[go: up one dir, main page]

JP4012497B2 - High strength steel with excellent weld heat affected zone toughness and method for producing the same - Google Patents

High strength steel with excellent weld heat affected zone toughness and method for producing the same Download PDF

Info

Publication number
JP4012497B2
JP4012497B2 JP2003376820A JP2003376820A JP4012497B2 JP 4012497 B2 JP4012497 B2 JP 4012497B2 JP 2003376820 A JP2003376820 A JP 2003376820A JP 2003376820 A JP2003376820 A JP 2003376820A JP 4012497 B2 JP4012497 B2 JP 4012497B2
Authority
JP
Japan
Prior art keywords
steel
affected zone
amount
heat
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003376820A
Other languages
Japanese (ja)
Other versions
JP2005139509A (en
Inventor
泰士 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003376820A priority Critical patent/JP4012497B2/en
Publication of JP2005139509A publication Critical patent/JP2005139509A/en
Application granted granted Critical
Publication of JP4012497B2 publication Critical patent/JP4012497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、引張り強さが550MPa以上と高く、詳しくは鋼板の圧延方向の引張り強さが550MPa以上であり、各種構造用材料あるいは機械用部品として、組み立て、建造の際に主に溶接を適用し、その継手特性にも母材と同等の仕様が必要である高張力鋼、例えば造船、橋梁、建築用各種鋼材、さらには室温以下の温度で使用する耐圧貯蔵容器の製造に際して使用する鋼に関する。   The present invention has a high tensile strength of 550 MPa or more, specifically, the tensile strength of the steel sheet in the rolling direction is 550 MPa or more. As a structural material or a machine part, welding is mainly applied during assembly and construction. And high strength steels that require the same specifications as the base metal for their joint properties, such as shipbuilding, bridges, various steel materials for construction, and steel used in the manufacture of pressure-resistant storage containers used at temperatures below room temperature. .

炭素含有量が0.3%以下のいわゆる低炭素鋼は、加工性と溶接性に優れ、多くの構造物で使用される。建築物、車両、船舶、産業用機械などはこれら低炭素鋼で骨格、あるいは内隔ないしは外殻を構成し、構造体が必要とする強度を主に担う。Cを低減した「軟鋼」では、その強度を極力高めて構造体の重量を軽減するための技術開発が盛んに行われてきた。溶接構造でなる構造体は、鋼の比強度(質量あたりの強さ)を上げることで大型化もとくは構造の複雑化、さらには強度が高いことで得られる安全性を獲得してきた。   So-called low carbon steel having a carbon content of 0.3% or less is excellent in workability and weldability and is used in many structures. Buildings, vehicles, ships, industrial machines, etc. are composed of these low carbon steels to form a skeleton, an inner partition or an outer shell, and mainly bear the strength required by the structure. In “soft steel” with reduced C, technological development for increasing its strength as much as possible and reducing the weight of the structure has been actively conducted. Structures made of welded structures have gained the safety gained by increasing the specific strength (strength per mass) of steel, increasing the size, making the structure more complex, and increasing the strength.

しかし、低炭素鋼の強度上昇には炭素以外の合金元素の大量添加が必要であったり、あるいは鋼の製造に際して厳格に結晶組織を制御するための装置の複雑化が伴い、高強度化あるいは加工性を得る代わりに生産性あるいは生産コストの上昇が伴い、問題となっていた。特に近年は、構造体製造時に不可避の溶接施工工程を極力短縮することが試みられ、溶接入熱を増大させる技術の開発が進められた。その結果、溶接時の入熱は5万J/cmを超えることが多くなり、一部には10万J/cm、建築物では100万J/cmを超える入熱での溶接さえ実施されている。こうした高い溶接入熱の場合、被溶接材料は大きな熱影響を受け、溶融金属直近では1400℃もの高温にさらされ、また鋼のA1変態点である720℃付近以上の温度にさらされる、いわゆる「溶接熱影響部」の幅が広くなる。その結果、厳格に組織を制御した低炭素鋼の組織は、溶接熱影響を受けて消失し、その後の継ぎ手の冷却速度で決まる制御不可能な組織形態とならざるを得ない。溶接後に残留応力除去のための焼き鈍し程度の熱処理は施されるにせよ、変態点以上への再加熱は実施しないことからこうしてできた組織はその後変質させることは困難である。   However, increasing the strength of low-carbon steel requires the addition of a large amount of alloying elements other than carbon, or complicates equipment for strictly controlling the crystal structure during steel production, resulting in higher strength or processing. Instead of gaining productivity, there has been a problem with an increase in productivity or production cost. In particular, in recent years, attempts have been made to shorten the welding process, which is unavoidable at the time of manufacturing a structure, as much as possible, and development of a technique for increasing welding heat input has been promoted. As a result, the heat input during welding often exceeds 50,000 J / cm, with some being welded at a heat input exceeding 100,000 J / cm for some buildings and 1 million J / cm for buildings. Yes. In the case of such high welding heat input, the material to be welded is greatly affected by heat, exposed to a temperature as high as 1400 ° C. in the immediate vicinity of the molten metal, and exposed to a temperature of about 720 ° C. or more, which is the A1 transformation point of steel. The width of the “welding heat affected zone” becomes wider. As a result, the structure of the low carbon steel whose structure has been strictly controlled is lost due to the influence of the heat of welding, and has to be an uncontrollable structure determined by the subsequent cooling rate of the joint. Even if a heat treatment at an annealing level for removing residual stress is performed after welding, re-heating above the transformation point is not performed, so that it is difficult to subsequently change the structure thus formed.

こうした熱影響部においても、構造体は非熱影響部と同様な特性を極力維持することが求められるため、結局はこの溶接熱影響状態での鋼材の特性の発揮が最重要課題となり、その確保のための技術が研究されることとなった。   Even in such heat-affected zone, the structure is required to maintain the same characteristics as the non-heat-affected zone as much as possible. The technology for this will be studied.

結晶組織、特に溶接ボンド近傍の旧γ粒径の増大を防止すべく、高温で分解しにくい窒化物や酸化物を利用した鋼材に関する技術の記載が特許文献1、特許文献2などにみられる。しかし、本発明で対象とする高張力鋼においてはこれら技術を適用しても、材料の強度を発現するために実施した結晶組織の製造時における形態は再現することが困難であり、必要とする靭性が確保できる場合でもこうした熱影響部での強度確保が困難となるという課題が未解決であった。   Patent Document 1, Patent Document 2 and the like describe techniques related to steel materials using nitrides and oxides that are difficult to decompose at high temperatures in order to prevent an increase in the crystal structure, particularly the old γ grain size in the vicinity of the weld bond. However, even if these techniques are applied to the high-tensile steels targeted in the present invention, it is difficult to reproduce the form at the time of manufacturing the crystal structure performed in order to express the strength of the material. Even when toughness can be ensured, the problem that it is difficult to ensure the strength in the heat-affected zone has been unsolved.

一方で、NiやCr、Moなどを添加して、鋼材の焼き入れ性を向上し、強度を確保する手法も当然、合金設計の考え方としては妥当である。しかし、NiやMoは高価な元素であって、工業的には構造用鋼に例えば5%を超えて大量添加することは実用的ではない。コストの大幅上昇を嫌って、添加量を制限する場合には効果が少なく、コスト増が問題となるため、実用的な解決策にはなりがたい。また、Crは析出脆化を起こしやすく、強度上昇と引き替えに靭性を失ってしまう。Nb、V、Tiなどの元素を大量に添加した場合でも同様であり、高張力鋼の熱影響部の特性をバランス良く得ようとする場合には、工業的にほとんど手詰まりの状態となっていた。   On the other hand, a method of adding Ni, Cr, Mo or the like to improve the hardenability of the steel material and ensure the strength is naturally appropriate as a concept of alloy design. However, Ni and Mo are expensive elements, and it is not practical to add them in large amounts to structural steel, for example, exceeding 5%. When the amount of addition is limited because the cost increase is hated, the effect is small and the increase in cost becomes a problem, so it is difficult to be a practical solution. In addition, Cr tends to cause precipitation embrittlement and loses toughness in exchange for an increase in strength. This is the same even when a large amount of elements such as Nb, V, and Ti are added, and when trying to obtain the characteristics of the heat-affected zone of high-strength steel in a well-balanced state, it was almost industrially clogged. .

一方で、その機構は不明であるが、Wを添加し、材料の強度向上を図る技術については、耐熱鋼を中心に多くの技術が開発されている。特許文献3、特許文献4、特許文献5にはCrを0.8%以上含有する耐熱鋼において、そのクリープ破断強度を向上させる目的でWを0.01〜3.5%含有する鋼材についての記載がある。ただし、これらはいずれもクリープ特性の向上が趣旨であって、その溶接熱影響部における強度と靭性の両立については、耐熱鋼の使用温度が最低でも400℃以上であるために靭性に対する要求がほとんど無く、あっても施工時の割れ、あるいは水圧試験時の損傷を対象としたものであり、また元来耐熱鋼で構成される高温高圧の発電プラントあるいは石油化学プラントでは入熱の高い溶接条件は、溶接継ぎ手の脆化を懸念して、これを全く採用しない。従って、Wの添加は大入熱の溶接熱影響部特性を制御するためのものではなく、また鋼中での存在形態も当然異なっていて、本発明の対象とする室温以下での構造体に施される大入熱溶接の熱影響部における特性確保を考慮しておらず、その化学成分構成が原因となり、仮に大入熱溶接を適用した場合には必然的に靭性は著しく低下することが通例であった。   On the other hand, although the mechanism is unknown, many techniques have been developed with a focus on heat-resistant steel as a technique for improving the strength of the material by adding W. Patent Document 3, Patent Document 4, and Patent Document 5 describe a steel material containing 0.01 to 3.5% of W for the purpose of improving its creep rupture strength in a heat resistant steel containing 0.8% or more of Cr. There is a description. However, these are all intended to improve the creep characteristics, and for the compatibility of strength and toughness in the weld heat affected zone, the use temperature of the heat-resistant steel is at least 400 ° C., so there is almost no requirement for toughness. However, even if there are cracks during construction or damage during hydraulic testing, the welding conditions with high heat input are high-temperature and high-pressure power plants or petrochemical plants that are originally made of heat-resistant steel. In view of the brittleness of welded joints, this is not adopted at all. Therefore, the addition of W is not for controlling the characteristics of the heat affected zone of large heat input, and the existence form in the steel is naturally different. The characteristics of the heat-affected zone of the high heat input welding to be performed are not taken into account, and due to its chemical composition, toughness may inevitably decrease significantly when high heat input welding is applied. It was customary.

