[go: up one dir, main page]

JPH0277591A - Method for producing quaternary phosphonium hydroxide - Google Patents

Method for producing quaternary phosphonium hydroxide

Info

Publication number
JPH0277591A
JPH0277591A JP63228477A JP22847788A JPH0277591A JP H0277591 A JPH0277591 A JP H0277591A JP 63228477 A JP63228477 A JP 63228477A JP 22847788 A JP22847788 A JP 22847788A JP H0277591 A JPH0277591 A JP H0277591A
Authority
JP
Japan
Prior art keywords
quaternary phosphonium
aqueous solution
hydroxide
phosphonium hydroxide
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63228477A
Other languages
Japanese (ja)
Other versions
JPH0587596B2 (en
Inventor
Shuji Ota
太田 秀志
Koichi Takahashi
宏一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP63228477A priority Critical patent/JPH0277591A/en
Publication of JPH0277591A publication Critical patent/JPH0277591A/en
Publication of JPH0587596B2 publication Critical patent/JPH0587596B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To obtain high purity quat. phosphonium hydroxide in a high yield from the cathode chamber of an electrolytic cell provided with a cation exchange membrane as a diaphragm by electrolyzing an aq. soln. of a specified quat. phosphonium salt with DC in the anode chamber. CONSTITUTION:An aq. soln. of a quat. phosphonium salt represented by the formula (where each of R1-R4 is 1-8C alkyl, aryl, etc., and X is an anion) is fed into the anode chamber of an electrolytic cell provided with one or more cation exchange membranes as diaphragms. Water is fed into the cathode chamber and DC is supplied between both electrodes. Only quat. phosphonium cations permeate the cation exchange membranes and move from the anode to the cathode and high purity quat. phosphonium hydroxide corresponding to the quat. phosphonium salt is obtd. in the cathode chamber. This product is useful as a polymn. catalyst, a curing catalyst, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、第4級ホスホニウムヒドロオキシドの製造法
に関する。更に言えば、ポリシロキサンの製造に有用な
重合触媒(英国特許794,119号明細書)、電解コ
ンデンサー電解質用第4級ホスホニウム塩の製造に用い
る中間原料(特開昭62−272.512号公報、特開
昭62−272,51:1号公報)。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing quaternary phosphonium hydroxide. Furthermore, polymerization catalysts useful in the production of polysiloxanes (UK Patent No. 794,119) and intermediate raw materials used in the production of quaternary phosphonium salts for electrolytes in electrolytic capacitors (JP-A-62-272-512) , Japanese Unexamined Patent Publication No. 62-272, 51:1).

さらには、半導体装置等の電子部品及び電子機器の封止
や含浸等に広く用いられる電気的特性に優れたエポキシ
樹脂の硬化触媒等に有用な高純度第4級ホスホニウム塩
の中間原料を電解法により製造する方法に関するもので
ある。
Furthermore, we are using an electrolytic method to produce intermediate raw materials for high-purity quaternary phosphonium salts, which are useful as curing catalysts for epoxy resins with excellent electrical properties, which are widely used for sealing and impregnating electronic components such as semiconductor devices and electronic devices. The present invention relates to a manufacturing method.

[従来の技術]および[発明が解決しようとする課′x
U] 従来、第4級ホスホニウムヒドロオキシドの製造法とし
ては、テトラ−n−ブチルホスホニウムアイオダイドな
水溶液て酸化銀と反応させて、第4級ホスホニウムヒド
ロオキシドを得る方法(英国特許794 、119号明
細書)が知られている。その反応式を下記に示す。
[Prior art] and [Problem to be solved by the invention'x
U] Conventionally, as a method for producing quaternary phosphonium hydroxide, a method of reacting an aqueous solution of tetra-n-butylphosphonium iodide with silver oxide to obtain quaternary phosphonium hydroxide (British Patent No. 794, 119) specification) is known. The reaction formula is shown below.

(n−C,H,)、PI+1/2AgO+1/2HzO
−+ (n−Cjl、、)4POH+Aglしかしなが
ら、この方法は酸化銀が高価である為に製造コストか高
くなり工業的に望ましい方法てはない。
(n-C,H,), PI+1/2AgO+1/2HzO
-+ (n-Cjl,,)4POH+Agl However, this method is not an industrially desirable method because silver oxide is expensive and the manufacturing cost is high.

他方、ジー エム コゾラホフ、エル メイアー共著「
オーガニック ホスホラス コンパウンド」ウィリー−
インターサイエンス社発行(G、M、 KO30LAP
OFF and L、 MAIERrORGANIc 
PtlO5PHPt105PHORUSGOWILEY
−INTER3CIENCE、 a Division
of John Wiley & 5ons、Inc、
) Vol、2 、201頁。
On the other hand, co-authored by G.M. Kozolahoff and El Meyer, “
Organic Phosphorous Compound” Willy
Published by Interscience (G, M, KO30LAP)
OFF and L, MAIERrORGANIc
PtlO5PHPt105PHORUSGOWILEY
-INTER3CIENCE, a Division
of John Wiley & 5ons, Inc.
) Vol. 2, p. 201.

(1972年)ては、第4級ホスホニウム塩はイオン交
換樹脂を用いてイオン交換できる事が記載されている。
(1972) describes that quaternary phosphonium salts can be ion-exchanged using an ion-exchange resin.

しかしながら、同書に記載されているように。However, as stated in the same book.

イオン交換樹脂を用いてイオン交換する場合には、一般
に原液の濃縮を希薄にする必要があり、従つてイオン交
換に長時間を必要とする欠点がある。
When ion exchange is performed using an ion exchange resin, it is generally necessary to dilute the concentration of the stock solution, which has the disadvantage that ion exchange requires a long time.

又、この点を克服すべく、特開昭62−212,397
号公報では比較的高濃度領域で第4級ホスホニウムハラ
イドを強塩基性アニオン交換樹脂(OH型)と接触して
、イオン交換する事によって第4級ホスホニウムヒドロ
オキシドを得る方法か記載されている。しかし、この方
法の場合には、その実施例に記載されているようにイオ
ン交換が完全に行われない為(収率66.4〜90.8
%)、流出液中へ原料である第4級ホスホニウムハライ
ドが混入する事が避けられない、従って、ハロゲン化炭
化水素等の有機溶媒を使用して混入した第4級ホスホニ
ウムハライドを取り除く工程が必要である。
In addition, in order to overcome this point, Japanese Patent Application Laid-Open No. 62-212,397
The publication describes a method for obtaining quaternary phosphonium hydroxide by contacting quaternary phosphonium halide with a strongly basic anion exchange resin (OH type) in a relatively high concentration range and performing ion exchange. However, in the case of this method, as described in the examples, ion exchange is not completely performed (yield 66.4-90.8
%), it is unavoidable that the raw material quaternary phosphonium halide is mixed into the effluent.Therefore, it is necessary to remove the mixed quaternary phosphonium halide using an organic solvent such as a halogenated hydrocarbon. It is.

また、このように溶媒を使用して原料の第4級ホスホニ
ウムハライドを取り除いたとしても、流出液から完全に
回収することは困難で、その流出液中のハロゲンを分析
すると数100〜数11000ppは含まれている。
Furthermore, even if the quaternary phosphonium halide used as a raw material is removed using a solvent, it is difficult to completely recover it from the effluent, and analysis of the halogen in the effluent shows that the amount ranges from several hundred to several 11,000 pp. include.

前記したとおり、従来法では、いずれも高純度の第4級
ホスホニウムヒドロオキシドか得られないか、又は工業
的には全く適応できないものである。
As mentioned above, in all conventional methods, highly pure quaternary phosphonium hydroxide cannot be obtained, or they cannot be applied industrially at all.

本発明者らは、上記の諸問題に鑑み鋭意詳細に研究した
結果、陽イオン交換膜を隔膜として構成する電解槽にて
、第4級ホスホニウム塩水溶液を電解したところ、予想
外に高純度かつ高収率で第4級ホスホニウムヒドロオキ
シドを製造できる方法を知見し本発明を完成した。
As a result of intensive and detailed research in view of the above-mentioned problems, the present inventors electrolyzed a quaternary phosphonium salt aqueous solution in an electrolytic cell configured with a cation exchange membrane as a diaphragm, and found that it had unexpectedly high purity and The present invention was completed by discovering a method for producing quaternary phosphonium hydroxide in high yield.

[課題を解決するための手段] すなわち、本発明は、l又は2以上の陽イオン交換膜を
隔膜とする電解槽において、次の一般式[I] (式中、R1,R2,R)およびR4は炭素原子数1〜
8のアルキル基、アリール基、アラルキル基またはそれ
等のいずれか少なくとも一種の基がヒドロキシル基若し
くはアルコキシル基で置換されたものを表わし、Xoは
アニオンを示す) で表わされる第4級ホスホニウム塩水溶液を直流電解し
て陰極室から第4級ホスホニウムヒドロオキシドを得る
ことを特徴とする第4級ホスホニウムヒドロオキシドの
製造法に係る。
[Means for Solving the Problems] That is, the present invention provides an electrolytic cell having one or more cation exchange membranes as a diaphragm, which has the following general formula [I] (wherein R1, R2, R) and R4 has 1 or more carbon atoms
represents an aqueous solution of a quaternary phosphonium salt represented by The present invention relates to a method for producing quaternary phosphonium hydroxide, which is characterized by obtaining quaternary phosphonium hydroxide from a cathode chamber by direct current electrolysis.

以下、本発明について詳説する。The present invention will be explained in detail below.

本発明の第4級ホスホニウムヒドロオキシドの製造法は
、l又は2以上の陽イオン交換膜を隔膜とする電解槽を
使用して第4級ホスホニウム塩水溶液の直流電解を行う
が、先ず1つの陽イオン交換膜を用いる方法について説
明する。
In the method for producing quaternary phosphonium hydroxide of the present invention, a quaternary phosphonium salt aqueous solution is subjected to direct current electrolysis using an electrolytic cell having one or more cation exchange membranes as a diaphragm. A method using an ion exchange membrane will be explained.

その具体的な方法は、1つの陽イオン交換膜で区画され
た電解槽の陽極室に第4級ホスホニウム塩水溶液を、陰
極室に水をそれぞれ供給して両極間に直流電流を通電す
ることにより、陰極室から第4級ホスホニウムヒドロオ
キシドを得る方法である。
The specific method is to supply a quaternary phosphonium salt aqueous solution to the anode chamber and water to the cathode chamber of an electrolytic cell divided by one cation exchange membrane, and to pass a direct current between the two electrodes. , is a method for obtaining quaternary phosphonium hydroxide from the cathode chamber.

本発明において、陽イオン交換膜としては、通常の陽イ
オン交換膜を用いることができるが、例えばスルフォン
基やカルボキシル基等の陽イオン交換基を有するスチレ
ン−ジビニルベンゼン共重合膜およびフッ素樹脂膜等が
使用される。
In the present invention, ordinary cation exchange membranes can be used as the cation exchange membrane, such as styrene-divinylbenzene copolymer membranes and fluororesin membranes having cation exchange groups such as sulfone groups and carboxyl groups. is used.

また、電極を構成する材料としては、陽極には第4級ホ
スホニウム塩の電解によって発生するハロゲン、酸素等
に対して耐久性のある安定なものが良く1例えば黒鉛、
鉛及びその合金、各種金属に白金属金属を被覆した電極
等を用いるのが好ましい。また、陰極には耐アルカリ性
の材料が用いられ、例えばステンレス、ニッケル等を用
いるのか好ましい。
In addition, as for the material constituting the electrode, it is preferable to use a stable material that is durable against halogen, oxygen, etc. generated by electrolysis of quaternary phosphonium salt for the anode.1For example, graphite,
It is preferable to use electrodes made of lead, alloys thereof, various metals coated with white metal, or the like. Further, it is preferable to use an alkali-resistant material for the cathode, such as stainless steel or nickel.

電解槽を構成する材料としては、陽極室はフッ素系樹脂
、ポリプロピレン、ポリエチレン等の合成樹脂が用いら
れ、また陰極室は前記陽極室に用いられる合成樹脂、そ
の他に耐アルカリ性のステンレス等でも十分に使用する
ことができる。
As for the materials constituting the electrolytic cell, synthetic resins such as fluororesin, polypropylene, and polyethylene are used for the anode chamber, and synthetic resins used for the anode chamber, as well as alkali-resistant stainless steel, etc., are sufficient for the cathode chamber. can be used.

本発明における電解槽の陽極室へ水溶液とじて供給され
る第4級ホスホニウム塩は、下記の一般式[I] C式中、RIn RIn nffおよびR<ハ炭素原子
数1〜8のアルキル基、アリール基、アラルキル基また
はそれ等のいずれか少なくとも一種の基がヒドロキシル
基若しくはアルコキシル基で置換されたものを表わし、
Xoはアニオンを示す)で表わされる化合物が用いられ
る。
The quaternary phosphonium salt supplied as an aqueous solution to the anode chamber of the electrolytic cell in the present invention has the following general formula [I] C, where RIn RIn nff and R<a alkyl group having 1 to 8 carbon atoms, Represents an aryl group, an aralkyl group, or at least one group thereof substituted with a hydroxyl group or an alkoxyl group,
Xo represents an anion) is used.

前記一般式[11において、R1−R1がアルキル基と
しては例えばメチル、エチル、プロピル、ブチル、ペン
チルおよびオクチル等であり、アリール基としては例え
ばフェニル、トリルまたはキシリル等であり、アラルキ
ル基としては例えばベンジル、フェニチル等であり、ま
た前記の6基のいずれか少なくとも一種の基がヒドロキ
シル基若しくはアルコキシル基で置換されたものが挙げ
られる。また、81〜R4は同種又は異種であってもよ
い。
In the general formula [11], the alkyl group for R1-R1 is, for example, methyl, ethyl, propyl, butyl, pentyl, and octyl, the aryl group is, for example, phenyl, tolyl, or xylyl, and the aralkyl group is, for example, Examples include benzyl and phenityl, and examples include those in which at least one of the above six groups is substituted with a hydroxyl group or an alkoxyl group. Further, 81 to R4 may be of the same type or different types.

また zeはアニオン(#基)を示し、例えばフッ素、
塩素、臭素、ヨウ素等のハロゲンイオン、ギ酸、酢酸、
シュウ酸等の有機カルボキシルイオン、硫酸、ジメチル
およびジエチル硫酸の各イオン、硝酸イオン、リン酸イ
オン、メチルおよびジメチルリン酸イオン、エチルおよ
びジエチルリン酸等の有機リン酸イオンあるいは水酸基
(OH−)等が挙げられるが、これ等のアニオンに限定
されるものではない。
Also, ze represents an anion (# group), such as fluorine,
Halogen ions such as chlorine, bromine, and iodine, formic acid, acetic acid,
Organic carboxyl ions such as oxalic acid, sulfuric acid, dimethyl and diethyl sulfate ions, nitrate ions, phosphate ions, methyl and dimethyl phosphate ions, organic phosphate ions such as ethyl and diethyl phosphate, hydroxyl groups (OH-), etc. Examples include, but are not limited to, these anions.

本発明の第4級ホスホニウム塩水溶液の電解にあたって
は直流電圧を印加するが、そのときの電流密度は通常l
〜SOA/da” 、好ましくは2〜30A/da” 
、電解液の温度は室温下で十分であるが、陽極の腐食を
防止し、また陰極液中の目的物の分解を防止する為に、
50℃以下に保つことが好ましい。
When electrolyzing the quaternary phosphonium salt aqueous solution of the present invention, a DC voltage is applied, and the current density at that time is usually l
~SOA/da", preferably 2-30A/da"
The temperature of the electrolyte is sufficient at room temperature, but in order to prevent corrosion of the anode and decomposition of the target substance in the catholyte,
It is preferable to maintain the temperature at 50°C or lower.

電解槽への第4級ホスホニウム塩水溶液の供給方法は、
循環式、連続式、半連続式のいずれでも実施することが
てきる。この第4級ホスホニウム塩水溶液は陽極室に供
給されるが、そのときの濃度は第4級ホスホニウム塩の
種類および陰極室に生成する目的物の第4級ホスホニウ
ムヒドロオキシドの品質によっても異なるが、通常2〜
50wt%、好ましくは3〜30wt%に設定する。そ
の理由は、陽極室に50wt%をこえる高濃度の第4級
ホスホニウム塩を供給するとアニオン(醜基)が陽イオ
ン交換膜を通って陰極室へ多少逆拡散する。この場合、
その陽極室の濃度を前記の2〜50wt%の範囲に保つ
事によってアニオンか陰極室へ逆拡散することを押える
事ができる。また、アニオンか水酸基の場合、即も、粗
製第4級ホスホニウムヒドロオキシドを精製する場合に
も本発明に係る方法が適用でき、このときは、その濃度
を特に制限する必要はないか、一般に第4級ホスホニウ
ムヒドロオキシドは安定性に乏しく、高濃度になると分
解して対応するホスフィンオキシトになるため、 50
wt%以上の余り高い濃度での使用は好ましくない。
The method for supplying the quaternary phosphonium salt aqueous solution to the electrolytic cell is as follows:
It can be carried out in any of the circulation type, continuous type, and semi-continuous type. This quaternary phosphonium salt aqueous solution is supplied to the anode chamber, and the concentration at that time varies depending on the type of quaternary phosphonium salt and the quality of the target quaternary phosphonium hydroxide produced in the cathode chamber. Usually 2~
The content is set to 50 wt%, preferably 3 to 30 wt%. The reason for this is that when a high concentration of quaternary phosphonium salt exceeding 50 wt % is supplied to the anode chamber, anions (ugly groups) are somewhat back-diffused into the cathode chamber through the cation exchange membrane. in this case,
By maintaining the concentration in the anode chamber within the range of 2 to 50 wt%, it is possible to suppress back diffusion of anions to the cathode chamber. Furthermore, in the case of anion or hydroxyl group, the method according to the present invention can also be applied to the purification of crude quaternary phosphonium hydroxide. Quaternary phosphonium hydroxide has poor stability and decomposes into the corresponding phosphine oxide at high concentrations, so 50
It is not preferable to use it at an excessively high concentration of wt% or more.

一方、陰極には純水を供給するか、運転開始当初、純水
では電解か起りにくいの°C電解質として目的生成物で
ある第4級ホスホニウムヒドロオキシドを少量、例えば
0.O1〜10.Owt%程度添加するのか好ましい。
On the other hand, either pure water is supplied to the cathode, or at the beginning of operation, a small amount of quaternary phosphonium hydroxide, which is the target product, is added as an electrolyte at 0°C, since electrolysis is difficult to occur with pure water. O1-10. It is preferable to add about Owt%.

電解か進行するにつれて、陰極室液中の目的生成物の第
4級ホスホニウムヒドロオキシドの濃度は高くなってく
るか、第4級ホスホニウムヒドロオキシドの安定性を考
慮して50wt%までの所望の濃度に達したところで連
続的又はバッチ的に回収する。なお、電解を開始するに
あたり、予め電極や電解槽等の系を十分純水で洗浄し不
純物か混入しない様にしておく事は言うまでもない。
As the electrolysis progresses, the concentration of the desired product, quaternary phosphonium hydroxide, in the cathode chamber solution increases, or the desired concentration is up to 50 wt% considering the stability of the quaternary phosphonium hydroxide. Collect continuously or in batches when this is reached. It goes without saying that before starting electrolysis, the electrodes, electrolytic cell, and other systems should be sufficiently washed with pure water to prevent any impurities from entering.

次に、電解槽の隔膜として2以上の陽イオン交換膜を用
いる方法について説明する。
Next, a method of using two or more cation exchange membranes as diaphragms in an electrolytic cell will be described.

その具体的な方法は、2以上の陽イオン交換膜で区画さ
れた電解槽の陽極室に酸性電解質な、陰極室に水を及び
中間室に第4級ホスホニウム塩水溶液をそれぞれ供給し
て、両極間に直流電流を通電することにより、陰極室か
ら第4級ホスホニウムヒドロオキシドを得る方法である
The specific method is to supply an acidic electrolyte to the anode chamber, water to the cathode chamber, and a quaternary phosphonium salt aqueous solution to the intermediate chamber of an electrolytic cell partitioned by two or more cation exchange membranes. In this method, quaternary phosphonium hydroxide is obtained from the cathode chamber by passing a direct current between the two.

この方法においては、前記の1つの陽イオン交換膜を用
いる方法に使用するものと同一の陽イオン交換膜、電極
および電解槽を使用することができる。
In this method, the same cation exchange membrane, electrode, and electrolytic cell as used in the method using one cation exchange membrane described above can be used.

また、電解槽の中間室へ水溶液として供給される第4級
ホスホニウム塩は、前記の1つの陽イオン交換膜を用い
る方法に使用するものと同一のものを用いることができ
るが、本方法においては。
Furthermore, the quaternary phosphonium salt supplied as an aqueous solution to the intermediate chamber of the electrolytic cell can be the same as that used in the method using one of the cation exchange membranes described above, but in this method, .

特に第4級ホスホニウム塩水溶液に主成分として、また
は不純物としてハロゲンイオンや硝酸イオン等が含まれ
ている場合には、それ等が電解中に陽極に達すると有害
かつ高腐蝕性のハロゲンや窒素酸化物等のガスが高濃度
で発生して陽極自体が腐蝕され、その腐蝕生成物が陰極
液側に移行し、目的生成物である第4級ホスホニウムヒ
ドロオキシドの純度の低下を招くほか、合成樹脂製の陽
極室や陽イオン交換膜を劣化させる原因となる。従って
、中間室へ供給された第4級ホスホニウム塩水溶液から
遊離するハロゲンイオンを代表とする腐蝕性アニオンが
電解中に中間室から陽極室へ移行するのを阻止する目的
で、陽極室と中間室との隔膜として陽イオン交換膜を使
用することに本方法の重要な意義がある。
In particular, if the quaternary phosphonium salt aqueous solution contains halogen ions or nitrate ions as a main component or as an impurity, if they reach the anode during electrolysis, they will cause harmful and highly corrosive halogen and nitrogen oxidation. The anode itself is corroded by the generation of high concentrations of gases from materials, etc., and the corrosion products migrate to the catholyte side, resulting in a decrease in the purity of the target product, quaternary phosphonium hydroxide, as well as damage to synthetic resins. This may cause deterioration of the manufactured anode chamber and cation exchange membrane. Therefore, in order to prevent corrosive anions, typically halogen ions, liberated from the quaternary phosphonium salt aqueous solution supplied to the intermediate chamber from migrating from the intermediate chamber to the anode chamber during electrolysis, the anode chamber and the intermediate chamber The important significance of this method lies in the use of a cation exchange membrane as a diaphragm.

即ち、陽極室と中間室との隔膜に陽イオン交換膜を使用
することによって、電解中に陽極、陽極室および陽イオ
ン交換膜の劣化の原因となる腐蝕性ガスの発生を抑制す
る事が出来る。
That is, by using a cation exchange membrane as a diaphragm between the anode chamber and the intermediate chamber, it is possible to suppress the generation of corrosive gases that cause deterioration of the anode, anode chamber, and cation exchange membrane during electrolysis. .

他方、陰極室と中間室との隔膜である陽イオン交換膜の
存在により2目的とする第4級ホスホニウムカチオンの
みを中間室から陰極室へ移行せしめ陰極室にて高純度の
第4級ホスホニウムヒドロオキシドを得ることができる
On the other hand, due to the presence of a cation exchange membrane that is a partition between the cathode chamber and the intermediate chamber, only the quaternary phosphonium cations for two purposes are transferred from the intermediate chamber to the cathode chamber, and highly purified quaternary phosphonium hydroxide is transferred in the cathode chamber. Oxide can be obtained.

中間室に供給される第4級ホスホニウム塩の濃度は、前
記1つの陽イオン交換膜を使用した場合の態様と同様の
条件で設定すればよい。
The concentration of the quaternary phosphonium salt supplied to the intermediate chamber may be set under the same conditions as in the case where one cation exchange membrane is used.

次に、陽極室に供給する溶液に使用する酸性電解質とし
ては、陽極室を構成する材質の腐蝕や劣化が少なく、か
つ腐蝕性又は有毒なガスを発生しないものが用いられる
0例えば、硫酸、りん醜等の稀薄水溶液、蟻酸、シュウ
酸および酒石酸等の有機酸の水溶液が挙げられる。これ
らの酸性電解質は高濃度で使用する必要はなく電解に必
要な電導度、例えば5〜300m5、好ましくはlO〜
200層Sになる程度の濃度であれば十分である。これ
らの濃度を具体的な数値で表わすと、硫酸では1.0〜
10.OwL%、シュウ酸では2.0〜10wt%であ
る。
Next, the acidic electrolyte used in the solution supplied to the anode chamber should be one that is less likely to corrode or deteriorate the materials that make up the anode chamber, and that does not generate corrosive or toxic gases. For example, sulfuric acid, phosphorus, etc. Examples include dilute aqueous solutions such as dilute aqueous solutions, and aqueous solutions of organic acids such as formic acid, oxalic acid, and tartaric acid. These acidic electrolytes do not need to be used in high concentrations and have a conductivity necessary for electrolysis, e.g. 5 to 300 m5, preferably lO to
A concentration of 200 layers S is sufficient. Expressing these concentrations in concrete numbers, for sulfuric acid it is 1.0~
10. OwL%, and for oxalic acid it is 2.0 to 10 wt%.

さらに、陰極室には、純水を供給するが、運転開始当初
は純水のみでは電解が起こり難いので、前記と同様に第
4級ホスホニウムヒドロオキシドを少量添加してから電
解する。このように、2以上の陽イオン交換膜を隔膜と
して電解することにより、IX蝕性ガスの電極に対する
悪影響を除くと同時に逆拡散を防いで高純度の第4級ホ
スホニウムヒドロオキシドを効率的に製造することかで
きる。
Further, pure water is supplied to the cathode chamber, but since it is difficult to cause electrolysis with pure water alone at the beginning of operation, electrolysis is performed after adding a small amount of quaternary phosphonium hydroxide in the same manner as described above. In this way, by electrolyzing two or more cation exchange membranes as a diaphragm, we can efficiently produce high-purity quaternary phosphonium hydroxide by removing the negative effects of IX corrosive gas on the electrodes and preventing back diffusion. I can do something.

しかし、必要以上の隔膜を設けることは、電流効率の低
下につながるので、該交換膜の使用は多くの場合、5つ
までで充分である。なお、直流電解にあたっては、温度
、電流密度、電圧等の条件は前記の1つの陽イオン交換
膜を用いる方法と同様の条件で行なえばよい。
However, since providing more diaphragms than necessary leads to a decrease in current efficiency, it is often sufficient to use up to five exchange membranes. Incidentally, in direct current electrolysis, conditions such as temperature, current density, voltage, etc. may be carried out under the same conditions as in the method using one of the above-mentioned cation exchange membranes.

また、陽極室、中間室および陰極室に各々の水溶液を供
給する方法は循環式、連続式、半連続式のいずれでも実
施する事が出来る。各室における各水溶液の滞留時間は
1〜60秒、好ましくは1〜IO秒間にて実施する。
Further, the method of supplying each aqueous solution to the anode chamber, intermediate chamber, and cathode chamber can be implemented by any of a circulation type, continuous type, and semi-continuous type. The residence time of each aqueous solution in each chamber is 1 to 60 seconds, preferably 1 to IO seconds.

[作用] 本発明の第4級ホスホニウムヒドロオキシドの製造法は
、陽イオン交換膜で区画された陽極室に第4級ホスホニ
ウム塩水溶液を、陰極室に水をそれぞれ供給して両極間
に直流電流を通電することにより、第4級ホスホニウム
カチオンのみか陽極から陰極へ陽イオン交換膜を選択的
に透過する為に、陰極室に対応する高純度の第4級ホス
ホニウムヒドロオキシドが得られる。
[Function] The method for producing quaternary phosphonium hydroxide of the present invention involves supplying a quaternary phosphonium salt aqueous solution to an anode chamber partitioned by a cation exchange membrane and water to a cathode chamber, and applying a direct current between the two electrodes. By applying electricity, only the quaternary phosphonium cations selectively permeate through the cation exchange membrane from the anode to the cathode, so that a highly purified quaternary phosphonium hydroxide corresponding to the cathode chamber can be obtained.

また、2以上の陽イオン交換膜で分画された電解槽の陽
極室に酸性電解質を、陰極に水を、また中間室に第4級
ホスホニウム塩を供給して両極間に直流1!流を通すと
、陽イオン交換膜の選択的な透過作用により陽極室には
第4級ホスホニウム塩の主成分または不純物として含有
されているハロゲンイオンの濃縮や窒素酸化物等のガス
の発生や逆拡散が起こらず、かつ陰極室では第4級ホス
ホニウムヒドロオキシドか高純度で選択的に得ることか
できる。
In addition, an acidic electrolyte is supplied to the anode chamber of an electrolytic cell separated by two or more cation exchange membranes, water is supplied to the cathode, and a quaternary phosphonium salt is supplied to the intermediate chamber, so that a direct current of 1! When the flow is passed through, the selective permeation effect of the cation exchange membrane causes the concentration of halogen ions contained as the main component or impurity of the quaternary phosphonium salt, the generation of gases such as nitrogen oxides, and the opposite effect. No diffusion occurs, and quaternary phosphonium hydroxide can be selectively obtained in high purity in the cathode chamber.

[実施例] 以下、実施例を示し本発明をさらに具体的に説明する 実施例1 イオン交換膜にナフィオン(Nafio口):124(
デュポン社製、フッ素樹脂系陽イオン交換膜)を用いて
電解槽を陽極室と陰極室に区画し、陽極にチタン板に白
金被覆したものを、また陰極にはステンレス(5115
304)板を使用した。
[Example] Hereinafter, an example will be shown and the present invention will be explained more specifically. Example 1 An ion exchange membrane was coated with Nafion: 124
The electrolytic cell is divided into an anode chamber and a cathode chamber using a fluororesin cation exchange membrane (manufactured by DuPont).The anode is a titanium plate coated with platinum, and the cathode is a stainless steel (5115).
304) A plate was used.

次いで、電解槽の陽極室に12.94 wt%のテトラ
エチルホスホニウムブロマイド水溶液10.[1kgを
、また陰極室に0.23wt%のテトラエチルホスホニ
ウムヒドロオキシド水溶液4.0 kgを供給し、室温
下て陽極と陰極間に1O−15Vの直流電圧を印加して
24時間電気分解を行なった結果、陰極室に6.62w
t%のテトラエチルホスホニウムヒドロオキシド水溶液
を得た。このときの通電量は3.1F″′I?電流効率
は72.3%であった。
Next, 10% of a 12.94 wt% tetraethylphosphonium bromide aqueous solution was placed in the anode chamber of the electrolytic cell. [1 kg] and 4.0 kg of 0.23 wt% tetraethylphosphonium hydroxide aqueous solution were supplied to the cathode chamber, and a DC voltage of 10-15 V was applied between the anode and cathode at room temperature to perform electrolysis for 24 hours. As a result, 6.62W was applied to the cathode chamber.
A t% aqueous solution of tetraethylphosphonium hydroxide was obtained. The amount of current flowing at this time was 3.1 F'''I? The current efficiency was 72.3%.

ここで得られたテトラエチルホスホニウムヒドロオキシ
ド水溶液中の不純物を分析した結果、Na≦0.O5p
pm、  に≦0.0]ppm、   Fe= 0.0
1ppm、   Ni≦0.02p1)−、Cr≦0.
01ppm、   Cu≦0.O2ppm、   Ba
=0.014 ppm、Pb≦0.05pp議、  T
i= 0.012p9層、 C1)=0.2ppm、 
Br= lO,5ppm、 SO4≦0.lppmで極
めて高純度のものであった。
As a result of analyzing the impurities in the tetraethylphosphonium hydroxide aqueous solution obtained here, it was found that Na≦0. O5p
pm, ≦0.0]ppm, Fe=0.0
1ppm, Ni≦0.02p1)-, Cr≦0.
01ppm, Cu≦0. O2ppm, Ba
=0.014 ppm, Pb≦0.05pp, T
i=0.012p9 layer, C1)=0.2ppm,
Br=1O, 5ppm, SO4≦0. The purity was extremely high at 1ppm.

実施例2 陽極室に供給する第4級ホスホニウム塩として6.13
wt%のテトラエチルホスホニウムブロマイド水溶液1
0.0kgを使用した以外は実施例1と同様な条件で電
解を行なった結果、陰極室に6.15wt%のテトラエ
チルホスホニウムヒドロオキシドを得た。このときの通
電量は3.2 Fで電流効率は63.7%であった。
Example 2 6.13 as a quaternary phosphonium salt supplied to the anode chamber
wt% tetraethylphosphonium bromide aqueous solution 1
Electrolysis was carried out under the same conditions as in Example 1 except that 0.0 kg was used, and as a result, 6.15 wt % of tetraethylphosphonium hydroxide was obtained in the cathode chamber. The amount of current applied at this time was 3.2 F, and the current efficiency was 63.7%.

得られたテトラエチルホスホニウムヒドロオキシド水溶
液中の不純物を分析した結果、Na≦0.05p1)−
I  K≦0.01ppm、   Fe= 0.O2p
pm、   Ni≦0.01ppm。
As a result of analyzing the impurities in the obtained tetraethylphosphonium hydroxide aqueous solution, Na≦0.05p1)-
IK≦0.01ppm, Fe=0. O2p
pm, Ni≦0.01ppm.

Cr≦0.O2ppm、   Cu≦0.O2ppm、
   Ba= 0.01ppm、  Pb≦0.05p
p(Ti≦00−01pp、C1)  ≦0.1pp(
Br≦0.11)I)諺、S04≦0.lpp■で極め
て高純度のものが得られた。
Cr≦0. O2ppm, Cu≦0. O2ppm,
Ba=0.01ppm, Pb≦0.05p
p(Ti≦00-01pp, C1) ≦0.1pp(
Br≦0.11) I) Proverb, S04≦0. An extremely high purity product was obtained with lpp■.

実施例3 陽極室に供給する第4級ホスホニウム塩として7.4 
wt%のトリメチルプロピルホスホニウムヨーダイト水
溶液8.0kgを、又陰極室には0.27wL%のトリ
メチルプロピルホスホニウムヒドロオキシド水溶液4.
5kgを使用した以外は実施例1と同様の条件で電解を
行なった結果、陰極室に6.06wt%のトリメチルプ
ロピルホスホニウムヒドロオキシド水溶液4.9kgを
得た。このときの通電量は3.1Fで電流効率は67.
5%であった。
Example 3 7.4 as a quaternary phosphonium salt supplied to the anode chamber
8.0 kg of wt% trimethylpropylphosphonium iodite aqueous solution, and 0.27 wL% trimethylpropylphosphonium hydroxide aqueous solution 4.0 kg in the cathode chamber.
Electrolysis was carried out under the same conditions as in Example 1 except that 5 kg was used, and as a result, 4.9 kg of a 6.06 wt % trimethylpropylphosphonium hydroxide aqueous solution was obtained in the cathode chamber. At this time, the current flow was 3.1F and the current efficiency was 67.
It was 5%.

得られたトリメチルプロとルホスホニウムヒトロオキシ
ト水溶液中の不純物を分析した結果、Ha≦0.O5p
pm、 K≦0.01ppm、  Fe= 0.01p
p(Xi≦0.01pp(Cr≦0.O2ppm、  
 Cu≦0.O2ppm、   Ba=0.01ppm
、   Pb≦0.O5ppm、  Ti≦0.01p
pm、  Cj’≦0、lppm、Br≦0.lppm
、  I≦0.191)l、  SO4≦0.lppm
で極めて高純度のものてあった。
As a result of analyzing the impurities in the obtained aqueous solution of trimethylpro and phosphonium hydrogen oxide, it was found that Ha≦0. O5p
pm, K≦0.01ppm, Fe=0.01p
p(Xi≦0.01pp(Cr≦0.O2ppm,
Cu≦0. O2ppm, Ba=0.01ppm
, Pb≦0. O5ppm, Ti≦0.01p
pm, Cj'≦0, lppm, Br≦0. lppm
, I≦0.191)l, SO4≦0. lppm
It was found to be of extremely high purity.

実施例4 陽極室に供給する第4級ホスホニウム塩として3.60
wt%のテトラエチルホスホニウムヒドロオキシド水溶
液10.0kgを使用した以外は実施例1と同様の条件
で電解を行なった。その結果、陰極室に5.84wt%
のテトラエチルホスホニウムヒドロオキシドを得た。こ
のときの通電量は2.8Fで、電流効率は75.1%で
あった。
Example 4 3.60 as quaternary phosphonium salt supplied to the anode chamber
Electrolysis was carried out under the same conditions as in Example 1, except that 10.0 kg of wt% tetraethylphosphonium hydroxide aqueous solution was used. As a result, 5.84wt% was added to the cathode chamber.
of tetraethylphosphonium hydroxide was obtained. The amount of current applied at this time was 2.8F, and the current efficiency was 75.1%.

電解前および電解後のテトラエチルホスホニウムヒドロ
オキシド水溶液の不純物の分析結果は下記の表1のとお
りであった。
The analysis results of impurities in the tetraethylphosphonium hydroxide aqueous solution before and after electrolysis are as shown in Table 1 below.

表  ”        (ppm) 実施例5 イオン交換膜にナフィオン(Nafion) 324 
 (デュポン社製、フッ素樹脂系陽イオン交換膜)2枚
を用いて電解槽を陽極室、中間室及び陰極室に区画し、
陽極にチタン板に白金被覆したものを、また陰極にはス
テンレス(SO3304)板を使用した。王室ともに予
め十分純水で洗浄したのち、陽極室に19口wt%の硫
酸3.93kgを、中間室に5.11wt%のテトラエ
チルホスホニウムブロマイド14.94kgを、また陰
極室に0.74wt%のテトラエチルホスホニウムヒド
ロオキシドの水溶液4.34kgを供給し、室温下で陽
極と陰極との間に15〜20Vの直流電圧を印加して2
4時間電気分解を行なった結果、陰極室に8.88wt
%のテトラエチルホスホニウムヒドロオキシド水溶液4
.80kgを得た。このときの通電量は3.52Fで電
流効率は68.0%であった。
Table ” (ppm) Example 5 Nafion 324 ion exchange membrane
(manufactured by DuPont, fluororesin cation exchange membrane) The electrolytic cell is divided into an anode chamber, an intermediate chamber and a cathode chamber using two sheets,
A titanium plate coated with platinum was used as the anode, and a stainless steel (SO3304) plate was used as the cathode. After thoroughly washing both chambers with pure water, add 3.93 kg of 19 wt% sulfuric acid to the anode chamber, 14.94 kg of 5.11 wt% tetraethylphosphonium bromide to the intermediate chamber, and 0.74 wt% sulfuric acid to the cathode chamber. 4.34 kg of an aqueous solution of tetraethylphosphonium hydroxide was supplied, and a DC voltage of 15 to 20 V was applied between the anode and the cathode at room temperature.
As a result of electrolysis for 4 hours, 8.88wt was found in the cathode chamber.
% tetraethylphosphonium hydroxide aqueous solution 4
.. Obtained 80 kg. The amount of current applied at this time was 3.52F, and the current efficiency was 68.0%.

ここで得られたテトラエチルホスホニウムヒドロオキシ
ト水溶液中の不純物を分析した結果、Na≦0.O5p
pm、  K≦0.01ppm、   Fe≦0.01
ppm、   Ni≦0、O2ppm、  Cr≦0.
01ppm、  Cu≦0.O2ppm、  Ba≦0
、O2ppm、   Pb≦0.O5ppm、   T
i≦0.01ppm、   C1’≦0.29p■、8
「≦0.2ppm、  5o4== i、spp■で極
めて高純度のものであった。
As a result of analyzing the impurities in the tetraethylphosphonium hydroxide aqueous solution obtained here, it was found that Na≦0. O5p
pm, K≦0.01ppm, Fe≦0.01
ppm, Ni≦0, O2ppm, Cr≦0.
01ppm, Cu≦0. O2ppm, Ba≦0
, O2ppm, Pb≦0. O5ppm, T
i≦0.01ppm, C1'≦0.29p■, 8
"It was of extremely high purity with ≦0.2 ppm, 5o4==i, spp■.

実施例6 実施例5と同じ装置において、陽極室に4.34wt%
のシュウ酸水溶液4.20kg、中間室に10.1wt
%のテトラエチルホスホニウムブロマイド8.50kg
、また陰極室には0.69wt%のテトラエチルホスホ
ニウムヒドロオキシド4.50kgを供給し、15〜2
0Vの直流電圧を印加して24時間電気分解を行なった
結果、陰極室に7.60wt%のテトラエチルホスホニ
ウムヒドロオキシド水溶液4.76kgを得た。このと
きの通電量は2.83Fで電流効率は71%であった。
Example 6 In the same apparatus as Example 5, 4.34 wt% was added to the anode chamber.
4.20 kg of oxalic acid aqueous solution, 10.1 wt in the middle chamber
% tetraethylphosphonium bromide 8.50kg
, 4.50 kg of 0.69 wt% tetraethylphosphonium hydroxide was supplied to the cathode chamber, and 15 to 2
As a result of applying a DC voltage of 0 V and carrying out electrolysis for 24 hours, 4.76 kg of a 7.60 wt% tetraethylphosphonium hydroxide aqueous solution was obtained in the cathode chamber. The amount of current applied at this time was 2.83F, and the current efficiency was 71%.

ここで得られたテトラエチルホスホニウムヒドロオキシ
ド水溶液中の不純物を分析した結果、Na≦0.O5p
pm、  K≦0.01pp(Fe≦0.01ppm、
   Ni≦0、O2ppm、   Cr≦0.01p
pm、   Cu≦0.O2ppm、   Ba≦0、
O2ppm、   Pb≦0.O5ppm、   Ti
≦0.0191)鳳、   C1)≦0.2ppm、 
Dr≦0.2ppm、  SO4< 0.21)pHで
極めて高純度のものであった。
As a result of analyzing the impurities in the tetraethylphosphonium hydroxide aqueous solution obtained here, it was found that Na≦0. O5p
pm, K≦0.01pp (Fe≦0.01ppm,
Ni≦0, O2ppm, Cr≦0.01p
pm, Cu≦0. O2ppm, Ba≦0,
O2ppm, Pb≦0. O5ppm, Ti
≦0.0191) Otori, C1)≦0.2ppm,
It was of extremely high purity with a pH of Dr≦0.2ppm, SO4<0.21).

実施例7 実施例5と同じ装置において、陽極室に3.96wt%
のシュウ酸の水溶液4.00kg、中間室に6.8wt
%のテトラエチルホスホニウムヒドロオキシド10.0
0kg 、また陰極室に0.58wt%のテトラエチル
ホスホニウムヒドロオキシトの水溶液4.20kgを供
給し、15〜20Vの直流電流を印加して24時間電気
分解を行なった結果、陰極室に8.30wt%のテトラ
エチルホスホニウムヒドロオキシド水溶液4.40kg
を得た。このときの通電量は1.79Fで電流効率は7
4.5%であった。
Example 7 In the same apparatus as Example 5, 3.96 wt% was added to the anode chamber.
4.00 kg of aqueous solution of oxalic acid, 6.8 wt in the middle chamber
% tetraethylphosphonium hydroxide 10.0
In addition, 4.20 kg of a 0.58 wt% aqueous solution of tetraethylphosphonium hydroxide was supplied to the cathode chamber, and 15 to 20 V of direct current was applied to perform electrolysis for 24 hours. As a result, 8.30 wt. % tetraethylphosphonium hydroxide aqueous solution 4.40kg
I got it. The amount of current flowing at this time was 1.79F, and the current efficiency was 7
It was 4.5%.

電解前および電解後のテトラエチルホスホニウムヒドロ
オキシト水溶液中の不純物の分析結果は次の表2に示す
とおりであった。
The analysis results of impurities in the tetraethylphosphonium hydroxide aqueous solution before and after electrolysis are as shown in Table 2 below.

実施例8 実施例5と同じ装置において、陽極室に4.o5at%
のシュウ酸水溶液4−Okg、中間室に12.3wt%
のトリエチルメチルホスホニウムヨーダイト8.10k
g、また陰極室には0.45wt%のトリエチルメチル
ホスホニウムヒドロオキシト4.00kgを供給し、1
5〜20Vの直流電圧を印加して24時間電気分解を行
なった結果9陰極室に8.92wt%のトリエチルメチ
ルホスホニウムヒドロオキシド4.45kgを得た。こ
のときの通電量は3.25Fで電流効率は77.6%で
あった。
Example 8 In the same apparatus as in Example 5, 4. o5at%
4-Okg of oxalic acid aqueous solution, 12.3 wt% in the middle chamber
triethylmethylphosphonium iodite 8.10k
g, and 4.00 kg of 0.45 wt% triethylmethylphosphonium hydroxide was supplied to the cathode chamber.
Electrolysis was carried out for 24 hours by applying a DC voltage of 5 to 20 V. As a result, 4.45 kg of 8.92 wt % triethylmethylphosphonium hydroxide was obtained in 9 cathode chambers. The amount of current applied at this time was 3.25F, and the current efficiency was 77.6%.

ここで得られたトリエチルメチルホスホニウムヒドロオ
キシド水溶液中の不純物を分析した結果、 Na≦0.
O5ppm、に≦0.01ppm、   Fe≦0.0
1ppm。
As a result of analyzing the impurities in the triethylmethylphosphonium hydroxide aqueous solution obtained here, it was found that Na≦0.
O5ppm, ≦0.01ppm, Fe≦0.0
1ppm.

Ni≦0.O2ppm、   Cr≦0.01ppm、
   Cu≦0.O2ppm、   Ba≦(1,(1
2ppm、   Pb≦0.O5ppm、   Ti≦
0.(llppm、   C1’;;0.2ppm、 
 Br≦0.2ppm、   I≦0.2pp(SO4
≦0.2ppmで極めて高純度のものであった。
Ni≦0. O2ppm, Cr≦0.01ppm,
Cu≦0. O2ppm, Ba≦(1, (1
2ppm, Pb≦0. O5ppm, Ti≦
0. (llppm, C1';;0.2ppm,
Br≦0.2ppm, I≦0.2pp(SO4
The purity was ≦0.2 ppm, indicating extremely high purity.

[発明の効果] 以上説明した様に、本発明の製造方法によれば、隔膜と
して陽イオン交#膜を使用した電解槽にて、第4級ホス
ホニウム塩水溶液を直流電解することにより、高純度の
第4級ホスホニウムヒドロオキシドを高収率で得ること
ができる。
[Effects of the Invention] As explained above, according to the production method of the present invention, a quaternary phosphonium salt aqueous solution is subjected to DC electrolysis in an electrolytic cell using a cationic exchange membrane as a diaphragm, thereby producing high purity. of quaternary phosphonium hydroxide can be obtained in high yield.

また1本発明の方法により製造された目的物の第4級ホ
スホニウムヒドロオキシドは高純度のため、重合触媒1
M、解コンデンサー電解賀用第4級ホスホニウム塩の製
造に用いる中間原料、半導体装置等の電子部品及び電子
機器の封止や含浸等に広く用いられる電気的特性に優れ
たエポキシ樹脂の硬化触媒の原料等に有用であり、本発
明の工業的価値は極めて高いものである。
In addition, because the target product quaternary phosphonium hydroxide produced by the method of the present invention is of high purity, the polymerization catalyst 1
M, an intermediate raw material used in the production of quaternary phosphonium salts for capacitor electrolysis, a curing catalyst for epoxy resins with excellent electrical properties that are widely used in the sealing and impregnation of electronic components such as semiconductor devices and electronic devices. It is useful as a raw material, etc., and the industrial value of the present invention is extremely high.

出願人  日本化学工業株式会社 代理人  渡  辺  徳  廣Applicant: Nippon Chemical Industry Co., Ltd. Agent: Hiroshi Watari Hebe

Claims (6)

【特許請求の範囲】[Claims] (1)1又は2以上の陽イオン交換膜を隔膜とする電解
槽において、次の一般式 ▲数式、化学式、表等があります▼ (式中、R_1、R_2、R_3およびR_4は炭素原
子数1〜8のアルキル基、アリール基、アラルキル基ま
たはそれ等のいずれか少なくとも一種の基がヒドロキシ
ル基若しくはアルコキシル基で置換されたものを表わし
、X^■はアニオンを示す) で表わされる第4級ホスホニウム塩水溶液を直流電解し
て陰極室から第4級ホスホニウムヒドロオキシドを得る
ことを特徴とする第4級ホスホニウムヒドロオキシドの
製造法。
(1) In an electrolytic cell using one or more cation exchange membranes as a diaphragm, the following general formula ▲Mathematical formula, chemical formula, table, etc.▼ (In the formula, R_1, R_2, R_3 and R_4 have 1 carbon atom ~8 alkyl group, aryl group, aralkyl group, or at least one group thereof is substituted with a hydroxyl group or an alkoxyl group, and X^■ represents an anion) Quaternary phosphonium represented by A method for producing quaternary phosphonium hydroxide, which comprises obtaining quaternary phosphonium hydroxide from a cathode chamber by direct current electrolysis of a salt aqueous solution.
(2)請求項1記載の第4級ホスホニウムヒドロオキシ
ドの製造法において、1つの陽イオン交換膜で区画され
た陽極室に第4級ホスホニウム塩水溶液を、陰極室に水
をそれぞれ供給して両極間に直流電流を通電することを
特徴とする第4級ホスホニウムヒドロオキシドの製造法
(2) In the method for producing quaternary phosphonium hydroxide according to claim 1, an aqueous quaternary phosphonium salt solution is supplied to an anode chamber partitioned by one cation exchange membrane, and water is supplied to a cathode chamber, and both electrodes are A method for producing quaternary phosphonium hydroxide, which comprises passing a direct current between the two.
(3)請求項1記載の第4級ホスホニウムヒドロオキシ
ドの製造法において、2以上の陽イオン交換膜で区画さ
れた陽極室に酸性電解質を、陰極室に水を及び中間室に
第4級ホスホニウム塩水溶液をそれぞれ供給して、両極
間に直流電流を通電することを特徴とする第4級ホスホ
ニウムヒドロオキシドの製造法。
(3) In the method for producing quaternary phosphonium hydroxide according to claim 1, an acidic electrolyte is placed in an anode chamber partitioned by two or more cation exchange membranes, water is placed in a cathode chamber, and quaternary phosphonium hydroxide is placed in an intermediate chamber. A method for producing quaternary phosphonium hydroxide, which comprises supplying an aqueous salt solution and passing a direct current between the two electrodes.
(4)第4級ホスホニウム塩水溶液の直流電解は、温度
50℃以下において、電流密度1〜50A/dm^2で
電圧1〜50Vの条件で行う請求項1、2又は3記載の
第4級ホスホニウムヒドロオキシドの製造法。
(4) The quaternary phosphonium salt aqueous solution according to claim 1, 2 or 3, wherein the DC electrolysis of the quaternary phosphonium salt aqueous solution is carried out at a temperature of 50° C. or lower, a current density of 1 to 50 A/dm^2, and a voltage of 1 to 50 V. Method for producing phosphonium hydroxide.
(5)第4級ホスホニウム塩水溶液の供給濃度が2〜5
0wt%である請求項1乃至4のいずれかの項記載の第
4級ホスホニウムヒドロオキシドの製造法。
(5) The supply concentration of the quaternary phosphonium salt aqueous solution is 2 to 5
5. The method for producing quaternary phosphonium hydroxide according to any one of claims 1 to 4, wherein the content is 0 wt%.
(6)第4級ホスホニウム塩水溶液がテトラエチルホス
ホニウムブロマイド水溶液である請求項1乃至5のいず
れかの項記載の第4級ホスホニウムヒドロオキシドの製
造法。
(6) The method for producing quaternary phosphonium hydroxide according to any one of claims 1 to 5, wherein the aqueous quaternary phosphonium salt solution is an aqueous solution of tetraethylphosphonium bromide.
JP63228477A 1988-09-14 1988-09-14 Method for producing quaternary phosphonium hydroxide Granted JPH0277591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63228477A JPH0277591A (en) 1988-09-14 1988-09-14 Method for producing quaternary phosphonium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63228477A JPH0277591A (en) 1988-09-14 1988-09-14 Method for producing quaternary phosphonium hydroxide

Publications (2)

Publication Number Publication Date
JPH0277591A true JPH0277591A (en) 1990-03-16
JPH0587596B2 JPH0587596B2 (en) 1993-12-17

Family

ID=16877087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228477A Granted JPH0277591A (en) 1988-09-14 1988-09-14 Method for producing quaternary phosphonium hydroxide

Country Status (1)

Country Link
JP (1) JPH0277591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000517379A (en) * 1996-08-30 2000-12-26 サッチェム,インコーポレイテッド Preparation of onium hydroxide in an electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000517379A (en) * 1996-08-30 2000-12-26 サッチェム,インコーポレイテッド Preparation of onium hydroxide in an electrochemical cell

Also Published As

Publication number Publication date
JPH0587596B2 (en) 1993-12-17

Similar Documents

Publication Publication Date Title
US4634509A (en) Method for production of aqueous quaternary ammonium hydroxide solution
FI75605C (en) ELEKTROLYTISKT FOERFARANDE OCH ELEKTROLYTISK CELL FOER FRAMSTAELLNING AV ORGANISKA FOERENINGAR.
US4312722A (en) Process for preparing nitrites
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
KR100966215B1 (en) Purification of Onium Hydroxide by Electrodialysis
EP0944747B1 (en) Preparation of onium hydroxides in an electrochemical cell
EP0149917B1 (en) Electrodialytic conversion of multivalent metal salts
JPH04501885A (en) Purification method of quaternary ammonium hydroxide
US4578161A (en) Process for preparing quaternary ammonium hydroxides by electrolysis
JPH10225624A (en) Process for purifying hydroxide compounds
JP3265495B2 (en) Method for producing nickel hypophosphite
JPH0277591A (en) Method for producing quaternary phosphonium hydroxide
JPH0780253A (en) Electrodialytic purifying method
US5423960A (en) Method and apparatus for manufacturing iodine-free iodides
FI82078C (en) ELEKTROKEMISKT AVLAEGSNANDE AV HYPOKLORITER UR KLORATCELLOESNINGAR.
EP0420311A1 (en) Preparation of quaternary ammonium hydroxides
JPH0296584A (en) Production method of high purity quaternary phosphonium hydroxide
JPS61261488A (en) Electrolyzing method for alkaline metallic salt of amino acid
JPS59193289A (en) Preparation of high-purity quaternary ammonium hydroxide
JPH0320489A (en) Production of tetraalkylammonium hydroxide
JP3304221B2 (en) Method for removing chlorate from aqueous alkali chloride solution
JPS63134684A (en) Production of quaternary ammonium hydroxide
JPS61190085A (en) Production of quaternary ammonium hydroxide by electrolysis
JPS63223189A (en) Production of ceric nitrate solution
JP2003277965A (en) Method for making quaternary ammonium hydroxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees