[go: up one dir, main page]

JPH0296584A - Production method of high purity quaternary phosphonium hydroxide - Google Patents

Production method of high purity quaternary phosphonium hydroxide

Info

Publication number
JPH0296584A
JPH0296584A JP63249015A JP24901588A JPH0296584A JP H0296584 A JPH0296584 A JP H0296584A JP 63249015 A JP63249015 A JP 63249015A JP 24901588 A JP24901588 A JP 24901588A JP H0296584 A JPH0296584 A JP H0296584A
Authority
JP
Japan
Prior art keywords
quaternary phosphonium
aqueous solution
phosphonium hydroxide
chamber
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63249015A
Other languages
Japanese (ja)
Other versions
JPH0791665B2 (en
Inventor
Shuji Ota
太田 秀志
Koichi Takahashi
宏一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP63249015A priority Critical patent/JPH0791665B2/en
Publication of JPH0296584A publication Critical patent/JPH0296584A/en
Publication of JPH0791665B2 publication Critical patent/JPH0791665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高純度第4級ホスホニウムヒドロオキシドお
よびその製造法に関する。更に言えば、ポリシロキサン
の製造に有用な重合触媒(英国特許794,119号明
細書)、電解コンデンサー電解質用第4級ホスホニウム
塩の製造に用いる中間原料(特開昭62−272,51
2号公報、特開昭62−272,513号公報)、さら
には、半導体装n等の電子部品及び電子機器の封止や含
浸等に広く用いられる電気的特性に優れたエポキシ樹油
の硬化触媒等に有用な高純度第4級ホスホニウム塩の中
間原料の高純度第4級ホスホニウムヒドロオキシド、お
よびそれを電解法により製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high purity quaternary phosphonium hydroxide and a method for producing the same. Furthermore, polymerization catalysts useful in the production of polysiloxanes (UK Patent No. 794,119) and intermediate raw materials used in the production of quaternary phosphonium salts for electrolytes in electrolytic capacitors (JP-A-62-272-51)
2, Japanese Patent Application Laid-open No. 62-272,513), and furthermore, curing of epoxy resin with excellent electrical properties, which is widely used for sealing and impregnating electronic components such as semiconductor devices and electronic devices. The present invention relates to high-purity quaternary phosphonium hydroxide, which is an intermediate raw material for high-purity quaternary phosphonium salts useful in catalysts, etc., and a method for producing it by electrolysis.

[従来の技術]および[発明か解決しようとする課題] 従来、第4級ホスホニウムヒドロオキシドの製造法とし
ては、テトラ−n−ブチルホスホニウムアイオダイドを
水溶液で酸化銀と反応させて、第4級ホスホニウムヒド
ロオキシドを得る方法(英国特許794,119号明細
書)が知られている。その反応式を下記に示す。
[Prior Art] and [Problem to be Solved by the Invention] Conventionally, as a method for producing quaternary phosphonium hydroxide, tetra-n-butylphosphonium iodide is reacted with silver oxide in an aqueous solution to produce quaternary phosphonium hydroxide. A method for obtaining phosphonium hydroxide (UK Patent No. 794,119) is known. The reaction formula is shown below.

(n−C4119)4P14−1/2AgO÷1/21
120  →(n−C411s)4POII+Aglし
かしながら、この方法は酸化銀が高価である為に製造コ
ストか高くなり工業的に望ましい方法てはない。
(n-C4119)4P14-1/2AgO÷1/21
120 → (n-C411s)4POII+Agl However, since silver oxide is expensive, this method increases the production cost and is not an industrially desirable method.

他方、ジー エム コゾラホフ、エル メイアー共著「
オーガニック ホスホラス コンパウンド」ウィリー−
インターサイエンス社発行(G、M、 KO30LAP
OFF and L、 MAIERr 0RGANIC
pHO5PIIOnUSGOMPOUNDJ WILE
Y−INTER5CIENCE、 a Divisio
nof John Wiley & 5ons、Inc
、) Vol、2 、201頁。
On the other hand, co-authored by G.M. Kozolahoff and El Meyer, “
Organic Phosphorous Compound” Willy
Published by Interscience (G, M, KO30LAP)
OFF and L, MAIERr 0RGANIC
pHO5PIIOnUSGOMPOUUNDJ WILE
Y-INTER5CIENCE, a Divisio
nof John Wiley & 5ons, Inc.
) Vol. 2, p. 201.

(1972年)では、第4級ホスホニウム塩はイオン交
換樹脂を用いてイオン交換できる事か記載されている。
(1972) describes that quaternary phosphonium salts can be ion-exchanged using an ion-exchange resin.

しかしながら、同書に記載されているように、イオン交
換樹脂を用いてイオン交換する場合には、一般に原液の
濃縮を希薄にする必要があり、従ってイオン交換に長時
間を必要とする欠点かある。
However, as described in the same book, when performing ion exchange using an ion exchange resin, it is generally necessary to dilute the concentration of the stock solution, which has the disadvantage of requiring a long time for ion exchange.

又、この点を克服すべく、特開昭62−212,397
号公報では比較的高濃度領域て第4級ホスホニウムハラ
イドを強塩基性アニオン交換樹脂(011型)と接触し
て、イオン交換するコ1(によって第4級ホスホニウム
ヒドロオキシドを得る方法が記載されている。しかし、
この方法の場合には、その実施例に記載されているよう
にイオン交換が完全に行われない為(収率66.4〜9
0.8%)、流出液中へ原料である第4級ホスホニウム
ハライドが混入する事か避けられない、徒って、ハロゲ
ン化炭化水素等の有機溶媒を使用して混入した第4級ホ
スホニウムハライドを取り除く工程が必要である。
In addition, in order to overcome this point, Japanese Patent Application Laid-Open No. 62-212,397
The publication describes a method for obtaining quaternary phosphonium hydroxide by contacting a quaternary phosphonium halide with a strongly basic anion exchange resin (type 011) in a relatively high concentration region and ion-exchanging it. Yes. However,
In the case of this method, as described in the examples, ion exchange is not completed (yield: 66.4-9.
0.8%), it is unavoidable that the raw material quaternary phosphonium halide is mixed into the effluent, and inadvertently, the quaternary phosphonium halide is mixed using an organic solvent such as a halogenated hydrocarbon. A process is required to remove the

また、このように溶媒を使用して原料の第4級ホスホニ
ウムパライトを取り除いたとしても、流出液から完全に
回収することは困難で、その流出液中のへロゲンを分析
すると数100〜数10[]Oppmは含まれている。
Furthermore, even if the raw material quaternary phosphonium pallite is removed using a solvent, it is difficult to completely recover it from the effluent, and analysis of the amount of herogen in the effluent reveals a range of numbers ranging from several hundred to several hundred. 10[]Oppm is included.