また、室温以下で使用される構造用材料にWを添加する技術については、他の鋼材の特性向上を図るために適用されている例がある。特許文献6には結晶粒径を微細に制御する厚鋼板の製造方法に関する開示があり、Wを2.0%以下の範囲で添加する鋼材に関しての記載がある。しかし、この場合にはWを材料の焼入れ性向上の目的で添加しているため、その析出割合に関しての記載が無く、従って固溶強化を効果的に利用する技術については全く知見されていない。特許文献7では鋼板の幅方向温度分布を制御して鋼板の板面内結晶粒を至る所均一に制御する方法に関する技術の記載があるが、やはりこの場合にもWの添加は焼入れ性向上が目的であって、析出量を制限する技術の記載がない。すなわちWの固溶強化を積極的に利用する技術の記載がない。同様に特許文献8では鋼板表面のスケール均一性を目的とした鋼板の製造方法と鋼板に関する記載があるものの、上記の技術と全く同様にWの析出制御に関する知見が無く、固溶強化の積極的利用は考慮されていてない。   In addition, there is an example in which the technique of adding W to a structural material used at room temperature or lower is applied to improve the characteristics of other steel materials. Patent Document 6 discloses a method for producing a thick steel plate in which the crystal grain size is finely controlled, and describes a steel material to which W is added in a range of 2.0% or less. However, in this case, since W is added for the purpose of improving the hardenability of the material, there is no description of the precipitation ratio, and therefore, no technique has been found for using the solid solution strengthening effectively. In Patent Document 7, there is a description of a technique related to a method of controlling the temperature distribution in the width direction of the steel sheet to uniformly control the in-plane crystal grains throughout the steel sheet, but also in this case, the addition of W improves the hardenability. There is no description of a technique for limiting the amount of precipitation for the purpose. That is, there is no description of a technique that actively uses the solid solution strengthening of W. Similarly, in Patent Document 8, although there is a description regarding a steel sheet manufacturing method and a steel sheet aiming at scale uniformity on the surface of the steel sheet, there is no knowledge about W precipitation control in the same way as the above technique, and solid solution strengthening is active. Usage is not considered.

特許文献9と特許文献10では溶接熱影響部の疲労強度を向上せる技術に関する記載があり、Wを0.01〜2.0%添加し、析出強化または固溶強化で作用させる記載がみられる。しかし、その析出割合に対しての言及はなく、金属間化合物としての析出も全く知見しておらず、単にWを添加することで鋼材強度の向上をねらったものであり、当然析出量の制御がなされない場合はこれら技術を用いても、本発明の効果である固溶Wによる靭性低下の少ない強度向上効果は得られない。従って以上の従来技術をもってしても、強度550MP以上の高張力鋼における大入熱溶接の際にもその熱影響部において母材と同様な強度と靭性特性を確保する技術は実現することはできないという課題が残されていた。   In Patent Document 9 and Patent Document 10, there is a description relating to a technique for improving the fatigue strength of the weld heat-affected zone, and there is a description in which 0.01 to 2.0% of W is added to act by precipitation strengthening or solid solution strengthening. . However, there is no mention of the precipitation ratio, and there is no knowledge of precipitation as an intermetallic compound, and the aim is to improve the strength of the steel by simply adding W, and naturally the amount of precipitation is controlled. If these techniques are not used, the strength improvement effect with little toughness reduction due to the solid solution W, which is the effect of the present invention, cannot be obtained. Therefore, even with the above prior art, a technique for ensuring the same strength and toughness characteristics as the base material in the heat-affected zone even during high heat input welding in a high strength steel having a strength of 550 MP or more cannot be realized. The problem was left.

特公昭57−19744号公報Japanese Patent Publication No.57-19744 特許第3256118号公報Japanese Patent No. 3256118 特開平10−46290号公報Japanese Patent Laid-Open No. 10-46290 特開平8−225884号公報Japanese Patent Laid-Open No. 8-225884 特開平9−217146号公報JP-A-9-217146 特許第2633743号公報Japanese Patent No. 2633743 特開平4−350119号公報JP-A-4-350119 特開平9−271806号公報Japanese Patent Laid-Open No. 9-271806 特開平7−331382号公報JP 7-331382 A 特開平2003−3229号公報Japanese Patent Laid-Open No. 2003-3229

本発明は、従来の高張力鋼が抱える問題点、すなわち低炭素鋼の溶接熱影響部の強度と靭性を同時に高めることが困難である場合の、工業生産性が高くかつ合金添加量がコストに大きな影響を与えない条件の下での合金設計を可能とする、新しい鋼材を提供する。   The present invention has a problem with conventional high-strength steel, that is, when it is difficult to simultaneously increase the strength and toughness of the weld heat-affected zone of low-carbon steel, the industrial productivity is high, and the amount of alloy addition is low in cost. We provide new steel materials that enable alloy design under conditions that do not have a significant impact.

本発明は上記のような従来鋼の課題、すなわち引張り強さ520MPa以上の高張力鋼において、入熱が5万J/cmを超える大入熱溶接において、溶接ボンドの靭性を確保することを必須とする継ぎ手において、母材同等以上の強度を付与するためになされたものであって、その要旨とするところは以下の通りである。
(1)質量%で、C:0.001〜0.05%、Si:0.01〜0.50%、Mn:0.10〜3.0%、W:0.10〜1.0%を含有し、さらに、P≦0.03%、S≦0.02%、O≦0.01%に制限し、Nb:0.005〜0.017%、V:0.005〜0.045%、Ti:0.005〜0.041%、Zr:0.005〜0.1%の1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる鋼組成を有し、溶接時に鋼材のAc1点以上にさらされる熱影響部において析出W量が添加W量の1%以下であり、同時に熱影響部以外の母材において析出W量が添加W量の10%以下であり、さらに、次式で示されるLP値が、Wを含有する金属間化合物Laves相の析出抑制のために2.5以下であることを特徴とする、引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
LP=3×(%Si)+(%W)+2×(%Cr)+0.5×(%Mo)
(2)さらに、質量%でMo:0.01〜1.0%含有することを特徴とする、上記(1)に記載の引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
(3)さらに、質量%で、Ni:0.01〜5.0%、Cu:0.01〜1.0%Cr:0.10〜1.0%、B:0.0003〜0.005%の1種または2種以上を含有することを特徴とする、上記(1)または(2)に記載の引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
(4)さらに、質量%で、Ca:0.0003〜0.005%、Mg:0.0003〜
0.005%、Ba:0.0003〜0.005%、Y:0.0005〜0.10%、C
e:0.0005〜0.10%、La:0.0005〜0.10%の1種または2種以上を含有することを特徴とする、上記(1)ないし(3)のいずれか1項に記載の引張り強
さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
(5)さらに、質量%で、Al:0.002〜0.20%、Ta:0.002〜0.20%1種または2種含有することを特徴とする、上記(1)ないし(4)のいずれか1項に記載の引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
(6)溶接時に鋼材のAc1点以上にさらされる熱影響部において金属間化合物FeW型Laves相の割合が析出W量として添加W量に対して1%以下であることを特徴とする、上記(1)ないし(5)のいずれか1項に記載の引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
(7)特性X線測定による鋼材中の偏析W濃度分析値の最高値を、W添加量で除したWの偏析度が、1.5以下であることを特徴とする、上記(1)ないし(6)のいずれか1項に記載の引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
(8)上記(1)ないし(7)のいずれか1項に記載の鋼組成を有する鋼を、熱間圧延または鍛造等の熱間加工後の冷却工程で、または、焼準、焼戻、焼鈍等の熱処理後の冷却工程で、400〜700℃の温度域での保時時間もしくは通過時間を30時間以内に制限することを特徴とする、溶接時に鋼材のAc1点以上にさらされる熱影響部において析出W量が添加W量の1%以下であり、同時に熱影響部以外の母材において析出W量が添加W量の10%以下であり、さらに、次式で示されるLP値が、Wを含有する金属間化合物Laves相の析出抑制のために2.5以下となる、引張り強さ550MPa以上の溶接熱影響部靱性に優れた高張力鋼の製造方法。
LP=3×(%Si)+(%W)+2×(%Cr)+0.5×(%Mo)
The present invention is essential to ensure the toughness of the weld bond in the high heat input welding in which the heat input exceeds 50,000 J / cm in the above-described problems of the conventional steel, that is, the high strength steel having a tensile strength of 520 MPa or more. The joints described above are made to give strength equal to or higher than that of the base material, and the gist thereof is as follows.
(1) By mass%, C: 0.001 to 0.05%, Si: 0.01 to 0.50%, Mn: 0.10 to 3.0%, W: 0.10 to 1.0% And further limited to P ≦ 0.03%, S ≦ 0.02%, O ≦ 0.01%, Nb: 0.005 to 0.017%, V: 0.005 to 0.045 %, Ti: 0.005 to 0.041%, Zr: 0.005 to 0.1%, or a steel composition comprising the balance of Fe and unavoidable impurities, and welding. The amount of precipitated W is sometimes 1% or less of the added W amount in the heat-affected zone that is sometimes exposed to the Ac1 point or higher of the steel material, and at the same time, the amount of precipitated W in the base material other than the heat-affected zone is 10% or less of the added W amount, Further, the LP value represented by the following formula is 2.5 or less in order to suppress precipitation of the intermetallic compound Laves phase containing W. A high-strength steel excellent in weld heat-affected zone toughness with a tensile strength of 550 MPa or more.
LP = 3 × (% Si) + (% W) + 2 × (% Cr) + 0.5 × (% Mo)
(2) Moreover, in mass% Mo: characterized in that it contains 0.01% to 1.0%, the (1) high with excellent tensile strength 550MPa or more weld heat-affected zone toughness according to Tensile steel.
(3) Moreover, in mass%, Ni: 0.01~5.0%, Cu : 0.01~1.0%, Cr: 0.10~1.0%, B: 0.0003~0. A high-tensile steel excellent in weld heat-affected zone toughness having a tensile strength of 550 MPa or more as described in (1) or (2) above, comprising 005% of one kind or two or more kinds.
(4) Further, by mass%, Ca: 0.0003 to 0.005%, Mg: 0.0003 to
0.005%, Ba: 0.0003 to 0.005%, Y: 0.0005 to 0.10%, C
Any one of the above (1) to (3), characterized by containing one or more of e: 0.0005 to 0.10% and La: 0.0005 to 0.10%. A high-strength steel excellent in weld heat-affected zone toughness with a tensile strength of 550 MPa or more.
(5) Moreover, in mass% Al: 0.002 to 0.20%, Ta: characterized by containing one or two of 0.002 to 0.20%, the above (1) (4) A high-tensile steel excellent in weld heat-affected zone toughness having a tensile strength of 550 MPa or more.
(6) The ratio of the intermetallic compound Fe 2 W type Laves phase in the heat-affected zone exposed to the Ac1 point or higher of the steel material during welding is 1% or less as the precipitated W amount with respect to the added W amount, High tensile steel excellent in weld heat-affected zone toughness having a tensile strength of 550 MPa or more according to any one of (1) to (5) above.
(7) The segregation degree of W obtained by dividing the maximum value of the segregation W concentration analysis value in the steel material by characteristic X-ray measurement by the amount of addition of W is 1.5 or less, (1) to (1) above High tensile steel excellent in weld heat-affected zone toughness having a tensile strength of 550 MPa or more according to any one of (6).
(8) The steel having the steel composition described in any one of (1) to (7) above is subjected to a cooling step after hot working such as hot rolling or forging, or normalizing, tempering, In the cooling step after heat treatment such as annealing, the heat effect exposed to the Ac1 point or higher of the steel material during welding is characterized by limiting the holding time or passing time in the temperature range of 400 to 700 ° C. to within 30 hours. The amount of precipitated W in the part is 1% or less of the amount of added W, and at the same time the amount of precipitated W in the base material other than the heat-affected zone is 10% or less of the amount of added W. Furthermore, the LP value represented by the following formula is A method for producing a high-strength steel excellent in weld heat-affected zone toughness having a tensile strength of 550 MPa or more, which is 2.5 or less in order to suppress precipitation of an intermetallic compound Laves phase containing W.
LP = 3 × (% Si) + (% W) + 2 × (% Cr) + 0.5 × (% Mo)

本発明の適用によって、入熱の大きい溶接を用いた場合でも継ぎ手の靭性と強度が高い構造物を製造する上で、合金添加量が少なく、かつ引張り強さが520MPa以上である高張力鋼材を安価に供給することが可能となる。   By applying the present invention, a high strength steel material having a small alloy addition amount and a tensile strength of 520 MPa or more is required to produce a structure having high joint toughness and strength even when welding with high heat input is used. It can be supplied at low cost.

まず、本発明において記載の鋼の各種構成元素の質量割合を請求項に記載のごとく決定した理由を以下に詳細に述べる。   First, the reason why the mass proportions of various constituent elements of the steel described in the present invention are determined as described in the claims will be described in detail below.

C:鋼中にあって、転位の近傍に集積し、材料変形挙動を支配するとともに、結晶格子の形態を単純なBCC構造からBCTなどの準安定構造への移行を容易にする役割を担う。種々の遷移元素と炭化物を形成し、強化に寄与する。本発明ではこれら因子を発現するために最低0.001%が必要で、0.05%を超えて添加するとWが一部炭化物として析出して、本発明鋼のWの析出割合、母材にて10%以下、溶接熱影響部にて1%以下を維持できなくなるため、最大添加量を0.05%とした。ただし、上記のごとくCの存在はWを固溶状態でとどめおき、固溶強化元素として主に使用するという目的からは少ない方が良い。0.001〜0.05%の範囲においては、好ましくは0.04%未満、さらに望ましくは0.015%未満であることがWの炭化物としての析出を完全に0とするうえで良い。   C: It is in steel and accumulates in the vicinity of dislocations, controls the material deformation behavior, and plays the role of facilitating the transition of the crystal lattice form from a simple BCC structure to a metastable structure such as BCT. It forms carbides with various transition elements and contributes to strengthening. In the present invention, at least 0.001% is necessary to express these factors, and when added in excess of 0.05%, W partially precipitates as carbides, and the W precipitation ratio of the steel of the present invention, the base material 10% or less and 1% or less cannot be maintained in the weld heat affected zone, so the maximum addition amount was set to 0.05%. However, as described above, the presence of C is preferably less for the purpose of keeping W in a solid solution state and mainly using it as a solid solution strengthening element. In the range of 0.001 to 0.05%, it is preferably less than 0.04%, and more preferably less than 0.015%, in order to completely eliminate the precipitation of W as a carbide.

Si:鋼材の精錬時における脱酸元素として有用であり、同時に鋼中に固溶した場合には固溶強化、あるいは焼入れ性の向上に寄与し、材料の強度上昇と組織制御に有用である。脱酸に必要な最低量として0.01%を規定し、0.5%以上の添加で鋼材の靭性を著しく損なう場合があることから、その成分範囲を0.01〜0.5%とした。   Si: useful as a deoxidizing element during refining of steel materials, and at the same time, when dissolved in steel, contributes to solid solution strengthening or improvement of hardenability, and is useful for increasing the strength of the material and controlling the structure. The minimum amount required for deoxidation is specified as 0.01%, and addition of 0.5% or more may significantly impair the toughness of the steel material, so its component range is set to 0.01 to 0.5%. .

Mn:Siと同様に脱酸を支配し、また固溶状態で材料の焼入れ性向上に寄与する。0.10%未満では脱酸に不十分であり、3.0%を超えて添加する場合、偏析部位で材料が著しく脆化する場合があるため、その添加範囲を0.10〜3.0%とした。   Mn: Controls deoxidation similarly to Si, and contributes to improving the hardenability of the material in a solid solution state. If it is less than 0.10%, it is insufficient for deoxidation, and if added over 3.0%, the material may be significantly embrittled at the segregation site. %.

W:本発明において必須であり、かつ最も材料特性を支配する重要な元素である。主に鋼中には固溶状態にあって、結晶格子に大きな歪みを与える。これによる固溶強化は大きく、しかも靭性を大きく低下させないことが本発明者らの詳細な研究によって明らかとなった。その成分範囲は、強化に必要な最低量が0.10%であり、1.0%を超えて添加するとFe2W型金属間化合物を生成して材料強化能がかえって低下し、また同時に大型の金属間化合物の存在によって脆化する場合があることから、その添加範囲を0.10〜1.0%に制限した。ただし、このWを単純に鋼材の一成分としてとらえ、添加するだけでは本発明の効果を十分に得ることはできない。 W: An essential element that is essential in the present invention and that dominates the material characteristics. Mainly in steel, it is in a solid solution state and gives large strain to the crystal lattice. It has been clarified by detailed studies by the present inventors that the solid solution strengthening due to this is large and the toughness is not greatly reduced. The component range is that the minimum amount required for strengthening is 0.10%, and if added over 1.0%, an Fe 2 W type intermetallic compound is formed and the material strengthening ability is reduced, and at the same time large The presence of the intermetallic compound may cause embrittlement, so the range of addition was limited to 0.10 to 1.0%. However, the effect of the present invention cannot be sufficiently obtained simply by taking W as a component of steel and adding it.

Wは、固溶状態にあってはじめて上記の効果を発揮する。析出した場合には添加したWに見合う強化が実現しないばかりか、先述のとおりに脆化する場合がある。溶接時に鋼材のAc1点以上にさらされる熱影響部において析出W量が添加W量の1%を超えると、図2に示すように、吸収エネルギーは47Jを下回る場合があることが判る。また、熱影響部以外の母材において析出W量が添加W量の10%を超えると、固溶強化が維持できずに強度が550MPaに届かないこととなる。そのため、本発明においては溶接時に鋼材のAc1点以上にさらされる熱影響部(以下、このような熱影響部を「溶接熱影響部」という。)において析出W量が添加W量の1%以下であり、同時に熱影響部以外の母材において析出W量が添加W量の10%以下であるものとした。   W exhibits the above-mentioned effect only in a solid solution state. In the case of precipitation, not only strengthening corresponding to the added W is not realized, but also embrittlement may occur as described above. It can be seen that when the amount of precipitated W exceeds 1% of the amount of added W in the heat-affected zone exposed to the Ac1 point or more of the steel during welding, the absorbed energy may be less than 47 J, as shown in FIG. If the amount of precipitated W in the base material other than the heat-affected zone exceeds 10% of the amount of added W, the solid solution strengthening cannot be maintained and the strength does not reach 550 MPa. Therefore, in the present invention, the precipitation W amount is 1% or less of the added W amount in the heat-affected zone (hereinafter referred to as “welding heat-affected zone”) exposed to the Ac1 point or more of the steel material during welding. At the same time, the amount of precipitated W was 10% or less of the amount of added W in the base material other than the heat-affected zone.

このWの析出形態には、Wを含む炭化物あるいはLaves相型金属間化合物があり、どちらも靭性を低下させる。両者の析出温度域は700℃以下であり、特に400℃以上の高温で長時間保持すると析出する。700℃では30時間、400℃では10000時間程度から析出が始まることを実験的に確かめた。700℃以上の高温ではこれらの析出物は不安定であり、本発明の範囲の添加では、後述するごとく偏析度を1.5以下に抑制していれば全て分解固溶することもまた、研究の結果明らかとなった。従って、通常の製造工程において、鋼材を最終製品とする前の熱処理、例えば焼き入れ、焼準し、焼戻し、焼鈍し等において、400〜700℃の温度域に30時間を超えて保持すると、母材部あるいは熱影響部いずれも、Wは本発明の制限を超えて析出する。鋼板が薄い場合、あるいは鋼塊が小さい場合には400〜700℃の温度範囲で30時間以上保持することは無いが、厚板、あるいは大型鋼塊ではこのような熱履歴がとられる場合がある。本発明鋼ではこの点に留意し、加算的な場合(焼入れ+焼戻しなどの複合熱処理あるいは繰り返し焼戻し処理など)も含めて、上記温度域での通過ないしは保持時間を厳格に制限する必要がある。   The precipitation forms of W include carbides containing W or Laves phase type intermetallic compounds, both of which reduce toughness. The precipitation temperature range of both is 700 degrees C or less, and it precipitates when it is kept at a high temperature of 400 degrees C or more for a long time. It was experimentally confirmed that precipitation started at about 700 ° C. for 30 hours and at about 400 ° C. for about 10,000 hours. These precipitates are unstable at a high temperature of 700 ° C. or higher, and when added within the scope of the present invention, as will be described later, if the degree of segregation is suppressed to 1.5 or less, all of them are dissolved and dissolved. As a result, it became clear. Accordingly, in a normal manufacturing process, if the steel material is kept in a temperature range of 400 to 700 ° C. for more than 30 hours in a heat treatment before making the steel product into a final product, for example, quenching, normalizing, tempering, annealing, etc., In both the material part and the heat-affected part, W is deposited exceeding the limit of the present invention. When the steel plate is thin or when the steel ingot is small, it is not held for 30 hours or more in the temperature range of 400 to 700 ° C. However, such a thermal history may be taken with a thick plate or a large steel ingot. . In the steel according to the present invention, it is necessary to strictly limit the passage time or the holding time in the above temperature range, including this case, including an additive case (composite heat treatment such as quenching and tempering or repeated tempering treatment).

溶接継手においては、材料の靭性を十分に確保すべく組織を制御すると、材料強度が低下する場合が多い。このような場合にWの添加は有効で、組織制御だけで強度が550MPaに達しない場合に、W添加で強度を確保することが可能となる。しかし、この場合にも同様に、溶接後に材料の高温割れを防止すべく冷却を遅らせたり、あるいは継手の残留応力軽減のための応力除去焼鈍を長時間にわたって実施する場合、当該温度域の保持および通過時間に注意し、合計で30時間以下に制御する必要がある。溶接時に700℃まで再熱されない、溶接熱影響部近傍母材においては、製造工程における焼き戻し処理に加えて溶接熱影響、そしてその後の応力除去焼鈍が加わるために、この時間制限を逸脱する場合が多い。従って材料が構造体として完成するまでの間、上記温度域の保持および通過時間は厳格に制限する必要がある。請求項6はこの様な研究成果による知見に基づいてなされた発明である。Wは700℃〜400℃の温度域において、本発明鋼の場合専ら(概略90%以上)Fe2W型Laves相として析出する。主に粒界に粗大に析出する傾向にある。溶接熱影響部は、特に結晶粒が粗大化する部位があり、靭性は低下する。この低下を防止する為にはWの析出、特に溶接熱影響部でのWの析出の実質的全てを占めるFe2Wの析出の割合は、析出W量として添加W量に対して1%を超えてはならない事を実験的に確認した。なお、Fe2W型Laves相は700℃以上ではほぼ全量が再固溶して分解する。従って、Ac1変態点(720℃付近)以上に再加熱される溶接熱影響部では、その後の加熱ないしは冷却工程で長時間400〜700℃にさらされる場合、全量が粒界析出し、より靭性に悪い影響を与えることが判った。従って、金属間化合物Fe2W型Laves相の割合を析出W量として添加W量に対して1%以下に限定した。 In a welded joint, when the structure is controlled to sufficiently secure the toughness of the material, the material strength often decreases. In such a case, the addition of W is effective, and when the strength does not reach 550 MPa only by the structure control, the strength can be secured by the addition of W. However, in this case as well, if the cooling is delayed to prevent hot cracking of the material after welding, or if stress relief annealing for reducing the residual stress of the joint is performed for a long time, the temperature range is maintained and It is necessary to pay attention to the passage time and control it to 30 hours or less in total. In the case of a base metal near the weld heat affected zone that is not reheated to 700 ° C. during welding, in addition to the tempering process in the manufacturing process, the effect of welding heat and subsequent stress relief annealing are added, and therefore this time limit is exceeded. There are many. Therefore, until the material is completed as a structure, it is necessary to strictly limit the temperature range and the passage time. Claim 6 is an invention made on the basis of the findings of such research results. In the temperature range of 700 ° C. to 400 ° C., W precipitates exclusively (approximately 90% or more) as an Fe 2 W type Laves phase in the case of the steel of the present invention. It tends to precipitate coarsely mainly at grain boundaries. The welding heat-affected zone has a part where the crystal grains are particularly coarsened, and the toughness is lowered. In order to prevent this decrease, the proportion of precipitation of W, particularly the precipitation of Fe 2 W occupying substantially all of the precipitation of W in the heat affected zone is 1% of the amount of added W as the amount of precipitation W. It was confirmed experimentally that it should not be exceeded. Note that almost all of the Fe 2 W type Laves phase is dissolved again and decomposes at 700 ° C. or higher. Therefore, in the welding heat-affected zone that is reheated above the Ac1 transformation point (around 720 ° C.), when exposed to 400 to 700 ° C. for a long time in the subsequent heating or cooling step, the entire amount precipitates at grain boundaries, making it more tough. It was found to have a bad influence. Therefore, the ratio of the intermetallic compound Fe 2 W type Laves phase is limited to 1% or less with respect to the added W amount as the precipitated W amount.

なお、上述のW析出抑制、偏析抑制の技術を用いても、鋼中にSi、Cr、Moが多く存在し、次式で示される金属間化合物Laves相の析出促進パラメータLP値が2.5を超えると、鋼中でのWのLaves相としての溶解度積に影響があり、金属間化合物の析出が生じる場合があることを実験的に確かめた。
LP=3×(%Si)+(%W)+2×(%Cr)+0.5×(%Mo)
Even when the above W precipitation suppression and segregation suppression techniques are used, a large amount of Si, Cr, and Mo exists in the steel, and the precipitation promotion parameter LP value of the intermetallic compound Laves phase represented by the following formula is 2.5. It exceeded the solubility product as a Laves phase of W in steel, and it was experimentally confirmed that precipitation of intermetallic compounds may occur.
LP = 3 × (% Si) + (% W) + 2 × (% Cr) + 0.5 × (% Mo)

このパラメータは、鋼中にWとSi以外に、本発明の各請求項で記載した各種元素を添加した鋼を実験室の高周波誘導式真空加熱炉で溶製してインゴットとなし、続いて熱間圧延して試作し、その鋼材中における析出Fe2W量および、入熱5万J/cm以上の条件でTIG溶接あるいはSMAW溶接にて複数パスにて得られた継ぎ手の溶接熱影響部中に存在するFe2W量を、有機酸溶液中において定電位電解することで基材を溶解除去して残留した鋼中析出物をフィルターで捕集した後に吸光光度法などによる化学分析で定量し、LP値が2.5を超えたときに鋼材中のFe2W析出が増加して結果的にW析出量が母材で10%あるいは溶接熱影響部で1%を超え、強度が550MPaに届かないか、もしくは継ぎ手の靭性が構造材料に要求される靭性値を得られない、例えばシャルピー衝撃試験で、構造物の使用温度において47Jを得られないことを実験的に見いだした。LP値の式中の各構成元素質量割合にかかる係数は全て実験式として最小自乗法で一次元の加算則を仮定して実験結果を、Laves相の析出の有無について整理した場合の概略の値である。図1にはこのパラメータLPとLaves相の析出量の関係を示す図である。明らかに、横軸LP値とLaves相析出量の関係はしきい値で大きく変化している。LP値を2.5以下に制御しないとLaves相の析出は制限できない。図2にはLaves相を含めたWの析出割合(Wの全析出量/添加W量)×100%と、強度600〜660MPaを有する本発明鋼溶接熱影響部の0℃におけるシャルピー吸収エネルギーの関係を示した。Wの溶接熱影響部における析出割合が1%を超えると、吸収エネルギーは47Jを下回る場合があることが判る。 This parameter is obtained by melting steel in which various elements described in the claims of the present invention other than W and Si are added in a steel by using a high frequency induction vacuum heating furnace in a laboratory to form an ingot, followed by heat. In the weld heat affected zone of the joint obtained by multiple passes by TIG welding or SMAW welding under the condition of the amount of Fe 2 W precipitated in the steel material and the heat input of 50,000 J / cm or more. The amount of Fe 2 W present in the steel is quantified by chemical analysis, such as by spectrophotometry, after the substrate is dissolved and removed by constant-potential electrolysis in an organic acid solution and the remaining steel precipitate is collected by a filter. When the LP value exceeds 2.5, Fe 2 W precipitation in the steel material increases, and as a result, the W precipitation amount exceeds 10% in the base metal or 1% in the weld heat affected zone, and the strength becomes 550 MPa. The toughness of the joint Not obtain toughness being determined, for example, in the Charpy impact test, it can not be obtained 47J at the use temperature of the structure was found experimentally. The coefficients related to the mass ratio of each constituent element in the LP value formula are all approximate values when the experimental results are arranged with respect to the presence or absence of precipitation of the Laves phase, assuming a one-dimensional addition rule using the least square method as an empirical formula. It is. FIG. 1 is a graph showing the relationship between the parameter LP and the amount of precipitation of the Laves phase. Apparently, the relationship between the LP value on the horizontal axis and the amount of precipitation of the Laves phase greatly changes with the threshold value. The precipitation of the Laves phase cannot be restricted unless the LP value is controlled to 2.5 or less. FIG. 2 shows the Charpy absorbed energy at 0 ° C. of the heat-affected zone of the steel of the present invention having a precipitation ratio of W including the Laves phase (total precipitation of W / amount of added W) × 100% and strength of 600 to 660 MPa. The relationship was shown. When the precipitation ratio in the weld heat affected zone of W exceeds 1%, it can be seen that the absorbed energy may be less than 47J.

本発明鋼においては不純物であるP、S、Oは溶接熱影響部のみならず母材の靭性を損なう影響をもたらすことから、上述の各成分元素を最適化しても、化学成分や強度とは無関係に靭性劣化が生じる場合がある。これを防止する目的で、Pを0.03%未満、Sを0.02%未満、Oを0.01%未満に厳格に制限した。
また、以下の選択元素を添加して鋼材の強度を高め、組織を制御して本発明の効果を高めることが可能である。すなわち、Nb、Ti、V、Zrの析出強化および未再結晶温度制御元素の1種または2種以上を制御添加する。
In the steel of the present invention, impurities P, S, and O have an effect of impairing the toughness of the base metal as well as the weld heat-affected zone. Irrespective of this, toughness deterioration may occur. In order to prevent this, P was strictly limited to less than 0.03%, S was less than 0.02%, and O was less than 0.01%.
Further, the following selective elements can be added to increase the strength of the steel material, and the structure can be controlled to enhance the effect of the present invention. That is, one or more of Nb, Ti, V, Zr precipitation strengthening and non-recrystallization temperature control elements are controlled and added.

以上が本発明の中核技術であるが、さらに以下の選択元素を添加して鋼材の強度を高め、組織を制御して本発明の効果をさらに高めることが可能である。すなわち析出強化未再結晶温度制御元素であるMo、あるいはさらにNi、CuCr、Bの焼入れ性向上元素の1種または2種以上、あるいはさらにCa、Mg、Ba、Y、Ce、Laの硫化物形態制御ないしは微細酸化物分散状態制御元素の1種または2種以上、加えてさらにAl、Ta2次脱酸元素ないしは炭化物、窒化物形成元素の1種または2種以上の添加である。以下にこれら選択元素の添加範囲を制限した理由を述べる。 The above is the core technology of the present invention, but the following selective elements can be further added to increase the strength of the steel material, and the structure can be controlled to further enhance the effects of the present invention. That is , Mo , which is a precipitation-strengthening / non-recrystallization temperature control element, or one or more of Ni, Cu , Cr, B hardenability improving elements, or further Ca, Mg, Ba, Y, Ce, La sulfide shape control or a fine oxide dispersion state control elements one or more of, in addition further Al, 2 primary deoxidizer or carbides of Ta, one of a nitride forming element or two or more in addition is there. The reason for limiting the addition range of these selective elements will be described below.

Nbは、窒素、炭素と結合してNbCないしはNbNとして整合析出し、材料を析出強化する。析出強化を適正に制御すれば靭性を大きく低下させることなく強度を向上させうることが知られている。その添加量は0.005%から効果を発揮し、0.017%を超えて添加すると析出物が粗大化して材料が脆化するため、その添加範囲を0.005〜0.017%に限定した。 Nb combines with nitrogen and carbon and precipitates as NbC or NbN, thereby strengthening the material by precipitation. It is known that if the precipitation strengthening is appropriately controlled, the strength can be improved without greatly reducing the toughness. The added amount is effective from 0.005%, and if added over 0.017 %, the precipitate becomes coarse and the material becomes brittle, so the range of addition is limited to 0.005 to 0.017 %. did.

VもNbと同様に析出強化に寄与する。その析出量はNbほど多くないが、Nbと複合析出することが知られており、複合添加ではより一層の析出強化が期待できる。0.005%以上添加しないと効果が発現せず、0.045%を超えて添加する場合には粗大な炭窒化物として析出することから鋼材の脆化を来すため、添加範囲を0.005%〜0.045%とした。 V also contributes to precipitation strengthening like Nb. Although the amount of precipitation is not as large as Nb, it is known that it precipitates together with Nb, and further precipitation strengthening can be expected by composite addition. If 0.005% or more is not added, the effect is not manifested, and if it is added over 0.045 %, it precipitates as coarse carbonitride, resulting in embrittlement of the steel material. 005% to 0.045 %.

Tiは、特にNとの親和力が高く、主にTiNとなって窒素を固定する。TiNそのものは比較的粗大で析出強化には寄与しがたいが、N含有量が低い場合にはTiCとして析出強化に寄与する。TiNの析出が促されると、後述するB添加効果が助長されることから、Bの有効活用のために添加する場合もある。その効果は0.005%から発現し、0.041%以上では粗大な炭窒化物を生成して材料を劣化させる場合があるため、添加範囲を0.005〜0.041%に制限した。 Ti has a particularly high affinity with N and mainly becomes TiN to fix nitrogen. TiN itself is relatively coarse and hardly contributes to precipitation strengthening, but when N content is low, it contributes to precipitation strengthening as TiC. When precipitation of TiN is promoted, the effect of adding B described later is promoted, so it may be added for effective utilization of B. The effect is manifested from 0.005%, and if it is 0.041 % or more, coarse carbonitride may be produced and the material may be deteriorated, so the addition range was limited to 0.005 to 0.041 %.

Zrは、Tiと同様な効果を有し、最もNとの親和力が高いが、炭化物としては粗大であり、炭化物ないしは窒化物として利用する際に炭素量、窒素量との兼ね合いで添加する必要がある。その効果は0.005%から発現し、0.1%以上で著しい脆化を引き起こすことから、その添加範囲を0.005%〜0.1%に制限した。   Zr has the same effect as Ti and has the highest affinity with N. However, it is coarse as a carbide and needs to be added in consideration of the amount of carbon and nitrogen when used as a carbide or nitride. is there. The effect is manifested from 0.005% and causes significant embrittlement at 0.1% or more, so the addition range was limited to 0.005% to 0.1%.

Moは、焼き入れ性向上元素であるが、同時に固溶強化能が高く、またMo2Cとして析出し、強い2次硬化現象を示す。0.01%以上添加しないと析出強化がみられず、1.0%を超えて添加すると強化が高くなりかえって材料が脆化するため、その添加範囲を0.01〜1.0%に制限した。なお、MoのCとの析出力は極めて高く、その析出制御は困難であるため、Wと同等な効果は得られないため、本発明では選択元素として添加するにとどめた。 Mo is a hardenability improving element, but at the same time has a high solid solution strengthening ability, and precipitates as Mo 2 C, showing a strong secondary hardening phenomenon. If 0.01% or more is not added, precipitation strengthening is not observed, and if it exceeds 1.0%, the strengthening becomes high and the material becomes brittle, so the range of addition is limited to 0.01 to 1.0%. did. Note that the precipitation force of Mo with C is extremely high and it is difficult to control the precipitation, so that an effect equivalent to that of W cannot be obtained. Therefore, in the present invention, it is only added as a selective element.

Niは、基材の高靭化に寄与し、材料の靭性向上には多く使用されている。また変態点低下による焼入れ性の向上から強度が高くなるなど利点は大きい。しかし、一方で大量添加は元素が高価であるために積極的に用いることはできず、また無拡散変態時の残留オーステナイト生成の観点からは有害である。添加の効果は0.01%から発現し、5.0%以上の添加は鋼材の結晶格子構造をBCCからFCCへと変化させてしまうことが懸念されるため、その添加範囲を0.01〜5.0%に限った。   Ni contributes to increasing the toughness of the base material and is often used to improve the toughness of the material. In addition, there are significant advantages such as an increase in strength due to an improvement in hardenability due to a lower transformation point. On the other hand, however, the addition of a large amount cannot be used positively because the element is expensive, and is harmful from the viewpoint of the formation of retained austenite at the time of non-diffusion transformation. The effect of addition is manifested from 0.01%, and there is a concern that addition of 5.0% or more may change the crystal lattice structure of the steel material from BCC to FCC. Limited to 5.0%.

Cuは、オーステナイト形成元素であり、オーステナイト相中にわずかに固溶して材料の焼き入れ性に寄与し、またフェライト相ではイプシロンCuの形で析出強化に寄与する。過剰添加は粒界フィルム状Cuの析出を誘発するため、効果の発現する0.01%から粒界析出の頻発しない限界含有量1.0%を本発明における制限範囲とした。   Cu is an austenite-forming element and contributes to the hardenability of the material by slightly dissolving in the austenite phase, and contributes to precipitation strengthening in the form of epsilon Cu in the ferrite phase. Since excessive addition induces precipitation of the grain boundary film-like Cu, the limiting content in the present invention is defined as 0.01% at which the effect is exhibited and 1.0% at which the grain boundary precipitation does not occur frequently.

Crは、焼き入れ性向上に有効で、かつ材料の耐食性にも奏功する元素である。しかし、島状マルテンサイトなどの硬質第二相を生成しやすく、強度は向上できるが靭性を失いやすい。従って、焼き入れ性向上の観点から最低でも0.10%が必要で、靭性維持の観点から添加量を1.0%に制限した。   Cr is an element that is effective in improving the hardenability and is also effective in the corrosion resistance of the material. However, it is easy to generate a hard second phase such as island martensite and the strength can be improved, but the toughness is easily lost. Therefore, at least 0.10% is necessary from the viewpoint of improving hardenability, and the addition amount is limited to 1.0% from the viewpoint of maintaining toughness.

Bは、粒界からの結晶粒の核生成を抑制する効果を有し、極少量でも粒界へ偏析する傾向が強いことから、微量添加で高い焼入れ性を獲得できる元素である。その効果は0.0003%から既に発現し、0.005%を超えて添加すると粒界脆化もしくは硼化物析出による脆化を来すため、その添加範囲を0.0003%〜0.005%に制限した。なお、Bの効果をより一層高めるためには既述したTiの同時添加は有効である。   B is an element that has the effect of suppressing nucleation of crystal grains from the grain boundary, and has a strong tendency to segregate to the grain boundary even with a very small amount, so that high hardenability can be obtained by addition of a small amount. The effect is already manifested from 0.0003%, and if added over 0.005%, grain boundary embrittlement or embrittlement due to boride precipitation occurs, so the range of addition is 0.0003% to 0.005%. Restricted to. In order to further enhance the effect of B, the aforementioned simultaneous addition of Ti is effective.

Caは、硫化物形態制御元素として、MnSの無害化に有益であり、その結果材料の靭性向上に寄与する。0.0003%以上添加しないと効果が無く、0.005%を超えて添加すると、酸素との親和力が高いためにCaOのクラスターを形成して靭性を逆に低下させる。そのため添加範囲を0.0003%〜0.005%に制限した。   Ca is useful for detoxifying MnS as a sulfide form control element, and as a result, contributes to improving the toughness of the material. If 0.0003% or more is not added, there is no effect, and if adding over 0.005%, the affinity with oxygen is high, and thus CaO clusters are formed, and the toughness is lowered. Therefore, the addition range is limited to 0.0003% to 0.005%.

Mgも、同様に硫化物形態制御機能を有する。また、脱酸力が高く、鋼中に酸化物あるいは酸硫化物として微細に分散すると、粒界の移動障害として機能し、溶接熱影響部の靭性を向上させる効果を有する。その効果は0.0003%から発現し、0.005%以上の添加は強い脱酸力が製鋼工程の耐火物を損耗させ、鋼中不純物濃度をかえって高めてしまうことから、添加範囲を0.0003%〜0.005%に制限した。   Similarly, Mg has a sulfide form control function. Further, it has a high deoxidizing power, and when it is finely dispersed in the steel as an oxide or oxysulfide, it functions as a grain boundary movement obstacle and has the effect of improving the toughness of the weld heat affected zone. The effect is manifested from 0.0003%. Addition of 0.005% or more causes a strong deoxidizing power to wear out the refractory in the steel making process, and raises the concentration of impurities in the steel. It was limited to 0003% to 0.005%.

Baは、Ca、Mgを凌駕する脱酸力を有しており、同時に硫化物形態制御能を有する。0.0003%から材料の靭性向上に有効であり、0.005%以上の添加は耐火物の損耗を著しく促進するため、添加範囲を0.0003%〜0.005%に限った。   Ba has a deoxidizing power that surpasses Ca and Mg, and at the same time has a sulfide morphology control ability. It is effective for improving the toughness of the material from 0.0003%. Addition of 0.005% or more remarkably accelerates the wear of the refractory, so the addition range is limited to 0.0003% to 0.005%.

希土類元素として知られるY、Ce、Laは、いずれも硫化物形態制御能を有する。これらの硫化物形態制御効果は0.0005%から発現し、0.10%を超える添加は、製鋼工程の鋳造時に浸漬ノズルの閉塞を誘発しやすいことから、スラブ製造に困難を来すため、その添加範囲を0.0005%〜0.10%に制限した。   Y, Ce, and La, which are known as rare earth elements, all have sulfide form control ability. These sulfide form control effects are manifested from 0.0005%, and addition exceeding 0.10% tends to induce clogging of the immersion nozzle at the time of casting in the steel making process. The addition range was limited to 0.0005% to 0.10%.

本発明の最大の特徴である固溶Wによる材料の強化を、工業的に安定してなしうるにはWの偏析についての課題を解決することは不可避である。Wは溶鉄が凝固する際の固液分配比が大きく、従って凝固組織におけるミクロ偏析が常態化する。偏析度の高いMnよりも偏析が強く、平均で1.6〜1.7、凝固条件によっては2.0となる場合もあることが、研究の結果明らかとなった。最大1.0%のWを添加した場合、部分的に2.0%のW濃縮部が形成される可能性を示唆している。   It is inevitable to solve the problem of segregation of W in order to be able to strengthen the material by solid solution W, which is the greatest feature of the present invention, in an industrially stable manner. W has a large solid-liquid distribution ratio when the molten iron solidifies, and therefore microsegregation in the solidified structure becomes normal. As a result of research, it has been clarified that segregation is stronger than Mn having a high degree of segregation, and it may be 1.6 to 1.7 on average and 2.0 depending on the solidification conditions. This suggests that when a maximum of 1.0% W is added, a 2.0% W concentrated portion may be partially formed.

こうしたミクロ偏析を分析することは簡単で、画像処理装置を備えた特性X線分析装置により、例えば電子顕微鏡観察下でそのX線強度分布図を作成することは、今日一般に実施することができる。そこで、この偏析を少ない状態、例えば均質化焼鈍などを鋼材の製造工程において実施することにより、低減することで部分的なWの濃度の変動を少なくすることが可能である。本発明においては、Wの過剰添加はその析出を誘引することから添加量を最大1.0%に制限したが、この場合に金属間化合物や炭化物として、請求項1に記載したW析出割合を超えないための条件として、上記特性X線分析装置による測定で、Wの偏析が低減されていることを定量的に確認し、鋼材の品質を保つことが可能である。ここでは定量的な判定のための指標として、偏析度=(特性X線測定による鋼材中の偏析W濃度分析値の最高値)/(W添加量)を導入し、この値が1.5以下である場合には、母材部あるいは熱影響部いずれも、Wが請求項1に記載の値以上に析出しないことを実験的に確認し、本発明に具備すべき条件とした。Wの偏析度を1.5以下とするための達成手段は熱処理、高温での加工など手段を問わない。図3は、上記偏析度と0℃における母材靭性(シャルピー吸収エネルギー)の関係を示した。偏析度が1.5を超える場合ではWの析出割合が母材において全て10%を超えていることを別途定電位電解抽出残渣の湿式化学分析で確認した。偏析度1.5超では母材靭性は47Jに達することはない。   It is easy to analyze such microsegregation, and it is generally possible today to create an X-ray intensity distribution map under observation with an electron microscope using a characteristic X-ray analyzer equipped with an image processing apparatus. Therefore, it is possible to reduce a partial variation in the W concentration by reducing the amount of segregation, for example, by performing homogenization annealing in the steel material manufacturing process. In the present invention, excessive addition of W induces the precipitation, so the addition amount is limited to a maximum of 1.0%. In this case, the W precipitation ratio described in claim 1 is used as an intermetallic compound or carbide. As a condition for not exceeding, it is possible to quantitatively confirm that the segregation of W is reduced by measurement using the characteristic X-ray analyzer, and to maintain the quality of the steel material. Here, as an index for quantitative determination, the degree of segregation = (maximum value of segregation W concentration analysis value in steel by characteristic X-ray measurement) / (W addition amount) is introduced, and this value is 1.5 or less. In this case, it was experimentally confirmed that W did not precipitate more than the value described in claim 1 in either the base material part or the heat-affected part, and it was set as a condition to be included in the present invention. The achievement means for setting the segregation degree of W to 1.5 or less may be any means such as heat treatment or high-temperature processing. FIG. 3 shows the relationship between the segregation degree and the base material toughness (Charpy absorbed energy) at 0 ° C. When the segregation degree exceeded 1.5, it was confirmed by wet chemical analysis of the potentiostatic electrolytic extraction residue that the W precipitation ratio exceeded 10% in the base material. When the segregation degree exceeds 1.5, the base metal toughness does not reach 47J.

なお、本発明においては製鋼工程での制約は特にない。通常の高炉−転炉−二次精錬などの高炉一貫製造工程を経て連続鋳造、インゴット鋳造などでスラブまたはインゴットを得ても良く、また電気炉あるいは他の熱源を利用した還元溶融炉によってスクラップを原料としてインゴットを得ることも可能である。スラブあるいはインゴットはさらに、再加熱の後に均質加熱処理を施して偏析を軽減し、続いて熱間圧延あるいは熱間鍛造して鋼板や棒鋼、鋼管、線材とすることが可能であって、本発明を構造材料として利用する上で有効であり、発明の効果を全く妨げない。造塊までの工程で使用する耐火物や雰囲気などにも通常の製鉄工程が適用可能で、特殊な装置、プロセスの導入が必要ではない。最終製品である鋼の特性として清浄度、あるいは結集粒径などが制御されている必要がある場合には、溶解法としてESR法やプラズマ溶解、さらには一方向凝固法、帯状溶融精錬法すなわちゾーンメルティングなども適用できて、本発明の効果に何ら支障を及ぼさない。また、インゴットあるいはスラブ等の中間製品でのサイズあるいは重量にも制限が無く、数百トン〜グラム単位での製造も可能である。   In the present invention, there are no particular restrictions on the steel making process. Slabs or ingots may be obtained by continuous casting, ingot casting, etc. through an integrated blast furnace integrated process such as normal blast furnace-converter-secondary refining, and scrap is produced by a reduction melting furnace using an electric furnace or other heat source. It is also possible to obtain an ingot as a raw material. The slab or ingot can be further subjected to homogeneous heating treatment after reheating to reduce segregation, and then hot rolled or hot forged to form a steel plate, steel bar, steel pipe, wire, and the present invention. Is effective as a structural material, and does not hinder the effects of the invention. Ordinary iron making processes can be applied to refractories and atmospheres used in the process up to ingot making, and it is not necessary to introduce special equipment or processes. When it is necessary to control the cleanliness or the aggregated particle size as the characteristics of the steel that is the final product, the ESR method, plasma melting, unidirectional solidification method, strip melting refining method, ie zone Melting or the like can also be applied and does not hinder the effects of the present invention. Moreover, there is no restriction | limiting also in the size or weight in intermediate products, such as an ingot or a slab, and manufacture in a unit of several hundred tons to a gram is also possible.

ただし、鋼中の析出W量制御には最大の注意が必要で、偏析度を1.5以下とし、さらに熱間圧延または鍛造等の熱間加工後の冷却工程で、または、焼準、焼戻、焼鈍等の熱処理後の冷却工程で、400〜700℃の温度範囲で不連続であっても30時間を超える保持は本発明の効果が十分に発揮できない場合があるため、これを適用できない。   However, utmost care is required to control the amount of precipitated W in steel, and the segregation degree is set to 1.5 or less, and in the cooling process after hot working such as hot rolling or forging, or normalization, Even if it is discontinuous in the temperature range of 400 to 700 ° C. in the cooling step after heat treatment such as reversion and annealing, holding for more than 30 hours may not be effective because the effects of the present invention may not be sufficiently exerted. .

本発明の高張力鋼は、上述のとおり入熱の大きい溶接を用いた場合でも継ぎ手の靭性と強度が高い構造物を製造することができるので、大入熱溶接用、特に入熱が5万J/cmを超える大入熱溶接用として用いると好ましい。   The high-tensile steel of the present invention can produce a structure with high joint toughness and strength even when welding with high heat input is used as described above. It is preferable to use for high heat input welding exceeding J / cm.

請求項1〜10に記載の鋼を、通常の高炉−転炉−二次精錬−連続鋳造−熱間圧延−熱処理工程を経て、厚み6〜120mmの鋼板とし、あるいは別途電気炉熔解−二次精錬−インゴット鋳造−熱間鍛造−熱間圧延−熱処理工程を経て同様に鋼板試験片を作成した。鋼塊重量は2tonから300ton、鋼板は6〜12m長、2〜4m幅で1.8〜12tonの重量となった。図4は試験片の採取要領を示す図である。鋼板試験片としての鋼板1から、鋼板幅方向中心部において、板厚1/4t位置5、および板厚1/2t位置4より、JIS Z 2201に規定された4号衝撃試験片2mmV溝付き2、JIS Z 2201に規定された4号引張り試験片3などの各種試験片を採取し、鋼板特性の代表値とした。   The steel according to claim 1 to 10 through a normal blast furnace-converter-secondary refining-continuous casting-hot rolling-heat treatment process, or a steel plate having a thickness of 6-120 mm, or separately melted in an electric furnace-secondary Steel plate test pieces were similarly prepared through refining, ingot casting, hot forging, hot rolling, and heat treatment steps. The steel ingot weight was from 2 ton to 300 ton, the steel plate was 6 to 12 m long and 2 to 4 m wide and the weight was 1.8 to 12 ton. FIG. 4 is a diagram showing a sampling procedure of the test piece. From steel plate 1 as a steel plate test piece, No. 4 impact test piece 2 mmV grooved 2 specified in JIS Z 2201 from plate thickness 1 / 4t position 5 and plate thickness 1 / 2t position 4 at the center in the width direction of the steel plate. Various test pieces such as No. 4 tensile test piece 3 defined in JIS Z 2201 were collected and used as representative values of steel plate characteristics.

試作鋼板には種々の熱処理を施した。熱間圧延ままのもの、および焼き戻し処理をAc1点以下で実施するもの、焼き入れ焼き戻し処理を実施するもの、焼準処理を実施するもの、焼き戻しを複数回実施するもの、焼き戻しの後にさらに冷間加工を実施し、加えて応力除去焼鈍を実施したものについても評価した。   Various heat treatments were applied to the prototype steel sheet. Those that are hot-rolled, those that are subjected to tempering treatment at an Ac1 point or less, those that carry out quenching and tempering treatments, those that carry out normalizing treatment, those that carry out tempering a plurality of times, tempering Further, cold working was performed later, and stress relief annealing was also evaluated.

評価は前記の方法で採取したJIS Z 2201に規定された4号引張り試験片で引張り特性を、同じく2mmVノッチつき4号衝撃試験片でシャルピー吸収エネルギー遷移曲線を採取し、さらに金属組織を圧延方向と平行な断面で光学顕微鏡にて組織現出腐食を施した後に観察した。また、Wの偏析度は、鋼板の1/2板厚位置で鋼板の幅方向に、集束ビーム径10μmのEPMA(Electron Probe Micro Analyzer)にて線分析し、最高濃度値を測定し、添加W量との比を計算して評価した。さらに、製造工程の熱処理における400〜700℃の保持または通過時間を積算して記録した。また、材料中に存在するW化合物は、有機酸を用いた基材の定電位電解で残渣を抽出し、そのX線回折により存在形態を、また湿式分析によりW量を分析し、化学量論比に基づいて析出量を計算した。   Evaluation was made by using the No. 4 tensile test piece specified in JIS Z 2201 collected by the above-mentioned method, the same as the No. 4 impact test piece with 2 mmV notch, and the Charpy absorption energy transition curve. It was observed after performing the structure appearing corrosion with an optical microscope in a cross section parallel to the surface. In addition, the segregation degree of W was determined by performing line analysis with an EPMA (Electron Probe Micro Analyzer) having a focused beam diameter of 10 μm in the width direction of the steel sheet at the 1/2 thickness position of the steel sheet, measuring the maximum concentration value, and adding W The ratio with the amount was calculated and evaluated. Furthermore, the holding or passing time at 400 to 700 ° C. in the heat treatment in the production process was integrated and recorded. In addition, the W compound present in the material is extracted from the residue by constant-potential electrolysis of the base material using an organic acid, the presence form is analyzed by X-ray diffraction, and the amount of W is analyzed by wet analysis. The amount of precipitation was calculated based on the ratio.

表1、表2には本発明鋼の化学成分、引張り強さ、母材中の析出W量が添加W量に占める割合(母材部W析出割合)、10万J/cmの溶接入熱でV開先を溶接した場合の溶接熱影響部における析出W量が添加W量に占める割合(溶接熱影響部W析出割合)、金属間化合物Fe2W型Laves相が析出W量として添加W量に占める割合、さらには上記方法で測定したW偏析度を示した。ここで、溶接熱影響部とは、溶接時に鋼材のAc1点以上にさらされる熱影響部を意味する。また、Fe2W析出制御パラメータLP値、加えて0℃における母材と溶接ボンドの吸収エネルギーを示した。本発明鋼を構造用鋼として考えた場合に、最低限度必要な靭性値として、0℃の吸収エネルギーは47J以上が必要である場合が通常、多いため、これをしきい値として評価に用いた。すなわち、47J以下の吸収エネルギーを発揮できない材料は、本発明鋼の目的を達していないと判断した。また、既に述べたごとく、引張り強さを向上させるWの効果は、材料強度にかかわらず発揮されるが、特に強度を向上させたい材料で工業的に有意であることは言うまでもない。従って、高張力鋼に使用される場合を想定して、これにもしきい値を設け、先述の550MPa以上を発揮する材料であることが本発明鋼の条件とした。すなわち、本発明鋼は550MPa以上の強度を有するとともに、Wを含有して0℃における吸収エネルギーが47J以上の材料特性を有する鋼に限られる。 Tables 1 and 2 show the ratio of the chemical composition, tensile strength, and amount of precipitated W in the base metal to the amount of added W (base metal W precipitation ratio) of 100,000 J / cm. The ratio of the precipitation W amount in the weld heat-affected zone to the amount of added W when welding the V groove at (welding heat-affected zone W precipitation ratio), the intermetallic compound Fe 2 W type Laves phase added as the precipitation W amount W The ratio to the amount and the W segregation degree measured by the above method are shown. Here, the welding heat-affected zone means a heat-affected zone that is exposed to at least the Ac1 point of the steel material during welding. In addition, the Fe 2 W precipitation control parameter LP value and the absorbed energy of the base material and the weld bond at 0 ° C. are shown. When considering the steel of the present invention as structural steel, the minimum required toughness value is usually required to be 47 J or more as the absorbed energy at 0 ° C. Therefore, this was used for evaluation as a threshold value. . That is, it was judged that a material that could not exhibit absorbed energy of 47 J or less did not achieve the purpose of the steel of the present invention. As described above, the effect of W for improving the tensile strength is exhibited regardless of the material strength, but it goes without saying that the material is particularly industrially significant for a material whose strength is to be improved. Therefore, assuming the case where it is used for high-tensile steel, a threshold value is also provided for this, and the material of the present invention is a material that exhibits the above-mentioned 550 MPa or more. That is, the steel of the present invention is limited to steel having strength of 550 MPa or more and containing W and having material characteristics of absorbed energy at 0 ° C. of 47 J or more.

Figure 0004012497
Figure 0004012497

Figure 0004012497
Figure 0004012497

表3、表4には、比較鋼の評価結果を示した。第50番鋼はCが上限値0.05を大きく超えたため、添加Wが一部(W、Mo、V)Cとして析出し、母材および溶接熱影響部の靭性が劣化した例、第51番鋼はSiを過剰に添加したため、鋼材そのものが脆化して靭性を確保できなかった例、第52番鋼は添加W量が少なく、室温引張り強さを550MPa確保できなかった例、第53番鋼は添加W量が1.0%を超えて過剰であり、母材中のW析出量は添加量の10.0%を超えてしまったため、金属間化合物Laves相が組織の粒界に析出し、材料が脆化するとともに、粒界近傍の固溶Wが減少し、かえって強度も低下した例、第54〜57番鋼は、選択元素であるNb、V、Ti、Zrがいずれも上限値を超えて添加されたため、全て炭窒化物の過剰析出が生じて脆化し、靭性が低下した例、第58番鋼はBを過剰に添加したため、粒界脆化と硼化物の粗大析出が認められ、この結果材料が脆化した例、第59番鋼は本発明の請求項記載の各化学成分範囲からの個々の元素添加量に関する逸脱はないものの、LP値で規定したFe2W型Laves相の析出を促進するパラメータが2.5を超え、結果として靭性の劣化が生じた例、第60番鋼は製造工程において400〜700℃の温度範囲に保持された時間の総和が30時間を超えたため、同様に金属間化合物Laves相の析出が増加し、材料が脆化した例、第61番鋼はWの偏析度が1.5を超えてしまったために、W析出の多い部位が局所的に生じて材料が脆化した例である。 Tables 3 and 4 show the evaluation results of the comparative steels. In No. 50 steel, since C greatly exceeded the upper limit of 0.05, the added W was partially precipitated (W, Mo, V) C, and the toughness of the base metal and the weld heat-affected zone deteriorated. No. 53 was an example in which the steel itself was brittle and the toughness could not be secured due to the addition of Si, No. 52 was an example in which the amount of added W was small and the tensile strength at room temperature could not be ensured at 550 MPa, No. 53 The amount of added W exceeds 1.0% in steel, and the amount of precipitated W in the base metal exceeds 10.0% of the added amount, so the intermetallic compound Laves phase precipitates at the grain boundaries of the structure. However, as the material becomes brittle, the solid solution W in the vicinity of the grain boundary decreases, and the strength also decreases. In the Nos. 54 to 57 steels, Nb, V, Ti, and Zr, which are selective elements, all have upper limits. Since it was added in excess of the value, all carbonitrides were excessively precipitated and became brittle and tough. In the reduced example, No. 58 steel added excessive B, grain boundary embrittlement and coarse precipitation of borides were observed. As a result, the material became brittle, No. 59 steel is claimed in the claims of the present invention. Although there is no deviation regarding the amount of each element added from each chemical component range, the parameter that promotes precipitation of the Fe 2 W-type Laves phase defined by the LP value exceeds 2.5, resulting in deterioration of toughness. Example, No. 60 steel is an example in which the sum of the time kept in the temperature range of 400 to 700 ° C. in the manufacturing process exceeds 30 hours, so that the precipitation of the intermetallic compound Laves phase similarly increases and the material becomes brittle. No. 61 steel is an example in which the segregation degree of W has exceeded 1.5, and therefore, a portion with a large amount of W precipitation locally occurs and the material becomes brittle.

Figure 0004012497
Figure 0004012497

Figure 0004012497
Figure 0004012497

LP値とLaves相析出量の関係を示す図である。It is a figure which shows the relationship between LP value and the amount of Laves phase precipitation. 溶接熱影響部中のW析出割合と0℃における靭性の関係を示す図である。It is a figure which shows the relationship between the W precipitation rate in a welding heat affected zone, and the toughness in 0 degreeC. Wの鋼中偏析度と0℃における母材の靭性の関係を示す図である。It is a figure which shows the relationship between the segregation degree of W in steel, and the toughness of the base material in 0 degreeC. 試験片採取要領を示す図である。It is a figure which shows the test piece collection point.

符号の説明Explanation of symbols

1 鋼板
2 JIS Z 2201に規定された4号衝撃試験片2mmV溝付き
3 JIS Z 2201に規定された4号引張り試験片
4 板厚1/2t位置
5 板厚1/4t位置
6 鋼板の圧延方向
DESCRIPTION OF SYMBOLS 1 Steel plate 2 No. 4 impact test piece specified by JIS Z 2201 with 2 mm V groove 3 No. 4 tensile test piece specified by JIS Z 2201 4 Plate thickness 1/2 t position 5 Plate thickness 1/4 t position 6 Rolling direction of steel plate

Claims (8)

質量%で、
C :0.001〜0.05%、
Si:0.01〜0.50%、
Mn:0.10〜3.0%、
W :0.10〜1.0%
を含有し、さらに、
P≦0.03%
S≦0.02%、
O≦0.01%
に制限し、
Nb:0.005〜0.017%、
V :0.005〜0.045%、
Ti:0.005〜0.041%、
Zr:0.005〜0.1%
の1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる鋼組成を有し、溶接時に鋼材のAc1点以上にさらされる熱影響部において析出W量が添加W量の1%以下であり、同時に熱影響部以外の母材において析出W量が添加W量の10%以下であり、さらに、次式で示されるLP値が、Wを含有する金属間化合物Laves相の析出抑制のために2.5以下であることを特徴とする、引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
LP=3×(%Si)+(%W)+2×(%Cr)+0.5×(%Mo)
% By mass
C: 0.001 to 0.05%,
Si: 0.01 to 0.50%,
Mn: 0.10 to 3.0%,
W: 0.10 to 1.0%
In addition,
P ≦ 0.03%
S ≦ 0.02%,
O ≦ 0.01%
Limited to
Nb: 0.005 to 0.017%,
V: 0.005-0.045%,
Ti: 0.005 to 0.041%,
Zr: 0.005 to 0.1%
The amount of precipitation W is 1% of the amount of added W in the heat-affected zone exposed to at least the Ac1 point of the steel during welding, with the steel composition comprising one or more of the following, the balance being Fe and inevitable impurities At the same time, the amount of precipitated W in the base material other than the heat-affected zone is 10% or less of the amount of added W, and the LP value represented by the following formula is the suppression of precipitation of the intermetallic compound Laves phase containing W Therefore, a high-tensile steel excellent in weld heat-affected zone toughness having a tensile strength of 550 MPa or more, characterized by being 2.5 or less.
LP = 3 × (% Si) + (% W) + 2 × (% Cr) + 0.5 × (% Mo)
さらに、質量%で
Mo:0.01〜1.0%含有することを特徴とする、請求項1に記載の引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
Furthermore, in mass% ,
Mo: 0.01-1.0% is contained, The high strength steel excellent in the weld heat affected zone toughness of the tensile strength 550 Mpa or more of Claim 1 characterized by the above-mentioned.
さらに、質量%で、
Ni:0.01〜5.0%、
Cu:0.01〜1.0%
Cr:0.10〜1.0%
B :0.0003〜0.005%
の1種または2種以上を含有することを特徴とする、請求項1または請求項2に記載の引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
Furthermore, in mass%,
Ni: 0.01 to 5.0%,
Cu: 0.01~1.0%,
Cr: 0.10 to 1.0%
B: 0.0003 to 0.005%
The high-strength steel excellent in weld heat-affected zone toughness with a tensile strength of 550 MPa or more according to claim 1 or 2, characterized by containing one or more of the following.
さらに、質量%で、
Ca:0.0003〜0.005%、
Mg:0.0003〜0.005%、
Ba:0.0003〜0.005%、
Y :0.0005〜0.10%、
Ce:0.0005〜0.10%、
La:0.0005〜0.10%
の1種または2種以上を含有することを特徴とする、請求項1ないし請求項3のいずれか1項に記載の引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
Furthermore, in mass%,
Ca: 0.0003 to 0.005%,
Mg: 0.0003 to 0.005%,
Ba: 0.0003 to 0.005%,
Y: 0.0005 to 0.10%,
Ce: 0.0005 to 0.10%,
La: 0.0005 to 0.10%
The high-tensile steel excellent in weld heat-affected zone toughness having a tensile strength of 550 MPa or more according to any one of claims 1 to 3, characterized by containing one or more of the following.
さらに、質量%で、
Al:0.002〜0.20%、
Ta:0.002〜0.20%
1種または2種含有することを特徴とする、請求項1ないし請求項4のいずれか1項に記載の引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。
Furthermore, in mass%,
Al: 0.002 to 0.20%,
Ta: 0.002 to 0.20%
The high-strength steel excellent in weld heat-affected zone toughness having a tensile strength of 550 MPa or more according to any one of claims 1 to 4, characterized by containing one or two of the following.
溶接時に鋼材のAc1点以上にさらされる熱影響部において金属間化合物Fe2W型Laves相の割合が析出W量として添加W量に対して1%以下であることを特徴とする、請求項1ないし請求項5のいずれか1項に記載の引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。 The ratio of the intermetallic compound Fe 2 W type Laves phase in the heat-affected zone exposed to at least the Ac1 point of the steel during welding is 1% or less as the amount of precipitated W with respect to the amount of added W. The high-tensile steel excellent in weld heat-affected zone toughness having a tensile strength of 550 MPa or more according to any one of claims 5 to 6. 特性X線測定による鋼材中の偏析W濃度分析値の最高値を、W添加量で除したWの偏析度が、1.5以下であることを特徴とする、請求項1ないし請求項6のいずれか1項に記載の引張り強さ550MPa以上の溶接熱影響部靭性に優れた高張力鋼。   The segregation degree of W obtained by dividing the maximum value of the segregated W concentration analysis value in the steel material by characteristic X-ray measurement by the amount of addition of W is 1.5 or less. A high-tensile steel excellent in weld heat-affected zone toughness having a tensile strength of 550 MPa or more according to any one of the items. 請求項1ないし請求項7のいずれか1項に記載の鋼組成を有する鋼を、熱間圧延または鍛造等の熱間加工後の冷却工程で、または、焼準、焼戻、焼鈍等の熱処理後の冷却工程で、400〜700℃の温度域での保時時間もしくは通過時間を30時間以内に制限することを特徴とする、溶接時に鋼材のAc1点以上にさらされる熱影響部において析出W量が添加W量の1%以下であり、同時に熱影響部以外の母材において析出W量が添加W量の10%以下であり、さらに、次式で示されるLP値が、Wを含有する金属間化合物Laves相の析出抑制のために2.5以下となる、引張り強さ550MPa以上の溶接熱影響部靱性に優れた高張力鋼の製造方法。
LP=3×(%Si)+(%W)+2×(%Cr)+0.5×(%Mo)
A steel having the steel composition according to any one of claims 1 to 7 is subjected to a cooling step after hot working such as hot rolling or forging, or heat treatment such as normalizing, tempering, annealing, etc. In the subsequent cooling step, the retention time or the passage time in the temperature range of 400 to 700 ° C. is limited to 30 hours or less, and the precipitation W in the heat affected zone exposed to the Ac1 point or more of the steel material during welding is characterized. The amount is 1% or less of the added W amount, and at the same time, the amount of precipitated W in the base material other than the heat-affected zone is 10% or less of the added W amount, and the LP value represented by the following formula contains W. A method for producing high-strength steel excellent in weld heat-affected zone toughness with a tensile strength of 550 MPa or more, which is 2.5 or less in order to suppress precipitation of the intermetallic compound Laves phase.
LP = 3 × (% Si) + (% W) + 2 × (% Cr) + 0.5 × (% Mo)
JP2003376820A 2003-11-06 2003-11-06 High strength steel with excellent weld heat affected zone toughness and method for producing the same Expired - Fee Related JP4012497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376820A JP4012497B2 (en) 2003-11-06 2003-11-06 High strength steel with excellent weld heat affected zone toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376820A JP4012497B2 (en) 2003-11-06 2003-11-06 High strength steel with excellent weld heat affected zone toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005139509A JP2005139509A (en) 2005-06-02
JP4012497B2 true JP4012497B2 (en) 2007-11-21

Family

ID=34687749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376820A Expired - Fee Related JP4012497B2 (en) 2003-11-06 2003-11-06 High strength steel with excellent weld heat affected zone toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP4012497B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119595B2 (en) * 2005-07-15 2013-01-16 Jfeスチール株式会社 Corrosion resistant steel for shipbuilding
JP5413392B2 (en) * 2005-07-15 2014-02-12 Jfeスチール株式会社 Corrosion resistant steel for shipbuilding
JP5216199B2 (en) * 2005-08-08 2013-06-19 株式会社神戸製鋼所 Marine welded joints and welded structures with excellent crevice corrosion resistance
JP4525687B2 (en) * 2006-02-27 2010-08-18 Jfeスチール株式会社 Corrosion resistant steel for ships
CN102319747A (en) * 2011-08-26 2012-01-18 昆明理工大学 Surface native high-temperature wear-resistance phase composite high-temperature steel milling machine foreplate

Also Published As

Publication number Publication date
JP2005139509A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP5928654B2 (en) Thick and high toughness high strength steel sheet and method for producing the same
US10443110B2 (en) High toughness and high tensile strength thick steel plate and production method therefor
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP5267048B2 (en) Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction
JP6225997B2 (en) H-section steel and its manufacturing method
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
KR20190134704A (en) High Mn steel and its manufacturing method
JP5768595B2 (en) Method for producing refractory steel
CN111433381A (en) High Mn steel and method for producing same
CN104364405A (en) Ultrahigh-tensile-strength steel plate for welding
JP4358707B2 (en) High-tensile steel material having excellent weldability and toughness and tensile strength of 550 MPa class or higher and method for producing the same
CN111788325B (en) High Mn steel and method for producing same
JP4718866B2 (en) High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP6665658B2 (en) High strength steel plate
CN102933732B (en) The excellent structure stainless steel plate of corrosion resistance at welded part and its manufacture method
JP7469714B2 (en) Steel
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JP2007284712A (en) Manufacturing method of thick high strength steel plate with excellent toughness and thick high strength steel plate with excellent toughness
JP4012497B2 (en) High strength steel with excellent weld heat affected zone toughness and method for producing the same
JP2013072118A (en) Steel excellent in high-temperature strength and method for production thereof
CN115287530A (en) High-welding-performance 700 MPa-grade rare earth high-strength structural steel and production method thereof
WO2022145066A1 (en) Steel material
JP2003342670A (en) Non-tempered high strength steel with excellent toughness
JP5223295B2 (en) Refractory H-shaped steel with excellent reheat embrittlement resistance and method for producing the same
JP4464867B2 (en) High tensile strength steel material having a tensile strength of 700 MPa or more that has both weldability and toughness, and a method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070907

R151 Written notification of patent or utility model registration

Ref document number: 4012497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees