内シャント用人工血管。
(1) A porous tubular body in which polyurethane elastic fibers are mutually bonded, which has a covering layer made of fibers on a part of the wall of the tubular body, and has a water leakage rate of 200 ml/min after puncturing. Artificial blood vessels for internal shunts as follows:
JP63252469A 1988-10-05 1988-10-05 Internal shunt type artificial vein Pending JPH0298352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63252469A JPH0298352A (en) 1988-10-05 1988-10-05 Internal shunt type artificial vein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63252469A JPH0298352A (en) 1988-10-05 1988-10-05 Internal shunt type artificial vein

Publications (1)

Publication Number Publication Date
JPH0298352A true JPH0298352A (en) 1990-04-10

Family

ID=17237818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63252469A Pending JPH0298352A (en) 1988-10-05 1988-10-05 Internal shunt type artificial vein

Country Status (1)

Country Link
JP (1) JPH0298352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176278A (en) * 1997-05-30 1999-03-23 Schneider Usa Inc Porous artificial organism characterized by formation thereof by spraying water-soluble and non-water soluble fiber with rotary mandrel and use thereof
WO2018181918A1 (en) 2017-03-31 2018-10-04 東レ株式会社 Cylindrical structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176278A (en) * 1997-05-30 1999-03-23 Schneider Usa Inc Porous artificial organism characterized by formation thereof by spraying water-soluble and non-water soluble fiber with rotary mandrel and use thereof
WO2018181918A1 (en) 2017-03-31 2018-10-04 東レ株式会社 Cylindrical structure
KR20190130618A (en) 2017-03-31 2019-11-22 도레이 카부시키가이샤 Tubular structure
US12053366B2 (en) 2017-03-31 2024-08-06 Toray Industries, Inc. Cylindrical structure

Similar Documents

Publication Publication Date Title
US5700287A (en) Prosthetic vascular graft with deflectably secured fibers
US7244272B2 (en) Vascular prosthesis and method for production thereof
EP1353606B1 (en) Improved vascular prosthesis and method for production thereof
US5716395A (en) Prosthetic vascular graft
US5904967A (en) Puncture resistant medical material
US5197976A (en) Manually separable multi-lumen vascular graft
JP7543282B2 (en) Medical implant components including composite biotextiles and methods of manufacture - Patents.com
US6117535A (en) Biocompatible devices
CA2935128A1 (en) Artificial graft devices and related systems and methods
JP2006524117A (en) Arteriovenous grafts with the ability to seal themselves quickly after surgery
WO2006080008A2 (en) Artificial vascular prosthesis
EP0964645B1 (en) Method of producing a fabric
JPH02167156A (en) Implantatable material for
JP7542541B2 (en) Method for producing a composite biotextile and medical implants comprising such a composite biotextile
US4871361A (en) Artificial vessel
US20210338411A1 (en) Preparation method of material for puncture-resistant artificial blood vessel and artificial blood vessel prepared thereby
JP2018186903A (en) Medical base material
EP0587461B1 (en) Artificial blood vessel
JPH0298352A (en) Internal shunt type artificial vein
EP0903117A2 (en) Medical materials and method for the preparation of same
US20200276379A1 (en) Tissue cuff
JPS63246151A (en) Artificial blood vessel for inner shunt
WO1992002195A1 (en) Artificial blood vessel and production thereof
JP3766755B2 (en) In vivo indwelling tube
JP2005152181A (en) Embedding-type tubular treating tool