前記したとおり、従来法では、いずれも高純度の第4級
ホスホニウムヒドロオキシドか得られないか、又は工業
的には全く適応てきないものである。
As mentioned above, all of the conventional methods either fail to provide highly pure quaternary phosphonium hydroxide or are not suitable for industrial use at all.

本発明者らは、上記の諸問題に鑑み鋭意詳細に研究した
結果、陰イオン交換膜と陽イオン交換1模を隔膜として
構成する電解槽にて、第4級ホスホニウム塩水溶液を電
解したところ、予想外に高収率でかつ高純度の第4級ホ
スホニウムヒドロオキシドを製造できることを知見し本
発明を完成した。
As a result of intensive and detailed research in view of the above-mentioned problems, the present inventors electrolyzed a quaternary phosphonium salt aqueous solution in an electrolytic cell comprising an anion exchange membrane and a cation exchange 1 model as a diaphragm. The present invention was completed based on the discovery that it is possible to produce quaternary phosphonium hydroxide with unexpectedly high yield and high purity.

[課題を解決するための手段] すなわち1本発明は、次の一般式 [I](式中、R,
、R2,R,およびしは炭素原子数1〜8のアルキル基
、アリール基、アラルキル基またはそれ等のいずれか少
なくとも一種の基かヒドロキシル基若しくはアルコキシ
ル基て置換されたものを示す) て表わされる第4級ホスホニウムヒドロオキシド水溶液
てあって、該水溶液中の各金属イオンまたはアニオンか
いずれもl ppm以下にあることな特徴とする高純度
第4級ホスホニウムヒドロオキシドに係る。
[Means for Solving the Problems] That is, 1 the present invention has the following general formula [I] (wherein R,
, R2, R, and 1 are substituted with an alkyl group, an aryl group, an aralkyl group, or at least one group thereof having 1 to 8 carbon atoms, or a hydroxyl group or an alkoxyl group) The present invention relates to a high-purity quaternary phosphonium hydroxide, which is an aqueous solution of quaternary phosphonium hydroxide, characterized in that each metal ion or anion in the aqueous solution is present at 1 ppm or less.

また、本発明は、lの陰イオン交換膜とそれを挟む2の
陽イオン交換膜で区画された4槽構造の電解槽において
、次の一般式[II] (式中、R,、R2,R,およびしは炭素原子数1〜8
のアルキル基、アリール基、アラルキル基またはそれ等
のいずれか少なくとも一種の基がヒドロキシル基若しく
はアルコキシル基で置換されたものを表わし、xoはア
ニオンを示す) で表わされる第4級ホスホニウム塩水溶液を直流電解し
て陰極室から第4級ホスホニウムヒドロオキシドを得る
ことを特徴とする高純度第4級ホスホニウムヒドロオキ
シドの製造法に係るものである。
Further, the present invention provides an electrolytic cell having a four-cell structure partitioned by one anion exchange membrane and two cation exchange membranes sandwiching it, which has the following general formula [II] (where R, , R2, R, and has 1 to 8 carbon atoms
represents an alkyl group, an aryl group, an aralkyl group, or one in which at least one group thereof is substituted with a hydroxyl group or an alkoxyl group, and xo represents an anion) An aqueous solution of a quaternary phosphonium salt represented by The present invention relates to a method for producing high-purity quaternary phosphonium hydroxide, which is characterized by obtaining quaternary phosphonium hydroxide from a cathode chamber.

以下、本発明について詳説する。The present invention will be explained in detail below.

本発明の高純度第4級ホスホニウムヒドロオキシドは、
前記一般式[I]で表わされる高純度の第4級ホスホニ
ウムヒドロオキシド水溶液てあり、該水溶液中に含有さ
れている各金属イオンまたはアニオンかいずれも1 p
pm以下にあることを特徴とする。
The high purity quaternary phosphonium hydroxide of the present invention is
A high-purity quaternary phosphonium hydroxide aqueous solution represented by the general formula [I] is provided, and each metal ion or anion contained in the aqueous solution is 1 p.
It is characterized by being below pm.

前記一般式[I]において、R1,R2,R3およびR
4は炭素原子数1〜8のアルキル基、アリール基、アラ
ルキル基またはそれ等のいずれか少なくとも一種の基が
ヒドロキシル基若しくはアルコキシル基で置換されたも
のを示す。その具体例を示すと、R+〜しかアルキル基
としては例えばメチル、エチル、プロピル、ブチル、ペ
ンチルおよびオクチル等てあり、アリール基としては例
えばフェニル、トリルまたはキシリル等であり、アラル
キル基としては例えばベンジル、フェニチル等てあり、
また前記の各基のいずれか少なくとも一種の基がヒドロ
キシル基若しくはアルコキシル基て置換されたものが挙
げられる。また、R1−R4は同種又は異種てあっても
よい。
In the general formula [I], R1, R2, R3 and R
4 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, an aralkyl group, or at least one group thereof substituted with a hydroxyl group or an alkoxyl group. To give specific examples, examples of the alkyl group include methyl, ethyl, propyl, butyl, pentyl, and octyl, examples of the aryl group include phenyl, tolyl, and xylyl, and examples of the aralkyl group include benzyl. , phenityl, etc.
Also included are those in which at least one of the above groups is substituted with a hydroxyl group or an alkoxyl group. Further, R1 to R4 may be of the same type or different types.

また、高純度第4級ホスホニウムヒドロオキシド水溶液
の濃度は通常2〜50 w L%、好ましくは3〜30
wt%の範囲が望ましい。その理由は、低濃度では経済
的てなく、また50wシ%をこえると第4級ホスホニウ
ムヒドロオキシドは分解しやすくなり好ましくない。
Further, the concentration of the high purity quaternary phosphonium hydroxide aqueous solution is usually 2 to 50 wL%, preferably 3 to 30%.
A range of wt% is desirable. The reason for this is that low concentrations are not economical, and if the concentration exceeds 50% by weight, the quaternary phosphonium hydroxide tends to decompose, which is not preferable.

さらに1本発明の高純度第4級ホスホニウムヒドロオキ
シドの水溶液には、不純物として含有されている各金属
イオンまたはアニオンが極めて少なく、その含有量はい
ずれも1 ppm以下てあり、後述の製造方法によりそ
の様な高純度にすることができる。また、水溶液に含有
されている金属イオンまたはアニオンとしては、例えば
Na、 K。
Furthermore, the aqueous solution of high-purity quaternary phosphonium hydroxide of the present invention contains very few metal ions or anions as impurities, and the content thereof is 1 ppm or less. Such high purity can be achieved. Further, examples of metal ions or anions contained in the aqueous solution include Na and K.

Fe、  Ni、  Cr、  Cu、  Ba、  
Pb、  Ti、  Zn、  Aj+、  Cj)、
  Br。
Fe, Ni, Cr, Cu, Ba,
Pb, Ti, Zn, Aj+, Cj),
Br.

1、  SO,及び第4級ホスホニウム塩を構成する対
アニオン等が挙げられる。しかし、これ等は微量である
ために、本発明の高純度第4級ホスホニウムヒドロオキ
シドは、重合触媒、Tft解コンデンサー電解賀、エポ
キシ樹脂の硬化触媒等に有用な高純度の第4級ホスホニ
ウム塩の中間原料として好適である。
1, SO, and a counter anion constituting a quaternary phosphonium salt. However, since these are in trace amounts, the high-purity quaternary phosphonium hydroxide of the present invention is a high-purity quaternary phosphonium salt useful as a polymerization catalyst, a Tft electrolytic capacitor electrolyte, an epoxy resin curing catalyst, etc. It is suitable as an intermediate raw material.

次に、本発明の高純度第4級ホスホニウムヒドロオキシ
ドの製造法について説明する。
Next, a method for producing high purity quaternary phosphonium hydroxide of the present invention will be explained.

その具体的な方法は、電解槽を1の陰イオン交換膜とそ
れを挟む2の陽イオン交換膜で区画して陽極室、rA極
室、2つの中間室からなる4槽構造に形成し、陽極室に
酸性電解質液を、陰極室および陽極側中間室(中間電工
)に水を、および陰極側中間室(中間室■)に第4級ホ
スホニウム塩水溶液をそれぞれ供給して、両極間に直流
電流を通電することにより、陰極室から高純度の第4級
ホスホニウムヒドロオキシドを得る方法である。
The specific method is to partition the electrolytic cell with one anion exchange membrane and two cation exchange membranes sandwiching it, forming a four-cell structure consisting of an anode chamber, an rA electrode chamber, and two intermediate chambers, An acidic electrolyte solution is supplied to the anode chamber, water is supplied to the cathode chamber and anode side intermediate chamber (Nakae Denko), and a quaternary phosphonium salt aqueous solution is supplied to the cathode side intermediate chamber (intermediate chamber ■), and a direct current is generated between the two electrodes. This is a method for obtaining highly pure quaternary phosphonium hydroxide from the cathode chamber by applying an electric current.

本発明において、陽イオン交換膜としては、通常の陽イ
オン交換膜を用いることがてき、例えばセレミオン■C
MV  (旭硝子輛製)、ネオセブタ■CM−1(徳山
仔達■製)およびNafion■324(デュポン社製
)等か挙げられる。
In the present invention, a normal cation exchange membrane can be used as the cation exchange membrane, for example, Selemion ■C
Examples include MV (manufactured by Asahi Glass Co., Ltd.), Neo Sebuta CM-1 (manufactured by Tokuyama Kotatsu), and Nafion 324 (manufactured by DuPont).

また、陰イオン交換膜としては、通常の陰イオン交換膜
を用いることかでき、例えばセレミオン■AMV  (
旭硝子■製)、ネオセブタ■AM−1(徳山汀達■製)
等が挙げられる。
Further, as the anion exchange membrane, a normal anion exchange membrane can be used, such as Selemion AMV (
Asahi Glass ■), Neo Sebuta ■ AM-1 (Tokuyama Teitatsu ■)
etc.

また、電極を構成する材料としては、陽極には第4級ホ
スホニウム塩の電解によって発生するハロゲン、酸素等
に対して耐久性のある安定なものが良く、例えば黒鉛、
鉛及びその合金、各種金属に白金属金属を被覆した電極
等を用いるのか好ましい。また、瞼様には耐アルカリ性
の材料か用いられ、例えばステンレス、ニッケル等を用
いるのか好ましい。
In addition, as for the material constituting the electrode, it is preferable for the anode to be a stable material that is resistant to halogen, oxygen, etc. generated by electrolysis of a quaternary phosphonium salt, such as graphite,
It is preferable to use electrodes made of lead, alloys thereof, various metals coated with white metal, or the like. Furthermore, it is preferable to use an alkali-resistant material for the eyelids, such as stainless steel or nickel.

電解槽を構成する材料としては、陽極室、中間室はフッ
素系樹脂、ポリプロピレン、ポリエチレン等の合成樹脂
か用いられ、また陰極室は前記陽極室に用いられる合成
樹脂、その他に耐アルカリ性のステンレス等ても十分に
使用することかできる。
As for the materials constituting the electrolytic cell, synthetic resins such as fluororesin, polypropylene, polyethylene, etc. are used for the anode chamber and the intermediate chamber, and the synthetic resin used for the anode chamber, and alkali-resistant stainless steel, etc. are used for the cathode chamber. However, it can be used enough.

本発明においては、陰極側中間室(中間室II )に供
給される第4級ホスホニウム塩は、下記の一般式[II
] (式中、R,、R2,R3およびR4は前記と回しもの
を意味する。Xoはアニオンを示す)て表わされる化合
物か用いられる。
In the present invention, the quaternary phosphonium salt supplied to the cathode side intermediate chamber (intermediate chamber II) has the following general formula [II
] (In the formula, R, , R2, R3 and R4 mean the same as the above. Xo represents an anion).

前記一般式[11]において、RI〜R4は、前記と同
じものを表わす。Xoはアニオン(酸基)を示し、例え
ばフッ素、J1!素、臭素、ヨウ素等のハロゲンイオン
、ギ酸、酢酸、シュウ酸等の有機カルボキシルイオン、
硫酸、ジメチルおよびジエチル硫酸の各イオン、硝酸イ
オン、リン酸イオン、メチルおよびジメチルリン酸イオ
ン、エチルおよびジエチルリン酸等の有機リン酸イオン
あるいは水酸基(OH−)等が挙げられるが、これ等の
アニオンに限定されるものてはない。
In the general formula [11], RI to R4 represent the same as described above. Xo represents an anion (acid group), such as fluorine, J1! Halogen ions such as chlorine, bromine, and iodine; organic carboxyl ions such as formic acid, acetic acid, and oxalic acid;
Examples include sulfuric acid, dimethyl and diethyl sulfate ions, nitrate ions, phosphate ions, methyl and dimethyl phosphate ions, organic phosphate ions such as ethyl and diethyl phosphate, and hydroxyl groups (OH-). It is not limited to anions.

本発明の第4級ホスホニウム塩水溶液の電解にあたって
は直流電圧を印加するか、そのときの電流密度は通常1
〜50A/da2.好ましくは2〜30A/dm2.電
解液の温度は室温下で十分であるが、陽極の腐食を防止
し、また陰極液中の目的物の分解を防止する為に、s 
o ”c以下に保つことか好ましい。
When electrolyzing the quaternary phosphonium salt aqueous solution of the present invention, a DC voltage is applied, or the current density at that time is usually 1.
~50A/da2. Preferably 2 to 30 A/dm2. The temperature of the electrolyte is sufficient at room temperature, but in order to prevent corrosion of the anode and decomposition of the target substance in the catholyte,
It is preferable to keep it below o”c.

電解槽への第4級ホスホニウム塩水溶液の供給方法は、
循環式、連続式、半連続式のいずれでも実施することか
できる。この第4級ホスホニウム塩水溶液は陰極側中間
室(中間室II )に供給されるが、そのときの濃度は
第4級ホスホニウム塩の種類および陰極室に生成する目
的物の高純度第4級ホスホニウムヒドロオキシドの品質
によっても異なるが、通常2〜50wt%、好ましくは
3〜30WL%に設定する。その理由は、陰極側中間室
(中間室II )に50wシ%をこえる高濃度の第4級
ホスホニウム塩を供給するとアニオン(酸基)が陽イオ
ン交換膜を通って陰極室へ多少逆拡散する。この場合、
その陰極側中間室(中間室■)の濃度を前記の2〜50
wL%の範囲に保つ7JGによってアニオンか陰極室へ
逆拡散することを押える事かできる。また、アニオンか
水酸基の場合、即ち、粗製第4級ホスホニウムヒドロオ
キシドを精製する場合にも本発明に係る方法か適用てき
、このときは、その濃度を特に制限する必要はないか、
一般に第4級ホスホニウムヒドロオキシドは安定性に乏
しく、高濃度になると分解して対応するホスフィンオキ
シトになるため、50wt%以上の余り高い濃度での使
用は好ましくない。
The method for supplying the quaternary phosphonium salt aqueous solution to the electrolytic cell is as follows:
It can be carried out in any of the circulation type, continuous type, and semi-continuous type. This quaternary phosphonium salt aqueous solution is supplied to the cathode side intermediate chamber (intermediate chamber II), and the concentration at that time depends on the type of quaternary phosphonium salt and the high purity quaternary phosphonium of the target product produced in the cathode chamber. Although it varies depending on the quality of the hydroxide, it is usually set at 2 to 50 wt%, preferably 3 to 30 wt%. The reason for this is that when a high concentration of quaternary phosphonium salt exceeding 50w% is supplied to the intermediate chamber on the cathode side (intermediate chamber II), anions (acid groups) will diffuse back to the cathode chamber to some extent through the cation exchange membrane. . in this case,
The concentration in the intermediate chamber on the cathode side (intermediate chamber ■) is set to 2 to 50% as described above.
By keeping 7JG within the range of wL%, it is possible to suppress back diffusion of anions to the cathode chamber. Furthermore, in the case of anion or hydroxyl group, that is, when purifying crude quaternary phosphonium hydroxide, the method according to the present invention can be applied, and in this case, there is no need to particularly limit the concentration.
In general, quaternary phosphonium hydroxide has poor stability and decomposes into the corresponding phosphine oxide at high concentrations, so it is not preferable to use it at extremely high concentrations of 50 wt% or more.

また、本発明において、特に第4級ホスホニウム塩水溶
液に主成分として、または不純物としてハロゲンイオン
や硝酸イオン等が含まれている場合には、それ等が電解
中に陽極に達すると有害かつ高腐蝕性のハロゲンや窒素
酸化物等のガスが高濃度で発生して陽極自体か腐蝕され
、その腐蝕生成物か陰極液側に移行し、目的生成物であ
る第4級ホスホニウムヒドロオキシドの純度の低下を招
くほか、合成樹脂製の陽極室や陽イオン交換膜。
In addition, in the present invention, especially if the quaternary phosphonium salt aqueous solution contains halogen ions or nitrate ions as a main component or as impurities, they will be harmful and highly corrosive if they reach the anode during electrolysis. Gases such as chemical halogens and nitrogen oxides are generated in high concentrations, corrode the anode itself, and the corrosion products migrate to the catholyte, reducing the purity of the target product, quaternary phosphonium hydroxide. In addition to inviting a synthetic resin anode chamber and cation exchange membrane.

陰イオン交換膜を劣化させる原因となる。従って、陰極
側中間室(中間室■)へ供給された第4級ホスホニウム
塩水溶液からM敲するハロゲンイオンを代表とする腐蝕
性アニオンが電解中に陰極側中間室(中間室■)から陽
極側中間室(中間室I)を通過して陽極室へ移行するの
を阻止する目的で、陰極側中間室(中間室■)と陽極側
中間室(中間電工)との隔膜として陰イオン交換膜を、
および陽極側中間室(中間電工)と陽極室との隔膜とし
て陽イオン交換膜を二重に使用することに本方法の重要
な意義がある。
It causes deterioration of the anion exchange membrane. Therefore, corrosive anions, typically halogen ions, from the quaternary phosphonium salt aqueous solution supplied to the cathode-side intermediate chamber (intermediate chamber ■) are transferred from the cathode-side intermediate chamber (intermediate chamber ■) to the anode side during electrolysis. In order to prevent the transition from passing through the intermediate chamber (intermediate chamber I) to the anode chamber, an anion exchange membrane was used as a partition between the cathode side intermediate chamber (intermediate chamber ■) and the anode side intermediate chamber (Zakae Electric Works). ,
The important significance of this method lies in the dual use of a cation exchange membrane as a diaphragm between the anode side intermediate chamber (Nakae Electric Works) and the anode chamber.

即ち、陽極室と陰極側中間室(中間室■)との隔膜に陰
イオン交換膜および陽イオン交換膜を使用することによ
って、電解中に陽極、陽極室、陽イオン交換膜および陰
イオン交換膜の劣化の原因となる腐蝕性ガスの発生を抑
制する事か出来る。
That is, by using an anion exchange membrane and a cation exchange membrane as a partition between the anode chamber and the cathode side intermediate chamber (intermediate chamber ■), the anode, anode chamber, cation exchange membrane, and anion exchange membrane are separated during electrolysis. It is possible to suppress the generation of corrosive gases that cause deterioration.

他方、陰極室と陰極側中間室(中間室■)との隔膜であ
る陽イオン交換膜の存在により、目的とする第4級ホス
ホニウムカチオンのみを陰極側中間室(中間室■)から
陰極室へ移行せしめ陰極室にて高純度の第4級ホスホニ
ウムヒドロオキシドを得ることかできる。
On the other hand, due to the presence of a cation exchange membrane that is a partition between the cathode chamber and the cathode side intermediate chamber (intermediate chamber ■), only the desired quaternary phosphonium cations are transferred from the cathode side intermediate chamber (intermediate chamber ■) to the cathode chamber. High purity quaternary phosphonium hydroxide can be obtained in the transferred cathode chamber.

次に、陽極室に供給する溶液に使用する酸性電解質とし
ては、陽極室を構成する材質の腐蝕や劣化が少なく、か
つ腐蝕性又は有毒なガスを発生しないものか用いられる
。例えば、硫酸、りん酸等の稀薄水溶液、蟻酸、シュウ
酸および酒石酸等の有機酸の水溶液か挙げられる。これ
らの酸性電解質は高濃度で使用する必要はなく電解に必
要な電導度、例えば5〜300m5、好ましくは10〜
200!Isになる程度の濃度てあれば十分である。こ
れらの濃度を具体的な数値で表わすと、硫酸では1.0
〜IO,Owt%、シュウ酸では2.0〜10wt%で
ある。
Next, the acidic electrolyte used in the solution supplied to the anode chamber should be one that causes less corrosion or deterioration of the material constituting the anode chamber and does not generate corrosive or toxic gases. Examples include dilute aqueous solutions such as sulfuric acid and phosphoric acid, and aqueous solutions of organic acids such as formic acid, oxalic acid and tartaric acid. These acidic electrolytes do not need to be used in high concentrations and have a conductivity required for electrolysis, such as 5 to 300 m5, preferably 10 to
200! It is sufficient to have a concentration of Is. Expressing these concentrations in concrete numbers, for sulfuric acid it is 1.0
~IO, Owt%, and for oxalic acid it is 2.0 to 10wt%.

一方、陰極室および陽極側中間室(中間室■)には純水
を供給するが、運転開始当初、純水では電解か起りにく
いのて電解質として目的生に#、物である第4級ホスホ
ニウムヒドロオキシドを少量、例えば0.01〜10.
Owt%程度添加するのか好ましい。
On the other hand, pure water is supplied to the cathode chamber and the intermediate chamber on the anode side (intermediate chamber ■), but at the beginning of operation, pure water is difficult to cause electrolysis, so the target product is quaternary phosphonium as an electrolyte. A small amount of hydroxide, for example 0.01 to 10.
It is preferable to add about Owt%.

また、陽極室、陽極側中間室(中間電工)、陰極側中間
室(中間室■)および陰極室に各々の水溶液を供給する
方法は、循環式、連続式、半連続式のいずれでも実施す
る事か出来る。各室における各水溶液の滞留時間は1〜
60秒、好ましくは1〜10秒間にて実施する。
In addition, the method of supplying each aqueous solution to the anode chamber, the anode side intermediate chamber (Nakae Electric Works), the cathode side intermediate chamber (intermediate chamber ■), and the cathode chamber can be carried out by a circulation type, a continuous type, or a semi-continuous type. I can do it. The residence time of each aqueous solution in each chamber is 1~
It is carried out for 60 seconds, preferably 1 to 10 seconds.

電解が進行するにつれて、陰極室液中の目的生成物の高
純度第4級ホスホニウムヒドロオキシドの濃度は高くな
ってくるが、第4級ホスホニウムヒドロオキシドの安定
性を考慮して50wt%まての所望の濃度に達したとこ
ろで木で希釈するとともに連続的又はパウチ的に回収す
る。
As the electrolysis progresses, the concentration of high-purity quaternary phosphonium hydroxide, the target product, in the cathode chamber solution increases, but in consideration of the stability of quaternary phosphonium hydroxide, the concentration is lower than 50 wt%. When the desired concentration is reached, it is diluted with wood and collected continuously or in pouches.

陰極側中間室(中間室■)に供給した第4級ホスホニウ
ム塩は消費されて濃度が低下してくるが、逐次第4級ホ
スホニウム塩を補なえば良い。
The quaternary phosphonium salt supplied to the intermediate chamber on the cathode side (intermediate chamber ■) is consumed and its concentration decreases, but it is sufficient to supplement the quaternary phosphonium salt as needed.

また、陽極側中間室(中間電工)ては、第4級ホスホニ
ウム塩の対アニオンの濃度か増加してゆくか、水で希釈
すると共に連続的又はハツチ的に系外に回収する。
In addition, in the anode side intermediate chamber (Nakae Denko), the concentration of the counter anion of the quaternary phosphonium salt increases or is diluted with water and is continuously or hatchwise recovered from the system.

かくて、第4級ホスホニウム塩から第4級ホスホニウム
ヒドロオキシドを連続的かつ収率良く製造する事か回走
となった。
Thus, it became possible to continuously and efficiently produce quaternary phosphonium hydroxide from quaternary phosphonium salt.

なお、電解を開始するにあたり、予め電極や電解槽等の
系を十分純水て洗浄し不純物か混入しない様にしておく
事は言うまてもない。
It goes without saying that before starting electrolysis, the electrodes, electrolytic cell, and other systems should be thoroughly washed with pure water to prevent any impurities from entering.

[作用] 本発明の高純度第4級ホスホニウムヒドロオキシドの製
造法は、陽イオン交換IV2て区画された陽極室に酸性
電解質液を、陰極室に水をそれぞれ供給し、また陰イオ
ン交換膜と陽イオン交換膜て区画された陽極側中間室(
中間電工)に水を、陰極側中間室(中間室II )に第
4級ホスホニウム塩水溶液をそれぞれ供給して両極間に
直流電流を通電することにより、選択的な透過作用を有
する陰イオン交換膜および陽イオン交換膜の2つの交換
膜により区画されている陽極室には第4級ホスホニウム
塩の主成分または不純物として含有されているハロゲン
イオンのe縮や窒素酸化物等のガスの発生や逆拡散か起
こらず、かつ陰極室ては第4級ホスホニウムカチオンの
みか陽極から陰極へ陽イオン交換膜を選択的に透過する
一為に高純度の第4級ホスホニウムヒドロオキシドを得
ることかてきる。
[Function] The method for producing high-purity quaternary phosphonium hydroxide of the present invention involves supplying an acidic electrolyte solution to an anode chamber divided by a cation exchange IV2 and water to a cathode chamber, and also supplying an anion exchange membrane and an anion exchange membrane. Anode side intermediate chamber divided by cation exchange membrane (
An anion exchange membrane with a selective permeation effect is produced by supplying water to the intermediate chamber (intermediate chamber II) on the cathode side and a quaternary phosphonium salt aqueous solution to the intermediate chamber (intermediate chamber II) on the cathode side, and passing a direct current between the two electrodes. In the anode chamber, which is divided by two cation exchange membranes, the e-condensation of halogen ions contained as the main component or impurity of the quaternary phosphonium salt, the generation of gases such as nitrogen oxides, etc. Since no diffusion occurs and only the quaternary phosphonium cations in the cathode chamber selectively permeate through the cation exchange membrane from the anode to the cathode, it is possible to obtain highly pure quaternary phosphonium hydroxide.

[実施例] 以下、実施例を示し本発明をさらに具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 2枚の陽イオン交換膜 ナフィオン(Nafion)3
24(デュポン社製、フッ素樹脂系陽イオン交換膜)と
、それらの間に1枚の陰イオン交換膜AMV(旭硝子社
製、ボッスチレン系陰イオン交換膜)を使用して電解槽
を陽極室、中間電工(陽極側中間室)、中間室II (
陰極側中間室)及び陰極室の4室に区画した。
Example 1 Two cation exchange membranes Nafion 3
24 (manufactured by DuPont, fluororesin-based cation exchange membrane) and one anion exchange membrane AMV (manufactured by Asahi Glass, Bostyrene-based anion exchange membrane) between them. Intermediate electrician (anode side intermediate chamber), intermediate chamber II (
It was divided into four chambers: an intermediate chamber on the cathode side) and a cathode chamber.

陽極としてチタン板に白金被覆したものを、また陰極と
してステンレス(SO3304)板を使用し、4室とも
予め十分に純水て洗浄した。
A titanium plate coated with platinum was used as the anode, and a stainless steel (SO3304) plate was used as the cathode, and all four chambers were thoroughly washed with pure water in advance.

次いて、陽極室に2.9:I wL%のシュウm4.2
8kgを、中間室Iに2.51 wt%の臭化水素酸1
2.5kgを、中間室■に7.61 wL%のテトラエ
チルホスホニウムプロマイトIJ、6kgを、また陰極
室には2.Owし%のテトラエチルホスホニウムヒドロ
オキシドの水溶液11.6 kgを供給し、室温下で陽
極と陰極との間に18〜22Vの直流電圧を印加して2
6時間電気分解を行なった。その結果、P3極室に8.
68wt%のテトラエチルホスホニウムヒドロオキシド
水溶液12.04kgを得た。このときの通電量は81
3Fで電流効率は59.4%であった。
Then, in the anode chamber, 2.9:I wL% Shu m4.2
8 kg of 2.51 wt% hydrobromic acid 1 in intermediate chamber I.
2.5 kg, 6 kg of 7.61 wL% tetraethylphosphonium puromite IJ in the intermediate chamber (■), and 2.5 kg in the cathode chamber. 11.6 kg of an aqueous solution of tetraethylphosphonium hydroxide with a concentration of
Electrolysis was carried out for 6 hours. As a result, 8.
12.04 kg of a 68 wt % aqueous solution of tetraethylphosphonium hydroxide was obtained. The amount of current at this time is 81
The current efficiency was 59.4% at 3F.

陰極室て得られたテトラエチルホスホニウムヒドロオキ
シト水溶液中の不純物を分析した結果、Na≦0.O5
ppm、 K≦0.01ppm、  Fe≦0.01p
pm、  Ni≦0、O2ppm、  Cr≦0.01
ppIl、  Cu≦0.O2ppm、  Ba≦0.
02 ppm、  Pb≦0.051)l)01.  
Ti≦0.01ppm、 CI!≦0.2ppm、 B
r≦0.21)l)l、 SO4≦0.2ppmで極め
て純度の高いものてあった。
As a result of analyzing the impurities in the tetraethylphosphonium hydroxide aqueous solution obtained in the cathode chamber, it was found that Na≦0. O5
ppm, K≦0.01ppm, Fe≦0.01p
pm, Ni≦0, O2ppm, Cr≦0.01
ppIl, Cu≦0. O2ppm, Ba≦0.
02 ppm, Pb≦0.051)l)01.
Ti≦0.01ppm, CI! ≦0.2ppm, B
The purity was extremely high with r≦0.21)l and SO4≦0.2ppm.

実施例2 実施例1と同じ装置を用いて、陽極室に1.Owt%の
硫酸4 、12kg、中間室Iに0.90 wt%の臭
化水素酸14.9kg、中間室Hに10.Owt%のテ
トラエチルホスホニウムプロマイト16.6kgを、ま
た陰極室には0.66胃L%のテトラエチルホスホニウ
ムヒドロオキシドの水溶液3.92kgを供給し、室温
下で陽極と陰極との間に20〜22Vの直流電圧を印加
して37時間電気分解を行なった。その結果、陰極室に
10.5wt、%のテトラエチルホスホニウムヒドロオ
キシト水溶液4.27kgを11)た。このときの通電
量は4.5Fで電流効率は57%であった。
Example 2 Using the same equipment as in Example 1, 1. Owt% sulfuric acid 4, 12 kg, 0.90 wt% hydrobromic acid 14.9 kg in intermediate chamber I, 10.0 wt% in intermediate chamber H. 16.6 kg of Owt% tetraethylphosphonium puromite and 3.92 kg of an aqueous solution of 0.66 L% tetraethylphosphonium hydroxide were supplied to the cathode chamber, and 20 to 22 V was applied between the anode and cathode at room temperature. Electrolysis was carried out for 37 hours by applying a DC voltage of . As a result, 4.27 kg of a 10.5 wt% tetraethylphosphonium hydroxide aqueous solution was placed in the cathode chamber (11). The amount of current applied at this time was 4.5F, and the current efficiency was 57%.

得られたテトラエチルホスホニウムヒドロオキシド水溶
液中の不純物を分析した結果、 Na= 0.O7pp
m、  K≦0.01ppm、   Fe= 0.0:
lppm、   Ni≦0.01ppm。
As a result of analyzing the impurities in the obtained tetraethylphosphonium hydroxide aqueous solution, Na=0. O7pp
m, K≦0.01ppm, Fe=0.0:
lppm, Ni≦0.01ppm.

Cr≦0.01ppm、  Cu≦0.O2ppm、 
 Ba=0.004 ppm。
Cr≦0.01ppm, Cu≦0. O2ppm,
Ba=0.004 ppm.

Ti≦0.01pp+*、  CI! ≦0.2ppm
、  Br≦0−2I)l)l、  504= 0.4
5pp+*で極めて純度の高いものであった。
Ti≦0.01pp+*, CI! ≦0.2ppm
, Br≦0-2I)l)l, 504=0.4
The purity was extremely high at 5pp+*.

実施例3 実施例1と同じ装置を用いて、陽極室に4.6 wt%
のシュウ酸水溶液4.02kg、中間電工に3.24 
vt%のヨウ化水素酸15.0kg、中間室■に9.8
 wt%のトリエチルメチルホスホニウムヨーダイト9
.5 kgを、また陰極室には0.35wt%のトリエ
チルメチルホスホニウムヒドロオキシトの水溶液:1.
99kgを供給し、室温下て陽極と陰極との間に20〜
22Vの直流電圧を印加して25時間電気分解を行なっ
た。その結果、陰極室に9.3 wt%のトリエチルメ
チルホスホニウムヒドロオキシト水溶液4.65kgを
得た。
Example 3 Using the same equipment as in Example 1, 4.6 wt% was added to the anode chamber.
4.02 kg of oxalic acid aqueous solution, 3.24 kg to Chubu Electric Works
15.0 kg of vt% hydroiodic acid, 9.8 in the middle chamber ■
wt% triethylmethylphosphonium iodite 9
.. 5 kg, and a 0.35 wt% aqueous solution of triethylmethylphosphonium hydroxide in the cathode chamber: 1.
99kg was supplied, and 20~20~
Electrolysis was carried out for 25 hours by applying a DC voltage of 22V. As a result, 4.65 kg of a 9.3 wt % triethylmethylphosphonium hydroxide aqueous solution was obtained in the cathode chamber.

このときの通電量は3.90Fて電流効率は71.5%
であった。
At this time, the current flow rate was 3.90F and the current efficiency was 71.5%.
Met.

得られたトリエチルメチルホスホニウムヒドロオキシト
水溶液中の不純物を分析した結果、Na≦0、O5pp
m、 K≦0.01ppm、  Fe= 0.01pp
m、  Ni≦0.01ppH1,Cr≦0.01pp
m、  Cu≦0.O2ppm、  Ba≦0.O2p
pm、  Pb≦O,O5ppm、  Ti≦0.[l
lppm、  CI!≦0.lppm、 nr≦0.l
ppm、  l≦0il)pH,SO,≦0.2ppm
で極めて純度の高いものであった。
As a result of analyzing the impurities in the obtained triethylmethylphosphonium hydroxide aqueous solution, Na≦0, O5pp
m, K≦0.01ppm, Fe=0.01ppm
m, Ni≦0.01ppH1, Cr≦0.01pp
m, Cu≦0. O2ppm, Ba≦0. O2p
pm, Pb≦O, O5ppm, Ti≦0. [l
lppm, CI! ≦0. lppm, nr≦0. l
ppm, l≦0il) pH, SO, ≦0.2ppm
It was extremely pure.

実施例4 実施例1と回し装置を用いて、陽極室に4.5 wt%
のシュウ酸水溶液4.5kg 、中間室Iに1.0 w
L%の臭化水素酸4.:1kg 、中間室Hに8.5 
wt、%のテトラエチルホスホニウムヒドロオキシト1
7.8kgを。
Example 4 Using Example 1 and a rotating device, 4.5 wt% was added to the anode chamber.
4.5 kg of oxalic acid aqueous solution, 1.0 w in intermediate chamber I
L% hydrobromic acid4. :1kg, 8.5 in intermediate chamber H
wt, % tetraethylphosphonium hydroxide 1
7.8 kg.

また陰極室には2.:l wt%のテトラエチルホスホ
ニウムヒドロオキシト水溶液4.5kgを供給し、室温
下て陽極と陰極との間に20〜22Vの直流電圧を印加
して24時間電気分解を行なった。その結果、陰極室に
11.8wL%のテトラエチルホスホニウムヒドロオキ
シト水溶液4.95kgを得た。このときの通電4は4
.48Fて電流効率は65.4%てあった。
In addition, there are 2. :l wt% tetraethylphosphonium hydroxide aqueous solution (4.5 kg) was supplied, and a DC voltage of 20 to 22 V was applied between the anode and the cathode at room temperature to perform electrolysis for 24 hours. As a result, 4.95 kg of a 11.8 wL% tetraethylphosphonium hydroxide aqueous solution was obtained in the cathode chamber. At this time, energization 4 is 4
.. At 48F, the current efficiency was 65.4%.

電解前および電解後のテトラエチルホスホニウムヒドロ
オキシト水溶液中の不純物を分析した結果は下記の表1
のとおりであった。
The results of analyzing impurities in the tetraethylphosphonium hydroxide aqueous solution before and after electrolysis are shown in Table 1 below.
It was as follows.

[発明の効果コ 以上説明した様に、本発明の高純度第4級ホスホニウム
ヒドロオキシドは高純度のため、重合触媒、電解コンデ
ンサー電解質用第4級ホスホニウム塩の製造に用いる中
間原料、半導体装21等の電子部品及び電子機器の封止
や含浸等に広く用いられる電気的特性に優れたエポキシ
樹脂の硬化触媒の原料等に有用である。
[Effects of the Invention] As explained above, the high-purity quaternary phosphonium hydroxide of the present invention has high purity, so it can be used as a polymerization catalyst, an intermediate raw material used in the production of a quaternary phosphonium salt for electrolyte of an electrolytic capacitor, and a semiconductor device. It is useful as a raw material for curing catalysts for epoxy resins with excellent electrical properties, which are widely used for sealing and impregnating electronic parts and devices such as epoxy resins.

また、本発明の高純度の第4級ホスホニウムヒドロオキ
シドは、lの陰イオン交換膜とそれを挟む2の陽イオン
交換膜て区画された4槽構造の′I[解槽にて、:jT
J4級ホスホニウム塩水溶液を直流電解することにより
、高純度、高収率で得ることがてき、本発明の工業的価
値は極めて高いものである。
In addition, the high purity quaternary phosphonium hydroxide of the present invention has a four-tank structure divided by one anion exchange membrane and two cation exchange membranes sandwiching it.
By subjecting an aqueous J4 phosphonium salt solution to direct current electrolysis, it can be obtained with high purity and high yield, and the industrial value of the present invention is extremely high.

出願人  口木化学工業株式会社Applicant: Kuchigi Chemical Industry Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] (1)次の一般式 ▲数式、化学式、表等があります▼ (式中、R_1、R_2、R_3およびR_4は炭素原
子数1〜8のアルキル基、アリール基、アラルキル基ま
たはそれ等のいずれか少なくとも一種の基がヒドロキシ
ル基若しくはアルコキシル基で置換されたものを示す) で表わされる第4級ホスホニウムヒドロオキシド水溶液
であって、該水溶液中の各金属イオンまたはアニオンが
いずれも1ppm以下にあることを特徴とする高純度第
4級ホスホニウムヒドロオキシド。
(1) The following general formula ▲ Numerical formulas, chemical formulas, tables, etc. A quaternary phosphonium hydroxide aqueous solution represented by Characteristic high purity quaternary phosphonium hydroxide.
(2)第4級ホスホニウムヒドロオキシド水溶液の濃度
が2〜50wtを%である請求項1記載の高純度第4級
ホスホニウムヒドロオキシド。
(2) The high purity quaternary phosphonium hydroxide according to claim 1, wherein the concentration of the quaternary phosphonium hydroxide aqueous solution is 2 to 50 wt%.
(3)1の陰イオン交換膜とそれを挟む2の陽イオン交
換膜で区画された4槽構造の電解槽において、次の一般
式 ▲数式、化学式、表等があります▼ (式中、R_1、R_2、R_3およびR_4は炭素原
子数1〜8のアルキル基、アリール基、アラルキル基ま
たはそれ等のいずれか少なくとも一種の基がヒドロキシ
ル基若しくはアルコキシル基で置換されたものを表わし
、X^■はアニオンを示す) で表わされる第4級ホスホニウム塩水溶液を直流電解し
て陰極室から第4級ホスホニウムヒドロオキシドを得る
ことを特徴とする高純度第4級ホスホニウムヒドロオキ
シドの製造法。
(3) In an electrolytic cell with a four-cell structure divided by an anion exchange membrane 1 and a cation exchange membrane 2 sandwiching it, there are the following general formulas ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (In the formula, R_1 , R_2, R_3 and R_4 represent an alkyl group having 1 to 8 carbon atoms, an aryl group, an aralkyl group, or one in which at least one group thereof is substituted with a hydroxyl group or an alkoxyl group, and X^■ is A method for producing high-purity quaternary phosphonium hydroxide, which comprises obtaining quaternary phosphonium hydroxide from a cathode chamber by direct current electrolysis of a quaternary phosphonium salt aqueous solution represented by (indicating an anion).
(4)請求項3記載の製造法において、陽極室に酸性電
解質液を、陰極室および陽極側中間室に水を、および陰
極側中間室に第4級ホスホニウム塩水溶液をそれぞれ供
給して、両極間に直流電流を通電することを特徴とする
高純度第4級ホスホニウムヒドロオキシドの製造法。
(4) In the manufacturing method according to claim 3, an acidic electrolyte solution is supplied to the anode chamber, water is supplied to the cathode chamber and the intermediate chamber on the anode side, and a quaternary phosphonium salt aqueous solution is supplied to the intermediate chamber on the cathode side. A method for producing high-purity quaternary phosphonium hydroxide, characterized by passing a direct current between the two.
(5)第4級ホスホニウム塩水溶液の直流電解は、温度
50℃以下において、電流密度1〜50A/dm^2で
電圧1〜50Vの条件で行う、請求項3または4記載の
高純度第4級ホスホニウムヒドロオキシドの製造法。
(5) Direct current electrolysis of the quaternary phosphonium salt aqueous solution is carried out at a temperature of 50° C. or lower, a current density of 1 to 50 A/dm^2, and a voltage of 1 to 50 V. A method for producing grade phosphonium hydroxide.
(6)第4級ホスホニウム塩水溶液の供給濃度が2〜5
0wt%である請求項3又は4記載の高純度第4級ホス
ホニウムヒドロオキシドの製造法。
(6) Supply concentration of quaternary phosphonium salt aqueous solution is 2 to 5
5. The method for producing high purity quaternary phosphonium hydroxide according to claim 3 or 4, wherein the content is 0 wt%.
(7)第4級ホスホニウム塩水溶液がテトラエチルホス
ホニウムブロマイド水溶液である請求項3乃至6のいず
れかの項記載の高純度第4級ホスホニウムヒドロオキシ
ドの製造法。
(7) The method for producing high-purity quaternary phosphonium hydroxide according to any one of claims 3 to 6, wherein the aqueous quaternary phosphonium salt solution is an aqueous tetraethylphosphonium bromide solution.
JP63249015A 1988-10-04 1988-10-04 Method for producing high-purity quaternary phosphonium hydroxide Expired - Fee Related JPH0791665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63249015A JPH0791665B2 (en) 1988-10-04 1988-10-04 Method for producing high-purity quaternary phosphonium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63249015A JPH0791665B2 (en) 1988-10-04 1988-10-04 Method for producing high-purity quaternary phosphonium hydroxide

Publications (2)

Publication Number Publication Date
JPH0296584A true JPH0296584A (en) 1990-04-09
JPH0791665B2 JPH0791665B2 (en) 1995-10-04

Family

ID=17186738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63249015A Expired - Fee Related JPH0791665B2 (en) 1988-10-04 1988-10-04 Method for producing high-purity quaternary phosphonium hydroxide

Country Status (1)

Country Link
JP (1) JPH0791665B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507350A (en) * 2022-01-17 2022-05-17 北京化工大学 Polyphosphazene anion exchange membrane loaded with adamantyl quaternary phosphonium cation unit and preparation method thereof
CN114940690A (en) * 2022-07-07 2022-08-26 昆明理工大学 Tetrapropyl phosphonium hydroxide and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212397A (en) * 1986-03-12 1987-09-18 Hokko Chem Ind Co Ltd Method for producing quaternary phosphonium hydroxide
JPH01246386A (en) * 1987-11-25 1989-10-02 Asahi Glass Co Ltd Production of onium salt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212397A (en) * 1986-03-12 1987-09-18 Hokko Chem Ind Co Ltd Method for producing quaternary phosphonium hydroxide
JPH01246386A (en) * 1987-11-25 1989-10-02 Asahi Glass Co Ltd Production of onium salt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507350A (en) * 2022-01-17 2022-05-17 北京化工大学 Polyphosphazene anion exchange membrane loaded with adamantyl quaternary phosphonium cation unit and preparation method thereof
CN114940690A (en) * 2022-07-07 2022-08-26 昆明理工大学 Tetrapropyl phosphonium hydroxide and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0791665B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
US4634509A (en) Method for production of aqueous quaternary ammonium hydroxide solution
US4917781A (en) Process for preparing quaternary ammonium hydroxides
US5575901A (en) Process for preparing organic and inorganic hydroxides or alkoxides or ammonia or organic amines from the corresponding salts by electrolysis
US4714530A (en) Method for producing high purity quaternary ammonium hydroxides
US5362367A (en) Partial electrolytic dehalogenation of dichloroacetic and trichloroacetic acid and electrolysis solution
GB2166456A (en) Electrolytic process for the preparation of quaternary ammonium salts
US4938854A (en) Method for purifying quaternary ammonium hydroxides
JPH07501854A (en) Electrochemical production method of glyoxylic acid
KR20010082325A (en) Methods for producing or purifying onium hydroxides by means of electrodialysis
US4578161A (en) Process for preparing quaternary ammonium hydroxides by electrolysis
JPS60131986A (en) Manufacture of quaternary ammonium hydroxide of high purity
CN113235117A (en) Production process of high-concentration tetrapropylammonium hydroxide and high-concentration tetrapropylammonium hydroxide prepared by same
JPH0296584A (en) Production method of high purity quaternary phosphonium hydroxide
JPH0780253A (en) Electrodialytic purifying method
US5423960A (en) Method and apparatus for manufacturing iodine-free iodides
FI82078C (en) ELEKTROKEMISKT AVLAEGSNANDE AV HYPOKLORITER UR KLORATCELLOESNINGAR.
JPH0277591A (en) Method for producing quaternary phosphonium hydroxide
EP0201925A1 (en) Process for producing a free amino acid from an alkali metal salt thereof
JPS59193289A (en) Preparation of high-purity quaternary ammonium hydroxide
JPH0320489A (en) Production of tetraalkylammonium hydroxide
JPS63134684A (en) Production of quaternary ammonium hydroxide
JPS61190085A (en) Production of quaternary ammonium hydroxide by electrolysis
JPS63317686A (en) Manufacture of fluorinated vinyl ether
JP2003277965A (en) Method for making quaternary ammonium hydroxide
JP2019131516A (en) Method for producing quaternary ammonium hydroxide aqueous solution

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees