JPH0285339A - Structural member including welded part, method for manufacturing structural member including welded part, and low C-Cr-Mo steel for structural member including welded part - Google Patents
Structural member including welded part, method for manufacturing structural member including welded part, and low C-Cr-Mo steel for structural member including welded partInfo
- Publication number
- JPH0285339A JPH0285339A JP21617088A JP21617088A JPH0285339A JP H0285339 A JPH0285339 A JP H0285339A JP 21617088 A JP21617088 A JP 21617088A JP 21617088 A JP21617088 A JP 21617088A JP H0285339 A JPH0285339 A JP H0285339A
- Authority
- JP
- Japan
- Prior art keywords
- welded
- structural member
- member including
- welded part
- electron beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 59
- 239000010959 steel Substances 0.000 title claims description 59
- 238000000034 method Methods 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000003466 welding Methods 0.000 claims description 60
- 239000000463 material Substances 0.000 claims description 38
- 238000010894 electron beam technology Methods 0.000 claims description 34
- 238000000137 annealing Methods 0.000 claims description 31
- 241000587161 Gomphocarpus Species 0.000 claims description 21
- 125000006850 spacer group Chemical group 0.000 claims description 14
- 239000012535 impurity Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 238000005336 cracking Methods 0.000 description 34
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000005204 segregation Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 238000010248 power generation Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はタービンダイヤフラム等の溶接部を含む構造部
材、その製造方法及びそれ用の低C−〇r−Mo鋼に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structural member including a welded portion such as a turbine diaphragm, a method for manufacturing the same, and a low C-〇r-Mo steel for the same.
第2図はタービンダイヤフラムの構造を示す平面図であ
る。タービンダイヤフラムは第2図の■−■線断面図で
ある第3図に示されるように、タービンブレードに高温
、高圧の蒸気流を案内するノズル翼1と、それを支持す
る支持スペーサ4゜5並びに内輪3及び外輪2と支持輪
6,7.8を備え、溶接によって組立てられている。FIG. 2 is a plan view showing the structure of the turbine diaphragm. As shown in FIG. 3, which is a cross-sectional view taken along the line ■-■ in FIG. It also includes an inner ring 3, an outer ring 2, and support rings 6, 7.8, which are assembled by welding.
まず、ノズル翼1.が2つの支持スペーサ4,5に固着
された後、各スペーサ4,5に内輪3.外輪2が接合さ
れ、その後、支持111i!6.7.8が接合される。First, nozzle blade 1. is fixed to the two support spacers 4, 5, then the inner ring 3. is attached to each spacer 4, 5. The outer ring 2 is joined, and then the support 111i! 6.7.8 are joined.
適用される溶接法はノズル翼1のスペーサ4,5と内外
輪2,3の溶接は電子ビーム溶接される。9(a)、9
(b)、10(a)、10(b)は電子ビーム溶接部を
示す。一方、支持輪6,7゜8は内外輪2,3及び両ス
ペーサ4.5にアーク溶接される。11(a)、11(
b)、12(a)、12(b)、12(c)はアーク溶
接部を示す・ところで、ノズル翼支持スペーサ4,5.
内外輪2,3及び支持輪6,7.8には通常250℃以
下の湿り蒸気に接するため、耐食性の優れた表1に示す
ようなCr−Mo鋼が用いられていた。The welding method used is electron beam welding for welding the spacers 4, 5 of the nozzle blade 1 and the inner and outer rings 2, 3. 9(a), 9
(b), 10(a), and 10(b) show electron beam welding parts. On the other hand, the support rings 6, 7.8 are arc welded to the inner and outer rings 2, 3 and both spacers 4.5. 11(a), 11(
b), 12(a), 12(b), 12(c) show arc welding parts. By the way, nozzle blade support spacers 4, 5.
The inner and outer rings 2, 3 and the support rings 6, 7.8 are usually made of Cr-Mo steel as shown in Table 1, which has excellent corrosion resistance, since they are in contact with wet steam at temperatures below 250°C.
しかし、これらのCr−Mo鋼は、特に自硬性元素であ
るCを多く含んでいるため、溶接割れを起し易い欠点が
あった。これを防止するため溶接時、250’C以上の
予熱、パス間温度の保持、そして溶接後400″’CX
30分の脱水素処理等、高温でかつ長時間の熱処理が必
要であった。このような熱管理は溶接作業者への過酷な
労力負担ばかりでなく、エネルギーの消耗2作業の複雑
化等多くの問題があり、溶接性の優れたCr−Mo鋼の
開発が要望されていた。However, since these Cr-Mo steels contain a particularly large amount of C, which is a self-hardening element, they have the disadvantage of being susceptible to weld cracking. To prevent this, when welding, preheat to 250'C or more, maintain the temperature between passes, and after welding, 400'CX
High-temperature and long-term heat treatment, such as 30-minute dehydrogenation treatment, was required. Such heat management not only imposes a severe labor burden on welding workers, but also consumes energy and complicates the work.Therefore, there was a demand for the development of Cr-Mo steel with excellent weldability. .
このような課題はタービンダイヤフラムばかりでなく、
Cr−Mo鋼を使用している原子力発電用給水加熱器を
はじめ、火力発電用あるいは化学機器等の溶接構造物で
も同様であった。These issues are not limited to the turbine diaphragm.
The same problem occurred in welded structures for thermal power generation, chemical equipment, etc., as well as feed water heaters for nuclear power generation using Cr-Mo steel.
溶接性を改善するためには溶接硬化性指数、C当量(C
+Si/24+Mn/6+Ni/40+Cr15+Mo
/4+V/ 14)又は溶接割れ感受性指数IPcM値
(C+Si/30+Mn/20+Cu/20+Ni/6
0+Cr/20+阿o/15+V/10+5B)からも
明らかなように、C量の低減が阿呆/15+V/10+
5B
例えば特開昭61−56309号公報又は特開昭61−
56310号公報に記載されているようにC量を0.0
2〜0.14%に低減させた材料が開発されている。In order to improve weldability, weld hardening index, C equivalent (C
+Si/24+Mn/6+Ni/40+Cr15+Mo
/4+V/14) or weld crack susceptibility index IPcM value (C+Si/30+Mn/20+Cu/20+Ni/6
As is clear from 0+Cr/20+Ao/15+V/10+5B), the reduction in the amount of C is Ao/15+V/10+
5B For example, JP-A-61-56309 or JP-A-61-
As described in Publication No. 56310, the amount of C was 0.0.
Materials have been developed that have a reduction of 2% to 0.14%.
しかし、上記従来材料は電子ビーム溶接した場合、溶接
金属ネールヘッド部の凝固組織は粗く、かつ不純物の偏
析を伴うため、極厚板を用いるり−ビンダイヤフラムの
ような拘束度の高い溶接構造物においては溶接後、残留
応力の除去及び靭性改善等を目的として実施する応力除
去焼なまし処理過程で溶接金属に割れが発生するという
問題があった。このような割れが万−取り残された場合
、発電に支障が生じる。However, when the conventional materials mentioned above are electron beam welded, the solidification structure of the weld metal nail head is coarse and there is segregation of impurities, so welding structures with a high degree of restriction such as a bottle diaphragm using an extremely thick plate cannot be used. There was a problem in that cracks occurred in the weld metal during the stress relief annealing process performed after welding for the purpose of removing residual stress and improving toughness. If such cracks are left behind, power generation will be hindered.
本発明の目的は、電子ビーム溶接の応力除去焼なまし処
理過程で、割れが生じない溶接部を含む構造部材、その
製造方法及びそれ用の低C−Cr−Mo鋼を提供するこ
とにある。An object of the present invention is to provide a structural member including a welded part that does not cause cracking during the stress relief annealing process of electron beam welding, a method for manufacturing the same, and a low C-Cr-Mo steel for the same. .
溶接性の改善のため低炭素化されたCr−M。 Cr-M with low carbon to improve weldability.
鋼が電子ビーム溶接した場合、応力除去焼なまし過程で
割れる問題があったが、当初これは、低炭素化に起因す
るのではないかと考え、まず応力除去焼なまし割れに及
ぼすCの影響を検討した。しかし、炭素量の差によって
割れ易くなるという知見は得られなかった。When steel was electron beam welded, there was a problem with cracking during the stress relief annealing process, but we initially thought that this might be due to the low carbon content, and first investigated the effect of C on stress relief annealing cracking. It was investigated. However, no knowledge was obtained that the difference in carbon content makes it easier to break.
更に、基礎的な研究を進めた結果、電子ビーム溶接金属
では従来の熱影響部の割れに比べ、凝固偏析を伴うので
、母材では割れを起こしにくい組成でも高い割れ感受性
を示す場合があることがわかった。Furthermore, as a result of basic research, we found that electron beam welded metals involve solidification segregation compared to conventional cracking in the heat-affected zone, so even if the base metal has a composition that does not easily cause cracking, it may exhibit high cracking susceptibility. I understand.
即ち、低炭素化Cr−Mo鋼では、
■微量不純物元素であるSb、Sn等の元素は応力除去
焼なまし割れ感受性組成Xは、といように割れ感受性を
高める元素であると知られているが、低炭素化Cr−M
o鋼では、これらを極力少なくしても、割れ感受性が高
い。これらはできるだけ低いことが望ましいが、同時に
S量を規制する必要があること。電子ビーム溶接では凝
固、偏析によって樹枝状晶界面に母材の約6倍も偏析し
、結晶粒界を脆弱にさせる炭化物の析出及び凝集を促進
させることがわかった。That is, in low-carbon Cr-Mo steel, ■ Elements such as Sb and Sn, which are trace impurity elements, are known to be elements that increase cracking susceptibility during stress relief annealing. However, low carbon Cr-M
o steel has high cracking susceptibility even if these are reduced as much as possible. It is desirable that these values be as low as possible, but at the same time it is necessary to regulate the amount of S. It has been found that during electron beam welding, solidification and segregation cause about six times as much segregation at dendrite interfaces as in the base metal, promoting the precipitation and aggregation of carbides that weaken grain boundaries.
また、Tiの添加による結晶粒の微細化、CaやMgの
添加による固溶Sの固定化なども効果があることがわか
った。It has also been found that refinement of crystal grains by adding Ti and fixation of solid solution S by adding Ca or Mg are effective.
■AΩはNとの共存で結晶粒を微細化し靭性向上に寄与
するので最大で0.08%を含ませているが、AQはむ
しろ結晶粒界に偏析し結晶粒界を脆弱にする知見を得て
おり、むしろAQははできるだけ含有させないよう溶解
原料の厳密な選択が必要であること。■AΩ is included at a maximum of 0.08% because coexistence with N makes the crystal grains finer and contributes to improving toughness, but AQ has been found to segregate at grain boundaries and weaken them. In fact, it is necessary to strictly select the raw materials to be dissolved so as to contain as little AQ as possible.
■低炭素化Cr−Mo鋼の電子ビーム溶接では溶接金属
のネールヘッド部の凝固組織が高炭素Cr−Mof14
のそれより非常に粗いこと、又、オーステナイト結晶粒
の大きさも同様な傾向にあることなどがわかった。■In electron beam welding of low carbon Cr-Mo steel, the solidification structure of the nail head of the weld metal is high carbon Cr-Mof14.
It was found that the size of the austenite crystal grains was much coarser than that of the austenite crystal grains.
以上のようなことから、本発明は、鋼材を電子ビーム溶
接した後、応力除去焼なまし処理された溶接部を含む構
造部材において、溶接される鋼材の少なくとも一方は、
重量比にてCを0.05〜0.1%、Siを0.8%以
下、Mnを0.4〜0.8%、Crを0.94〜2.6
2%、Moを0.40〜1.15%、Bを0.0005
〜0.0015%、Tiは0.01〜0.5%、Sは0
.002%以下含み残部がFa及び不可避的不純物より
なる鋼材であることを特徴とする。Based on the above, the present invention provides a structural member including a welded portion subjected to stress relief annealing after electron beam welding of steel materials, in which at least one of the steel materials to be welded is
Weight ratio: C 0.05-0.1%, Si 0.8% or less, Mn 0.4-0.8%, Cr 0.94-2.6
2%, Mo 0.40-1.15%, B 0.0005
~0.0015%, Ti 0.01-0.5%, S 0
.. The steel material is characterized in that it contains 0.002% or less, with the remainder consisting of Fa and unavoidable impurities.
前記構造部材において、溶接される鋼材の少なくとも一
方は、更にCa及び/またはMgを0゜00.1〜0.
1%含む鋼材であることが望ましい。In the structural member, at least one of the steel materials to be welded further contains Ca and/or Mg of 0°00.1 to 0.0°.
It is desirable that the steel material contains 1%.
前記構造部材において、溶接される鋼材の少なくとも一
方は、更にAQを0.002%以下含む鋼材であること
が望ましい。In the structural member, it is desirable that at least one of the steel materials to be welded is a steel material further containing 0.002% or less of AQ.
前記構造部材において、溶接される鋼材の少なくとも一
方は、更にCa及び/またはMgを0゜001〜0.1
%、AQを0.002%以下含む鋼材であることが望ま
しい。In the structural member, at least one of the steel materials to be welded further contains Ca and/or Mg of 0°001 to 0.1
%, AQ is preferably 0.002% or less.
前記溶接部を含む構造部材の一例として、ノズル翼と、
このノズル翼両端に固着された支持スペーサと、面支持
スペーサに各々電子ビーム溶接された内輪及び外輪と、
前記内輪とその支持スペーサ、及び外輪とその支持スペ
ーサとにアーク溶接された支持輪とからなるタービンダ
イヤフラムが挙げられる。An example of a structural member including the welded portion is a nozzle blade;
A support spacer fixed to both ends of the nozzle blade, an inner ring and an outer ring each electron beam welded to the surface support spacer,
A turbine diaphragm includes a support ring that is arc welded to the inner ring and its support spacer, and the outer ring and its support spacer.
また、他の構造部材の例としては、原子力発電設備の給
水加熱器、復水器、または熱交換器等が挙げられる。こ
れらの各構造部材もタービンダイヤフラムと同様の溶接
部を含み、本発明を適用し得るものである。Further, examples of other structural members include a feed water heater, a condenser, a heat exchanger, etc. of nuclear power generation equipment. Each of these structural members also includes a welded portion similar to the turbine diaphragm, and the present invention can be applied thereto.
また1本発明に係る製造方法は、鋼材を電子ビーム溶接
する工程と、溶接部分を応力除去焼なまし処理する工程
を含む溶接部を含む構造部材の製造方法において、前記
電子ビーム溶接をする部分に補助板を当て、この補助板
の上から電子ビーム溶接をし、該電子ビーム溶接で形成
されるネールヘッド部を前記補助板内に形成させ、補助
板を除去して前記ネールヘッド部を除去する工程を含む
ことを特徴とする。In addition, the manufacturing method according to the present invention provides a method for manufacturing a structural member including a welded portion, which includes a step of electron beam welding steel materials and a step of stress-relieving annealing treatment of the welded portion. Apply an auxiliary plate to the auxiliary plate, perform electron beam welding from above the auxiliary plate, form a nail head portion formed by the electron beam welding within the auxiliary plate, remove the auxiliary plate, and remove the nail head portion. It is characterized by including the step of.
本発明に係る他の製造方法は、鋼材を電子ビーム溶接す
る工程と、溶接部分を応力除去焼なまし処理する工程を
含む溶接部を含む構造部材の製造方法において、電子ビ
ーム溶接によって形成されるネールヘッド部を削除した
後、肉盛溶接する工程を含むことを特徴とする。Another manufacturing method according to the present invention is a method for manufacturing a structural member including a welded portion, which includes a step of electron beam welding steel materials and a step of stress-relieving annealing treatment of the welded portion. The method is characterized by including a step of overlay welding after removing the nail head portion.
本発明に係る他の製造方法は、鋼材を電子ビーム溶接す
る工程と、溶接部分を応力除去焼なまし処理する工程を
含む溶接部を含む構造部材の製造方法において、鋼材表
面の溶接部位を削除して開先を形成し、開先内で電子ビ
ーム溶接し、その後開先内に肉盛溶接する工程を含むこ
とを特徴とする。Another manufacturing method according to the present invention is a method for manufacturing a structural member including a welded part, which includes a step of electron beam welding the steel material and a step of stress-relieving annealing treatment of the welded part, in which the welded part on the surface of the steel material is deleted. The method is characterized in that it includes the steps of forming a groove, performing electron beam welding within the groove, and then performing overlay welding within the groove.
上記成分範囲の限定理由は次の通りである。 The reasons for limiting the above component ranges are as follows.
C含有量は、この発明で重要な要件である。溶接性の観
点ではCはもとより低ければ低いほどよいが、常温にお
ける強度を確保するためにはo、05%以上必要である
。一方、0.10%以上を越えると溶接性が低下するの
で、重要比にして0.05〜0.10%とする。C content is an important requirement in this invention. From the viewpoint of weldability, the lower the C content, the better, but in order to ensure strength at room temperature, it is required to be 0.05% or more. On the other hand, if it exceeds 0.10%, weldability deteriorates, so the important ratio is set to 0.05 to 0.10%.
Siは脱酸作用を有すると共に常温の強度を増加させる
元素であるが、O,SO%を越えると溶接性を低める。Si is an element that has a deoxidizing effect and increases the strength at room temperature, but if it exceeds O and SO%, it reduces weldability.
Mnは脱酸、脱硫作用があり、また強度を与えるために
は少なくとも0.4%が必要である。逆に1%を越える
と溶接硬化性の問題を生ずるので0.8%以下とする。Mn has deoxidizing and desulfurizing effects, and at least 0.4% is required to provide strength. On the other hand, if it exceeds 1%, weld hardening problems will occur, so the content should be 0.8% or less.
Cr及びMOはともに高温強度並びに耐食性を増す重要
な元素である。その観点から、Crは0.94%〜2.
62%、Moは0.40〜1.15%とする。原子力発
電設備用タービンダイヤフラムでは部位によってCr含
有量を0.94〜1.56%又は1.88〜2.62%
、Mo含有量を0.4〜0.7%又は0.85〜1.1
5%と限定し使用するのがよい。Crはそもそも焼入性
を向上させる元素として高強度組織の形成に寄与するも
のでり、MOは析出硬化型元素であり、焼もどし処理時
に炭化物を微細に析出して、強度の上昇にも寄与する。Both Cr and MO are important elements that increase high temperature strength and corrosion resistance. From that point of view, Cr is 0.94% to 2.
62%, and Mo is 0.40 to 1.15%. In turbine diaphragms for nuclear power generation equipment, the Cr content is 0.94 to 1.56% or 1.88 to 2.62% depending on the part.
, Mo content 0.4-0.7% or 0.85-1.1
It is best to limit its use to 5%. Cr is an element that improves hardenability and contributes to the formation of a high-strength structure, and MO is a precipitation-hardening element that precipitates fine carbides during tempering, contributing to an increase in strength. do.
Bは焼入性を向上させる元素であり、強化に有効で、特
に強度レベルの向上を1指して利用される。Bの作用に
よる高強度化はC含有量の低減を可能にするが、15p
pm+を越えると靭性の劣下及び溶接性を低下させるの
で、その上限を0.0015%とする。Bの適正範囲は
、特に0.0005〜0.0010%が望ましい。B is an element that improves hardenability and is effective for strengthening, and is particularly used to improve the strength level. High strength due to the action of B makes it possible to reduce the C content, but 15p
If it exceeds pm+, the toughness and weldability will deteriorate, so the upper limit is set at 0.0015%. The appropriate range of B is particularly preferably 0.0005 to 0.0010%.
次にA 12 y T l及びCa等について述べる。Next, A12yTl, Ca, etc. will be described.
これらは、本発明の低炭素化Cr −M o鋼溶接金属
の応力除去焼なまし割れ感受性を左右する重要な要件で
ある。These are important requirements that influence the stress relief annealing cracking susceptibility of the low-carbon Cr-Mo steel weld metal of the present invention.
まず、Tiの添加はB添加鋼の応カ除去焼なまし割れを
抑制するのに有効であるe T xはAlと同様酸化物
を形成するので脱酸作用があり、又窒化物も形成する。First, the addition of Ti is effective in suppressing stress removal annealing cracking in B-added steel.Tx forms oxides like Al, so it has a deoxidizing effect, and also forms nitrides. .
現在のところTiの添加の有効な理由は明らかでないが
、0.01〜0.5%が適正範囲であった。At present, the effective reason for adding Ti is not clear, but 0.01 to 0.5% was an appropriate range.
CaあるいはMgはMn、Fe及びSとの親和力が大で
あり、特に応力除去焼なまし割れ感受性を助長させるS
の粒界への偏析の抑制に、CaあるいはMgの添加が有
効であることがねがった。Ca or Mg has a strong affinity with Mn, Fe, and S, and especially S promotes stress relief annealing cracking susceptibility.
The addition of Ca or Mg was found to be effective in suppressing the segregation of oxides into grain boundaries.
その適正量は以下のようである。The appropriate amount is as follows.
Ca及びMgはo・、001%以下では、CaS又はM
gSとしてSを固定するには不十分な量で、割れを防止
できない。また、それぞれ0.1%を越す多量の添加は
CaSあるいはMgOなどの酸化物が鋼中に増し、靭性
の劣下をきたす恐れがあり好ましくない。Ca and Mg are o.001% or less, CaS or M
The amount is insufficient to fix S as gS, and cracking cannot be prevented. Further, addition of a large amount exceeding 0.1% of each is not preferable because oxides such as CaS or MgO may increase in the steel, resulting in deterioration of toughness.
一方、鋼材中のSは、一般には上述のように硫化物とし
て固定することによって、固溶状態のSの粒界偏析を抑
制できるが、その量は少なければ少ない方がよい。その
量は0.002%以下とする必要がある。On the other hand, S in steel materials is generally fixed as a sulfide as described above, so that grain boundary segregation of S in a solid solution state can be suppressed, but the smaller the amount, the better. The amount needs to be 0.002% or less.
次に、Al1は脱酸作用があり、一部オーステナイトに
固溶し窒素等を結びつけて結晶粒を微細化させるものと
して知られているが、結晶粒界に偏析し易く割れを助長
させる有害な元素であるという意外な事実を発見した。Next, Al1 has a deoxidizing effect, and is known to partially dissolve in austenite and bind nitrogen, etc. to make crystal grains finer. I discovered the surprising fact that it is an element.
従って、AQは低ければ低いほどよいが、製鋼上の制約
もあるのでその上限を0.002%とした。Therefore, the lower the AQ, the better, but since there are restrictions on steel manufacturing, the upper limit was set at 0.002%.
以上、本発明のタービンダイヤフラム等の構造部材用の
低C−Cr−Mo鋼の組成の各限定理由を説明したが、
この発明の鋼は前記のような成分調整の下にWj裏した
のち1通常圧延工程を経て焼ならし、焼もどし又は焼な
ましを施すことによって鋼材として製造される。The reasons for limiting the composition of the low C-Cr-Mo steel for structural members such as turbine diaphragms of the present invention have been explained above.
The steel of the present invention is produced as a steel material by Wj rolling with the above-mentioned composition adjustment, followed by one normal rolling process, normalizing, tempering or annealing.
一方、上述したように低C−Cr−Mo鋼の電子ビーム
溶接金属の割れは凝固偏析に起因するが、特に残留応力
が最大となるネールヘッド部が最も割れ易いことから、
応力除去焼なまし割れを防止するには、残留応力をでき
るだけ小さくなるような方法も考えられるが、凝固偏析
の多いネールヘッドを除去してしまう方法も有効である
。On the other hand, as mentioned above, cracks in electron beam welded metal of low C-Cr-Mo steel are caused by solidification segregation, but the nail head part where the residual stress is maximum is the most likely to crack.
In order to prevent stress relief annealing cracking, a method of reducing the residual stress as much as possible can be considered, but it is also effective to remove nail heads with a lot of solidification segregation.
以下1本発明の一実施例を表29表3及び第1図、第4
図乃至第9図により説明する。An embodiment of the present invention is shown below in Table 29, Table 3, and Figures 1 and 4.
This will be explained with reference to FIGS. 9 to 9.
供試材の化学組成を表2に示す。表2中のNo。The chemical composition of the sample material is shown in Table 2. No. in Table 2.
5からNo、8の鋼が付記するように本発明の成分範囲
に属する発明鋼である*No−1からNo、4の鋼が比
較鋼である。なお、No、3及びNo、4の鋼は高Cの
市販鋼で、本発明の上限値0.10%を大きく上廻って
いる。Steels No. 5 to No. 8 are inventive steels belonging to the composition range of the present invention, as noted above. Steels No. 1 to No. 4 are comparison steels. Incidentally, steels No. 3 and No. 4 are commercially available steels with high C, which greatly exceed the upper limit of 0.10% of the present invention.
これらの鋼は溶解圧延後930℃で1時間加熱の焼なま
し処理を行ったのち、焼もどし処理をした。焼もどし処
理はそれぞれ、SCMVa相当材で620℃で、SCM
v4相当材で690℃で2時間保持することによった。After melt rolling, these steels were annealed by heating at 930° C. for 1 hour, and then tempered. The tempering treatment was performed at 620℃ for materials equivalent to SCMVa, and
V4 equivalent material was maintained at 690°C for 2 hours.
これらの供試材を用いて、まずCr−Mot*としての
強度を満足するかを検討した。試験片は直径8mm、平
行部35mm、ゲージ長28mmの丸棒試験片である。Using these test materials, it was first examined whether the strength as Cr-Mot* was satisfied. The test piece is a round bar test piece with a diameter of 8 mm, a parallel portion of 35 mm, and a gauge length of 28 mm.
また、溶接性試験はJISZ3158に定められた斜め
Y型割れ試験を用い、溶接割れ防止予熱温度を検討した
。試験片は長さ200mm、幅150 m m 、板厚
25mmの長手方向中央部に試験ビードを溶接する斜め
Yグループの長さ80mmを設けたものである。In addition, the weldability test used a diagonal Y-shaped cracking test specified in JIS Z3158, and the preheating temperature to prevent welding cracking was investigated. The test piece had a length of 200 mm, a width of 150 mm, and a plate thickness of 25 mm, with a diagonal Y group having a length of 80 mm in which a test bead was welded at the center in the longitudinal direction.
試験溶接は共金系市販溶接材料を利用し予熱温度を変え
、溶接電流165A、溶接電圧25v。Test welding used commercially available co-metallic welding materials, varying the preheating temperature, welding current 165A, and welding voltage 25V.
溶接速度15 as / winで行った。The welding speed was 15 as/win.
溶接部の割れの検査は試験溶接後72時間放置したのち
、溶接長の6等分切断面を検鏡することによった。Inspection of cracks in the welded area was carried out by examining the cut surface of the weld length into six equal parts after 72 hours of test welding.
次に電子ビーム溶接金属ネールヘッド部の応力除去焼な
まし割れ感受性の評価方法について述べる。応力除去焼
なまし割れ感受性を評価する試験法には種々あるが1本
発明では電子ビーム溶接金属ネールヘッド部という限ら
れた位置で高い割れ感受性を示したことから、タービン
ダイヤフラムの溶接施工条件に沿って溶接継手を作製す
ることにした。そのネールヘッド部から採取した全溶接
金属の丸棒に円周切欠加工し、実際の応力除去焼なまし
処理過程を模擬した応力緩和型試験から得られる割れ発
生限界応力の大小で評価した。Next, we will describe a method for evaluating the stress relief annealing cracking susceptibility of electron beam welded metal nail heads. There are various test methods for evaluating stress relief annealing cracking susceptibility, but the present invention shows high cracking susceptibility at a limited location, the electron beam welded metal nail head, and therefore it is suitable for welding conditions for turbine diaphragms. I decided to make a welded joint along the lines. A circumferential notch was cut into a round bar made of all weld metal taken from the nail head, and the cracking critical stress obtained from a stress relaxation test simulating the actual stress relief annealing process was evaluated.
第4図及び第5図は溶接継手形状を示す斜視図及び同要
部正面図であり、第6図は丸棒試験片形状及び負荷方向
を示す。図において、13.14は被溶接部材、15は
電子ビーム溶接部、16は丸棒試験片、Pは負荷方向を
示す。溶接継手は加速電圧90kv、溶接ビーム電流3
20mA、溶接速度15cn/win、焦点位置を被溶
接物の表面を基準に一80mmとした下向姿勢の条件の
下で作成した。4 and 5 are a perspective view and a front view of the main parts showing the shape of a welded joint, and FIG. 6 shows the shape of a round bar test piece and the direction of loading. In the figure, 13 and 14 are members to be welded, 15 is an electron beam welded part, 16 is a round bar test piece, and P is a load direction. The welding joint has an accelerating voltage of 90kv and a welding beam current of 3
It was made under the conditions of 20 mA, a welding speed of 15 cn/win, and a downward attitude with the focus position set at -80 mm from the surface of the workpiece.
以上の試験結果を表3にまとめた。その結果、本発明鋼
に関し次のようなことがわかった。The above test results are summarized in Table 3. As a result, the following was found regarding the steel of the present invention.
(1)機械的性質
溶接性の改善のためにC含有量の下限をo、05%まで
低減させたが、常温における強度が規格値を下層るよう
なことは認められない。(1) Mechanical Properties Although the lower limit of C content was reduced to 0.05% to improve weldability, it was not observed that the strength at room temperature was below the standard value.
(2)溶接性 溶接割れ感受性はCの含有量によって異なる。(2) Weldability Weld cracking susceptibility varies depending on the C content.
高C材のNo、3及びNo、4材のC含有量0.14〜
0.16%では割れ防止温度が175〜200℃である
のに対し1本発明鋼ではC含有量0.10%以下に限定
することにより、予熱温度を100℃以下に低下できる
。C content of high C materials No. 3, No. 4, and 4 materials is 0.14~
At 0.16%, the cracking prevention temperature is 175 to 200°C, whereas in the steel of the present invention, by limiting the C content to 0.10% or less, the preheating temperature can be lowered to 100°C or less.
(3)応力除去焼なまし割れ感受性
応力除去焼なまし割れ発生限界応力とC量(重量%)の
関係について第1図にプロンし整理した。(3) Stress-relief annealing cracking susceptibility The relationship between stress-relief annealing cracking critical stress and C content (wt%) is summarized in Figure 1.
同図中、目標値は従来実績に基づく割れ発生限界応力で
ある。すなわち、この目標値である19kgf/m”以
上となる溶接部を得ることが実機健全性の目安となる。In the figure, the target value is the cracking limit stress based on conventional results. In other words, obtaining a welded portion that is equal to or higher than this target value of 19 kgf/m'' is a measure of the soundness of the actual machine.
同図から明らかなように比較鋼では目標値より5〜8k
gf/m2低い割れ発生限界応力を示した。この要因は
前記したように、特に凝固界面に偏析したSなどの不純
物が過剰に含まれているために、応力除去焼なまし処理
過程において、結晶粒界への炭化物の析出及び凝集を助
長する結果によるものであった。As is clear from the figure, the comparison steel was 5 to 8 k lower than the target value.
gf/m2 showed a low crack initiation stress. As mentioned above, the reason for this is that excessive impurities such as S segregated at the solidification interface are included, which promotes the precipitation and aggregation of carbides at grain boundaries during the stress relief annealing process. It was due to the results.
従って、電子ビーム溶接では熱影響部での割れ防止対策
で抑制した不純物の量より厳しくする必要がある。Therefore, in electron beam welding, it is necessary to suppress the amount of impurities more strictly than the measures to prevent cracking in the heat-affected zone.
また、CaやMgなどを添加することによって、粒界へ
のSの偏析を抑制できる結果、耐割れ性が向上すること
がわかった。It was also found that by adding Ca, Mg, etc., segregation of S to grain boundaries can be suppressed, resulting in improved cracking resistance.
表2中に示すNo、5〜N008の本発明の鋼は低S及
び低Afl並びにTi、CaあるいはMgの添加によっ
て耐割れ性の向上をならったものであるが、表3に示し
たように、比較鋼に比べ割れ発生限界応力は5o%以上
向上することが明らかである。The steels of the present invention, No. 5 to No. 008 shown in Table 2, have improved cracking resistance due to low S and low Afl and the addition of Ti, Ca or Mg, but as shown in Table 3, It is clear that the critical stress for cracking is improved by 50% or more compared to the comparative steel.
一方、上述したように不純物は最終凝固のネールヘッド
に偏析することから、このネールヘッドを除去する方法
も応力除去焼なまし割れ防止に有効であると考えられる
。On the other hand, since impurities are segregated in the final solidified nail head as described above, a method of removing this nail head is also considered to be effective in preventing stress relief annealing cracking.
第7図(a)〜(d)はネールヘッド部17を研削後の
肉盛溶接による積層状況を示す618は肉盛溶接部を示
す。ここで、肉盛溶接はサブマージドアーク溶接により
、100℃の予熱後湾接電流600A、溶接電圧32v
、溶接速度28 cm / winで実施した。FIGS. 7(a) to 7(d) show the lamination state by overlay welding after grinding the nail head portion 17. Reference numeral 618 indicates the overlay welding portion. Here, the build-up welding is performed by submerged arc welding, with a welding current of 600 A and a welding voltage of 32 V after preheating to 100°C.
, carried out at a welding speed of 28 cm/win.
第8図(a)〜(d)は、上述のように肉感溶接による
ものでなく、ネールヘッドを削除するだけでも応力除去
焼なまし割れ発生を防止できることを確認するため作製
した継手形状を示す。電子ビーム溶接する部分に補助板
19を当て、ネールヘッド17が、この補助板19部分
にできるようにして、溶接後に補助板19を外す方法で
ある。補助板19の材質は被溶接材13.14と同質材
である。Figures 8(a) to (d) show joint shapes fabricated to confirm that stress relief annealing cracking can be prevented by simply removing the nail head, rather than by sensual welding as described above. . This is a method in which the auxiliary plate 19 is applied to the part to be electron beam welded, the nail head 17 is formed on the auxiliary plate 19, and the auxiliary plate 19 is removed after welding. The material of the auxiliary plate 19 is the same as that of the materials to be welded 13 and 14.
第9図(a)〜(d)は、更に他の製造方法を示す。FIGS. 9(a) to 9(d) show still another manufacturing method.
予め開先20を形成し、この開先20にネールヘッド1
7を埋設するよう肉盛溶接する方法である。A groove 20 is formed in advance, and the nail head 1 is attached to this groove 20.
This is a method of overlay welding to bury 7.
これらの溶接における応力除去焼なまし割れ感受性の結
果を第10図に示す。いずれもネールヘッド部よりも耐
応力除去焼なまし割れ性が向上することが明らかとなっ
た。特に肉感溶接による場合、顕著な効果が見られる。The results of stress relief annealing cracking susceptibility in these welds are shown in FIG. In both cases, it was found that the stress relief annealing cracking resistance was improved compared to the nail head portion. Particularly when using sensual welding, a remarkable effect can be seen.
これは溶接金属が後続の溶接ビードによって受ける熱で
組織が改善されるためである。This is because the structure of the weld metal is improved by the heat received by the subsequent weld bead.
本発明によれば、溶接にあたっての予熱温度を100℃
とかなり低い温度にすることができることによって、溶
接作業環境の向上が図られるのは勿論として、電子ビー
ム溶接部の応力除去端なまし割れ発生の恐れのない溶接
部を含む構造部材を得ることができる。特に、原子力発
電設備用のタービンダイヤフラムに本発明を適用すれば
、信頼性の高いものが得られる。According to the present invention, the preheating temperature for welding is set to 100°C.
By being able to reduce the temperature to a considerably low temperature, it is possible to not only improve the welding work environment but also to obtain a structural member including a welded part without the risk of stress relief cracking at the edge of the electron beam welded part. can. In particular, if the present invention is applied to a turbine diaphragm for nuclear power generation equipment, a highly reliable product can be obtained.
また、本発明tこ係る製造方法によれば、前記応力除去
端なまし割れ発生の恐れの少ない構造部材を容易に得ら
れる。Further, according to the manufacturing method of the present invention, it is possible to easily obtain a structural member with less risk of occurrence of stress relief edge annealing cracks.
第1図は応力除去端なまし割れ試験による割れ発生限界
応力とC量の関係図、第2図はタービンダイヤフラムの
平面図、第3図は第2図の■−■線断面図、第4図は溶
接継手形状を示す斜視図、第5図は第4図の要部拡大正
面図、第6図は丸棒試験片の側面図、第7図(a)〜(
d)、第8図(a)〜(d)及び第9図(a)〜(d)
はそれぞれ異なる本発明に係る製造方法を示す工程図、
第10図は応力除去端なまし割れ発生限界応力と採取位
置の関係図を示す。
1・・・ノズル翼、2・・・外輪、3・・内輪、4,5
・支持スペーサ、6,7.8・・・支持輪、15・・・
電子ビーム溶接部、17・・ネールヘッド、18・・・
肉盛溶接部、19・・・補助板。
第
図Figure 1 is a diagram showing the relationship between the crack initiation limit stress and the amount of carbon in the stress relief edge annealing crack test, Figure 2 is a plan view of the turbine diaphragm, Figure 3 is a sectional view taken along the line ■-■ in Figure 2, and Figure 4 The figure is a perspective view showing the shape of a welded joint, Figure 5 is an enlarged front view of the main part of Figure 4, Figure 6 is a side view of a round bar test piece, and Figures 7 (a) to (
d), Figures 8(a) to (d) and Figures 9(a) to (d)
are process diagrams showing different manufacturing methods according to the present invention,
FIG. 10 shows a relation diagram between stress relief edge annealing crack generation limit stress and sampling position. 1... Nozzle blade, 2... Outer ring, 3... Inner ring, 4, 5
・Support spacer, 6, 7.8...Support wheel, 15...
Electron beam welding section, 17... Nail head, 18...
Overlay welding part, 19... Auxiliary plate. Diagram
Claims (1)
理された溶接部を含む構造部材において、溶接される鋼
材の少なくとも一方は、重量比にてCを0.05〜0.
1%、Siを0.8%以下、Mnを0.4〜0.8%、
Crを0.94〜2.62%、Moを0.40〜1.1
5%、Bを0.0005〜0.0015%、Tiは0.
01〜0.5%、Sは0.002%以下含み残部がFe
及び不可避的不純物よりなる鋼材であることを特徴とす
る溶接部を含む構造部材。 2、請求項1において、溶接される鋼材の少なくとも一
方は、更にCa及び/またはMgを0.001〜0.1
%含む鋼材である溶接部を含む構造部材。 3、請求項1において、溶接される鋼材の少なくとも一
方は、更にAlを0.002%以下含む鋼材である溶接
部を含む構造部材。 4、請求項1において、溶接される鋼材の少なくとも一
方は、更にCa及び/またはMgを0.001〜0.1
%、Alを0.002%以下含む鋼材である溶接部を含
む構造部材。 5、請求項1〜4のいずれかにおいて、溶接部を含む構
造部材は、ノズル翼と、このノズル翼両端に固着された
支持スペーサと、両支持スペーサに各々電子ビーム溶接
された内輪及び外輪と、前記内輪とその支持スペーサ、
及び外輪とその支持スペーサとにアーク溶接された支持
輪とからなるタービンダイヤフラムである溶接部を含む
構造部材。 6、鋼材を電子ビーム溶接する工程と、溶接部分を応力
除去焼なまし処理する工程を含む溶接部を含む構造部材
の製造方法において、前記電子ビーム溶接をする部分に
補助板を当て、この補助板の上から電子ビーム溶接をし
、該電子ビーム溶接で形成されるネールヘッド部を前記
補助板内に形成させ、補助板を除去して前記ネールヘッ
ド部を除去する工程を含むことを特徴とする溶接部を含
む構造部材の製造方法。 7、鋼材を電子ビーム溶接する工程と、溶接部分を応力
除去焼なまし処理する工程を含む溶接部を含む構造部材
の製造方法において、電子ビーム溶接によって形成され
るネールヘッド部を削除した後、肉盛溶接する工程を含
むことを特徴とする溶接部を含む構造部材の製造方法。 8、鋼材を電子ビーム溶接する工程と、溶接部分を応力
除去焼なまし処理する工程を含む溶接部を含む構造部材
の製造方法において、鋼材表面の溶接部位を削除して開
先を形成し、開先内で電子ビーム溶接し、その後開先内
に肉盛溶接する工程を含むことを特徴とする溶接部を含
む構造部材の製造方法。 9、請求項1〜4のいずれかに記載の鋼材組成よりなる
ことを特徴とする溶接部を含む構造部材用の低C−Cr
−Mo鋼。[Claims] 1. In a structural member including a welded part that has been subjected to stress relief annealing after electron beam welding of steel materials, at least one of the steel materials to be welded has a C content of 0.05 by weight. ~0.
1%, Si 0.8% or less, Mn 0.4-0.8%,
Cr: 0.94-2.62%, Mo: 0.40-1.1
5%, B 0.0005 to 0.0015%, and Ti 0.0005% to 0.0015%.
01-0.5%, S is 0.002% or less, the balance is Fe
and a structural member including a welded part, characterized in that it is a steel material containing unavoidable impurities. 2. In claim 1, at least one of the steel materials to be welded further contains 0.001 to 0.1 of Ca and/or Mg.
Structural members including welded parts that are steel materials containing %. 3. A structural member according to claim 1, including a welded portion, wherein at least one of the steel materials to be welded is a steel material further containing 0.002% or less of Al. 4. In claim 1, at least one of the steel materials to be welded further contains 0.001 to 0.1 of Ca and/or Mg.
%, a structural member including a welded part that is a steel material containing 0.002% or less of Al. 5. In any one of claims 1 to 4, the structural member including the welded portion includes a nozzle blade, a support spacer fixed to both ends of the nozzle blade, and an inner ring and an outer ring each of which is electron beam welded to both support spacers. , the inner ring and its supporting spacer,
and a structural member including a weld, which is a turbine diaphragm consisting of an outer ring and a support ring arc welded to its support spacer. 6. In a method for manufacturing a structural member including a welded part, which includes a process of electron beam welding steel materials and a process of stress-relieving annealing treatment of the welded part, an auxiliary plate is applied to the part to be welded with the electron beam, and the auxiliary plate is The method includes the steps of performing electron beam welding from above the plate, forming a nail head portion formed by the electron beam welding in the auxiliary plate, and removing the auxiliary plate to remove the nail head portion. A method for manufacturing a structural member including a welded part. 7. In a method for manufacturing a structural member including a welded part, which includes a process of electron beam welding steel materials and a process of stress-relieving annealing the welded part, after removing the nail head part formed by electron beam welding, A method for manufacturing a structural member including a welded part, the method comprising a step of overlay welding. 8. In a method for manufacturing a structural member including a welded part, which includes a process of electron beam welding the steel material and a process of stress-relieving annealing treatment of the welded part, the welded part on the surface of the steel material is deleted to form a groove, A method for manufacturing a structural member including a welded part, the method comprising the steps of electron beam welding within the groove and then overlay welding within the groove. 9. Low C-Cr for structural members including welded parts, characterized by being made of the steel material composition according to any one of claims 1 to 4.
-Mo steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21617088A JPH0285339A (en) | 1988-08-30 | 1988-08-30 | Structural member including welded part, method for manufacturing structural member including welded part, and low C-Cr-Mo steel for structural member including welded part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21617088A JPH0285339A (en) | 1988-08-30 | 1988-08-30 | Structural member including welded part, method for manufacturing structural member including welded part, and low C-Cr-Mo steel for structural member including welded part |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0285339A true JPH0285339A (en) | 1990-03-26 |
Family
ID=16684384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21617088A Pending JPH0285339A (en) | 1988-08-30 | 1988-08-30 | Structural member including welded part, method for manufacturing structural member including welded part, and low C-Cr-Mo steel for structural member including welded part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0285339A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008041372A1 (en) * | 2006-10-02 | 2008-04-10 | Nippon Steel Corporation | Joint welded by electron beam with excellent unsusceptibility to brittle fracture |
CN109898009A (en) * | 2019-03-01 | 2019-06-18 | 马鞍山市鑫龙特钢有限公司 | A kind of smelting process of chrome-molybdenum steel |
-
1988
- 1988-08-30 JP JP21617088A patent/JPH0285339A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008041372A1 (en) * | 2006-10-02 | 2008-04-10 | Nippon Steel Corporation | Joint welded by electron beam with excellent unsusceptibility to brittle fracture |
US8114528B2 (en) | 2006-10-02 | 2012-02-14 | Nippon Steel Corporation | Electron beam welded joint excellent in brittle fracture resistance |
CN109898009A (en) * | 2019-03-01 | 2019-06-18 | 马鞍山市鑫龙特钢有限公司 | A kind of smelting process of chrome-molybdenum steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6432716B1 (en) | Fillet welded joint and manufacturing method thereof | |
JP5641158B2 (en) | Spot welded joint | |
JP5217092B2 (en) | Manufacturing method of steel material with excellent fatigue crack propagation resistance | |
JP2000129392A (en) | High-strength steel excellent in fatigue crack propagation resistance and method of manufacturing the same | |
JP5549618B2 (en) | High strength steel plate for spot welding with a tensile strength of 980 MPa or more | |
US20210292876A1 (en) | Austenitic Heat Resistant Alloy and Welded Joint Including the Same | |
JP2001192761A (en) | Ferritic heat-resistant steel sheet excellent in creep strength and toughness of base metal and welded joint and method for producing the same | |
JP2005213534A (en) | Method for producing steel material excellent in toughness at welding heat affected zone | |
JP2002294404A (en) | High carbon hot rolling steel material suitable for friction pressure welding and production method therefor | |
JP3858647B2 (en) | High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same | |
KR101949025B1 (en) | Cold rolled steel sheet for flux cored wire and method of manufacturing the same | |
JPH0285339A (en) | Structural member including welded part, method for manufacturing structural member including welded part, and low C-Cr-Mo steel for structural member including welded part | |
JP2688312B2 (en) | High strength and high toughness steel plate | |
JP4012497B2 (en) | High strength steel with excellent weld heat affected zone toughness and method for producing the same | |
JP2930772B2 (en) | High manganese ultra-high strength steel with excellent toughness of weld heat affected zone | |
JPH11138262A (en) | Tig welding method and tig welding consumables | |
JP4002389B2 (en) | Rotating welded joint of mild steel or 490 MPa class steel excellent in fatigue strength and method for producing the same | |
JP3736209B2 (en) | High tensile steel with excellent weld toughness and manufacturing method thereof | |
JP4513311B2 (en) | Welded joint with excellent fatigue strength characteristics | |
JP3793388B2 (en) | Steel for large heat input welding for earthquake resistant buildings | |
JP2743765B2 (en) | Cr-Mo steel plate for pressure vessel and method for producing the same | |
JP4660363B2 (en) | Manufacturing method of thick steel plate with excellent toughness | |
JPH0713252B2 (en) | Method for producing high strength austenitic stainless steel with excellent seawater resistance | |
JPH0811313B2 (en) | TIG welding wire for Cr-Mo steel | |
JPS62214126A (en) | Method for manufacturing high-strength steel with superior weld zone COD characteristics |