JPH0283924A - Method for microwave plasma treatment - Google Patents
Method for microwave plasma treatmentInfo
- Publication number
- JPH0283924A JPH0283924A JP23504688A JP23504688A JPH0283924A JP H0283924 A JPH0283924 A JP H0283924A JP 23504688 A JP23504688 A JP 23504688A JP 23504688 A JP23504688 A JP 23504688A JP H0283924 A JPH0283924 A JP H0283924A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- microwave
- plasma processing
- processing method
- microwave plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000009832 plasma treatment Methods 0.000 title claims 7
- 239000000758 substrate Substances 0.000 claims abstract description 103
- 238000005530 etching Methods 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims description 33
- 150000002500 ions Chemical class 0.000 claims description 30
- 238000003672 processing method Methods 0.000 claims description 16
- 230000005684 electric field Effects 0.000 claims description 8
- 230000003993 interaction Effects 0.000 claims description 7
- 239000012495 reaction gas Substances 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 230000004907 flux Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 238000005513 bias potential Methods 0.000 abstract description 18
- 230000001965 increasing effect Effects 0.000 abstract description 14
- 238000010586 diagram Methods 0.000 description 8
- 230000001939 inductive effect Effects 0.000 description 8
- 230000006698 induction Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマ処理方法及び装置に係り。[Detailed description of the invention] [Industrial application field] The present invention relates to a plasma processing method and apparatus.
特に、電子サイクロトロン共鳴(ECR)を利用し、イ
オンを発生させ、主に基板に到達する該イオンにより基
板をプラズマ処理する上で、処理の高効率化及び装置の
小型化を図る上に好適なマイクロ波プラズマ処理方法及
び装置に関する。In particular, it is suitable for achieving high processing efficiency and miniaturization of equipment when plasma processing a substrate using electron cyclotron resonance (ECR) to generate ions and mainly using the ions that reach the substrate. The present invention relates to a microwave plasma processing method and apparatus.
従来のマイクロ波プラズマ処理において、イオン処理の
効率を上げる方法として、特開昭55−141729号
に記載のように、プラズマ源出口にグリッドに設置した
装置や、特開昭56−13480号に記載のように基板
に高周波を印加する装置があった。In conventional microwave plasma processing, methods for increasing the efficiency of ion processing include a device installed on a grid at the plasma source exit as described in JP-A-55-141729, and a device as described in JP-A-56-13480. There was a device that applied high frequency waves to the substrate.
上記従来技術は、印加磁界と導入マイクロ波の相互作用
場、及び装置の排気方向と基板の位置関係について配慮
されておらず、被処理基板が、装置中心軸に垂直な位置
関係にあり、該基板を処理するために装置内径を大きく
する必要があった。The above conventional technology does not take into consideration the interaction field between the applied magnetic field and the introduced microwave, and the positional relationship between the exhaust direction of the device and the substrate, and the substrate to be processed is located perpendicular to the central axis of the device. In order to process the substrate, it was necessary to increase the inner diameter of the device.
この結果、装置の大型化を招くといった問題や、大口径
の基板や複数枚の基板の同時処理はできないという問題
があった。また、グリッドに負電位、あるいは基板に高
周波を印加して基板に負のバイアス電位を誘起してイオ
ン処理の効率向上を図る方法では、グリッドと基板、あ
るいは基板とアース電位となる装置内壁の間に局所放電
が発生し、基板が著しく損傷を招くため、イオン処理の
効率向上には限度があるといった問題があった。As a result, there are problems in that the size of the apparatus is increased and that it is not possible to simultaneously process large-diameter substrates or a plurality of substrates. In addition, in methods that aim to improve the efficiency of ion processing by applying a negative potential to the grid or a high frequency to the substrate to induce a negative bias potential in the substrate, it is necessary to There is a problem in that there is a limit to the efficiency improvement of ion processing because local discharge occurs and causes significant damage to the substrate.
本発明の目的は、上記不都合を解決することにある。An object of the present invention is to solve the above-mentioned disadvantages.
上記目的の1つである、装置の大型化を必要とせずに複
数枚の基板を同一処理する方法に関しては、真空容器内
の排気方向に平行に基板を設置し。Regarding one of the above objects, a method of processing a plurality of substrates at the same time without requiring an increase in the size of the apparatus, the substrates are placed in a vacuum container parallel to the exhaust direction.
プラズマを生成するために導入するマイクロ波は基板面
に平行に導入し、かつ、ECR励起するために印加する
磁力線は、プラズマ中のイオンが基板側に効率良く入射
するように、基板面に垂直方向にすることで達成される
。イオン処理を効率良く行なうための方法に関しては、
基板面と平行に位置させた、1対の平行電極、すなわち
、基板側にバイアス電位を印加する電極とこれに対面し
たアース電位となる電極を設置することにより、あるい
は、基板面と垂直で、マイクロ波の伝播方向に平行な位
置に、1対の平行電極を設置し、この電極の一方に高周
波を印加し、一方をアース電位とした、ことにより達成
される。The microwaves introduced to generate plasma are introduced parallel to the substrate surface, and the magnetic lines of force applied for ECR excitation are perpendicular to the substrate surface so that ions in the plasma are efficiently incident on the substrate side. This is achieved by making the direction. Regarding methods for efficiently performing ion processing,
By installing a pair of parallel electrodes located parallel to the substrate surface, that is, an electrode that applies a bias potential to the substrate side and an electrode facing the electrode that has a ground potential, or perpendicular to the substrate surface, This is achieved by installing a pair of parallel electrodes at positions parallel to the microwave propagation direction, applying a high frequency to one of the electrodes, and setting the other to ground potential.
真空容器内の排気方向に基板を設置するようにすると、
従来方法に比して、著しく排気コンダクタンスを低減さ
せることができ、その結果、排気方向側には排気能力を
高める必要なく、複数枚の基板を同時に設置できる。ま
た、真空容器径を著しく小さくできる。ガスをECR励
起し、プラズマを生成させるためには、該基板面に平行
、すなわち、排気方向に導入し、磁力線は基板面に垂直
に印加する。該磁力線によりイオン流れは基板面に垂直
になる。上記のように基板やマイクロ波の導入方向、磁
力線の方向を位置させると基板面に対面する容器内径ま
での距離を短めることができ、真空容器内の排気能力や
、容器体積を大きくせずとも、大口径の基板や、基板を
同一時に複数枚処理できる。If you install the board in the exhaust direction inside the vacuum container,
Compared to the conventional method, the exhaust conductance can be significantly reduced, and as a result, a plurality of substrates can be installed simultaneously on the exhaust direction side without the need to increase the exhaust capacity. Furthermore, the diameter of the vacuum container can be significantly reduced. In order to excite gas by ECR and generate plasma, it is introduced parallel to the substrate surface, that is, in the exhaust direction, and magnetic lines of force are applied perpendicular to the substrate surface. The magnetic field lines cause the ion flow to be perpendicular to the substrate surface. By positioning the substrate, microwave introduction direction, and magnetic field line direction as described above, the distance to the inner diameter of the container facing the substrate surface can be shortened, without increasing the exhaust capacity inside the vacuum container or increasing the container volume. Both can process large-diameter substrates and multiple substrates at the same time.
上記位置関係において、例えば、基板を設置する容器内
壁の一部、あるいは、電極に電位を印加する場合、基板
面に対面する内壁の一部、あるいは平行電極をアース電
位にすると、画電極面が平行となるため、局所的に電位
が集中せず、このため、印が電位を高めることができ、
イオンの基板到達速度や量を大きくすることができる。In the above positional relationship, for example, when applying a potential to a part of the inner wall of the container where the substrate is installed or to the electrode, if the part of the inner wall facing the substrate surface or the parallel electrode is set to ground potential, the picture electrode surface Because they are parallel, the potential is not concentrated locally, and therefore the mark can increase the potential.
The speed and amount of ions reaching the substrate can be increased.
従ってイオン処理効率が高くなる。Therefore, the ion processing efficiency becomes high.
上記位置関係において、高周波印加及びアース電位とな
る電極の位置のみを、基板面と水垂、マイクロ波の伝播
方向と平行とした、と、高周波電界により生ずる変動接
界と、高周波電界とで生じるり、openな力は、イオ
ンを基板側へ加速する。In the above positional relationship, only the position of the electrode that applies high frequency and has a ground potential is parallel to the substrate surface, the water drop, and the propagation direction of the microwave, and the fluctuating contact field caused by the high frequency electric field and the high frequency electric field The open force accelerates the ions toward the substrate.
この運動は基板側へ印加された磁界と相互作用から誘導
力を生じさらにイオンを加速する(以後これを誘導力と
略す)。このため、上述した位置に高周波印加が電極を
設置すると、イオンの基板到達速度や量を大きくするこ
とができ、イオン処理効率は高くなる。This motion generates an inductive force through interaction with the magnetic field applied to the substrate side, further accelerating the ions (hereinafter this will be abbreviated as an inductive force). Therefore, if a high frequency application electrode is installed at the above-mentioned position, the speed and amount of ions reaching the substrate can be increased, and the ion processing efficiency can be increased.
以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
実施例1.第1図は本発明の一実施例であるプラズマ処
理装置の主要部の模式図であり、第3図と同一符号は同
一または同等部分を表わしている。Example 1. FIG. 1 is a schematic diagram of the main parts of a plasma processing apparatus according to an embodiment of the present invention, and the same reference numerals as in FIG. 3 represent the same or equivalent parts.
本実施例は、基板7をマイクロ波5伝播方向に平行に位
置させたこと、及び、基板が平行平板電極上9に設置し
ている点に特徴がある6真空容器1は、第3図に示した
従来型の装置のプラズマ生成室12と反応室13が一体
化したもので、長さ800[m+]、高さ200[+a
]、奥行き200[m ]のSO3!IIである。真空
容器の体積は第3図に示した装置とほぼ同じであり、排
気口2からの排気能力も同じである。以下に、本発明装
置を用いてφ100[m]のSiウェハ上にAQを8o
O[Im]堆積した後、レジストでバターニングした基
板7を用いて、AQIIIをエツチングした結果を第3
図に示した従来技術のマイクロ波プラズマ処理装置との
比較により説明する。反応ガス供給管3より3塩化ホウ
素、BCQ3を200n Q /In1n ]の速度で
導入し、真空容器1あるいは13は5 [mtorr]
に保たれるように排気した。This embodiment is characterized in that the substrate 7 is positioned parallel to the propagation direction of the microwave 5, and that the substrate is placed on a parallel plate electrode 9.6 The vacuum vessel 1 is shown in FIG. The plasma generation chamber 12 and reaction chamber 13 of the conventional device shown are integrated, and the length is 800 [m+] and the height is 200 [+a].
], SO3 with a depth of 200 [m]! II. The volume of the vacuum container is almost the same as the device shown in FIG. 3, and the exhaust capacity from the exhaust port 2 is also the same. Below, using the apparatus of the present invention, 8o of AQ was deposited on a Si wafer with a diameter of 100 [m].
After O[Im] was deposited, AQIII was etched using the substrate 7 patterned with resist.
This will be explained by comparing it with the conventional microwave plasma processing apparatus shown in the figure. Boron trichloride, BCQ3, was introduced from the reaction gas supply pipe 3 at a rate of 200 n Q /In1n, and the vacuum vessel 1 or 13 was heated at a rate of 5 mtorr.
It was evacuated so that it was maintained at
また、磁界コイル4により基板に磁力線が水垂に位置し
容器内の磁束密度がE CR条件を満たす875 [G
aussl 以上となるような磁界を発生させた。
2.45[GI(z]のマイクロ波5は石英の導入窓6
を通して導入し、バクは300[w]とした。生成した
プラズマ中のイオン流8は、」二記磁力線方向と一致し
て基板へ入射する。この際、イオンの基板入射量及び速
度を大きくするため、基板を設置した電極9には、13
、6 [M117.] の高周波11を200[w
]印加し、バイアス電位を誘起させた。本発明装置にお
いては、基板に対面する位置に、平行平板電極が、従来
装置では、処理室13の内壁がアース電位となっている
。従来装置では、基板による排気コンダクタンスの増大
、及び、排気能力と容器体積の関係から、基板を一枚し
か同一時に設置できないが、本発明装置では。In addition, the magnetic field coil 4 causes the lines of magnetic force to be positioned on the substrate in a water droplet, and the magnetic flux density inside the container satisfies the ECR condition.875 [G
aussl or higher was generated.
2.45[GI(z] microwave 5 is quartz introduction window 6
The water was introduced at 300 [W]. The ion flow 8 in the generated plasma is incident on the substrate in the same direction as the lines of magnetic force. At this time, in order to increase the amount and velocity of ions incident on the substrate, 13
, 6 [M117. ] The high frequency 11 of 200[w
] was applied to induce a bias potential. In the apparatus of the present invention, a parallel plate electrode is provided at a position facing the substrate, whereas in the conventional apparatus, the inner wall of the processing chamber 13 is at ground potential. In the conventional device, only one substrate can be installed at the same time due to the increase in exhaust conductance due to the substrate and the relationship between the exhaust capacity and the volume of the container, but in the device of the present invention.
排気コンダクタンスが小さいので、排気方向に5枚並べ
た基板を同一時に設置、処理できるようになっている。Since the exhaust conductance is small, five boards arranged in the exhaust direction can be installed and processed at the same time.
また、基板間の処理特性の均一化を考慮し、プラズマの
主生成位首となるECR条件を満たす場所は、第2図に
示したように、基板面に平行に位置させた。エツチング
した結果を次に示す、エツチング速度は、表面あつさ計
を用いて。In addition, in consideration of uniformity of processing characteristics among the substrates, the location that satisfies the ECR conditions and serves as the main generation site of plasma is located parallel to the substrate surface, as shown in FIG. The etching results are shown below. The etching speed was measured using a surface roughness meter.
レジストパターンからの寸法シフト量はエツチングした
基板の断面をSEMI側して求めた。従来型装置におい
ては、エツチング速度が200 [止/ll1in]で
基板面内のバラツキは±6[%]、寸法シフト量は、0
.20[μmlであった。一方1本発明装置においては
、エツチング速度220[r+m/win]で基板面内
及び基板間のバラツキは±6[%]1寸法シフト量は、
0.17rμm]であった。これらの結果から、同一時
に基板を5倍処理できるにもかかわらず、エツチング特
性は、速度。The amount of dimensional shift from the resist pattern was determined by looking at the etched cross section of the substrate on the SEMI side. In the conventional equipment, the etching speed is 200 [stops/11 inch], the variation within the substrate surface is ±6 [%], and the amount of dimensional shift is 0.
.. The volume was 20 μml. On the other hand, in the apparatus of the present invention, at an etching speed of 220 [r+m/win], the variation within the substrate plane and between substrates is ±6 [%], and the amount of 1-dimensional shift is:
0.17 rμm]. These results show that although 5 times as many substrates can be processed at the same time, the etching characteristics are still very slow.
異方性を優れていることがわかった。It was found that the anisotropy was excellent.
次に寸法シフ1〜量を低減する、すなわち異方性を強く
するため、基板に印加する高周波11のパワを増加させ
た。従来装置では、印がパワかaso[w]以上では、
基板あるいは電極9と装置内壁との間に局所放電が発生
し、基板は著しく損傷した。一方5本発明装置では、1
000[w]以上印加しても局所放電は発生しなかった
。この時のエツチング速度は、300 [nm/m1n
l 、寸法シフト量は0.10[μm] だった。この
結果かられかるように、基板を設置した電極にiV行に
アース電位となる平板電極をyJ置したl(により、基
板にバイアス電位が安定して印加でき、その結果、エツ
チングの速度及び異方性が強まることがわかった。Next, in order to reduce the amount of dimensional shift 1, that is, to strengthen the anisotropy, the power of the high frequency wave 11 applied to the substrate was increased. With conventional equipment, if the mark is above power or aso [w],
A local discharge occurred between the substrate or electrode 9 and the inner wall of the device, and the substrate was significantly damaged. On the other hand, in the device of the present invention, 1
No local discharge occurred even when the voltage was applied at 000 [W] or more. The etching rate at this time was 300 [nm/m1n
l, and the dimensional shift amount was 0.10 [μm]. As can be seen from this result, by placing a flat plate electrode with a ground potential in the iV row on the electrode on which the substrate is installed, a bias potential can be stably applied to the substrate, and as a result, the etching speed and variation can be improved. It was found that the orientation was strengthened.
実施例2.エツチング速度及び異方性を高めるため、基
板に入射するイオンを基板に印加されるバイアス電位を
利用するのではなく、磁界の高周波電界の誘導力を利用
して、基板へ入射するイオンの速度及び量を増加させる
方法を検討した。第4図(a)は、上記方法を達成する
ための本発明の装置の正面図、第4図(b)は側面図を
示す。Example 2. In order to increase the etching rate and anisotropy, instead of using a bias potential applied to the substrate to increase the speed and anisotropy of the ions incident on the substrate, the induction force of a high-frequency electric field of a magnetic field is used to increase the speed and anisotropy of the ions incident on the substrate. We considered ways to increase the amount. FIG. 4(a) shows a front view and FIG. 4(b) a side view of the apparatus of the invention for achieving the above method.
第1図に示した装置との違いは、高周波印加電極10’
、11’ を基板面に対し垂直方向にしたことにある
他は同一である。エツチングの条件等は実施例1と同じ
くした。第5図及び第6図は、印加高周波パワに対する
エツチング速度と寸法シフト量を示す、実線Aは実施例
7に示したように、バイアス電位を利用した時、破線B
は誘導力を利用した時を示す。これらの結果から、バイ
アス電位よりは誘導力を用いた方が、エツチング速度は
大きく、かつ異方性も強いことがわかる。すなわち、磁
界と高周波電界の相互作用を利用するとイオン処理効率
が高くなることがわかった。The difference from the device shown in FIG. 1 is that the high frequency application electrode 10'
, 11' are the same except that they are oriented perpendicularly to the substrate surface. The etching conditions were the same as in Example 1. 5 and 6 show the etching speed and the amount of dimensional shift with respect to the applied high-frequency power. The solid line A shows the etching rate when a bias potential is used as shown in Example 7, and the broken line B
indicates when the induction force is used. These results show that the etching rate is higher and the anisotropy is stronger when the inductive force is used rather than the bias potential. In other words, it was found that ion processing efficiency can be increased by utilizing the interaction between a magnetic field and a high-frequency electric field.
実施例3.100φ[=111]のSiウェハ上に熱酸
化膜を形成した基板7を用い1反応ガスとしてアルゴン
、Arを200 [w Q /min]の速度で反応ガ
ス供給管3を通して導入し、第1図に示したバイアス電
位を利用する方法のものと、第4図(a)、(b)に示
した誘導力を利用する方法の装置をそれぞれ用いて、5
iOz膜のスパッタを行なった。スパッタ量は、エリプ
ソメータより求めた結果を横軸に高周波印加パワと取り
第7図に示す。この結果からスパッタにおいても、誘導
力を用いた方法の方が効率が良いことがわかった。Example 3 Using a substrate 7 on which a thermal oxide film was formed on a Si wafer of 100φ [=111], argon and Ar were introduced as one reaction gas through the reaction gas supply pipe 3 at a rate of 200 [w Q /min]. , using the device using the bias potential shown in FIG. 1 and the device using the inductive force shown in FIGS. 4(a) and (b), respectively.
An iOz film was sputtered. The amount of sputtering is shown in FIG. 7, with the results obtained using an ellipsometer and the high frequency applied power plotted on the horizontal axis. These results show that the method using inductive force is more efficient in sputtering as well.
実施例4.100φ[011]のSiウェハ」二に熱酸
化膜を形成し、その上に多結晶シリコン膜を300 [
nml堆積させた基板7を用い、反応ガスとしてホスフ
ィン、PH3を10 [w Q /ll1inlの速度
で反応ガス供給管3を通して導入し、第1図に示したバ
イアス電位を利用する方法のものと、第4図(a)、(
b)に示した誘導力を利用する方法の装置をそれぞれ用
いて、リンの多結晶シリコン震への20[分]ドーピン
グを行なった。この際、印加した高周波パワは500[
w]とした。Example 4: A thermal oxide film was formed on a 100φ [011] Si wafer, and a polycrystalline silicon film was placed on top of it.
A method in which phosphine, PH3, is introduced as a reaction gas through a reaction gas supply pipe 3 at a rate of 10 [w Q /ll1inl, and the bias potential shown in FIG. Figure 4(a), (
Doping of polycrystalline silicon with phosphorus was carried out for 20 minutes using each of the devices of the method using the induction force shown in b). At this time, the applied high frequency power was 500 [
w].
結果を縦軸にリン濃度のプロファイルを、横軸に深さ方
向の距離を取って第8図に示す。この結果を見てわかる
ように、vI誘導力利用した方が、ドーピング効率が高
いことがわかる。もちろん、第3図に示した従来型より
は、安定に著しく効率良く基板へのドーピングがなされ
る。The results are shown in FIG. 8, with the phosphorus concentration profile plotted on the vertical axis and the distance in the depth direction plotted on the horizontal axis. As can be seen from this result, it can be seen that the doping efficiency is higher when the vI induction force is used. Of course, the substrate can be doped stably and significantly more efficiently than the conventional type shown in FIG.
実施例5.100φ[画コのSiウェハ上に熱酸化膜を
形成し、その上にAQ(厚さ0.8[μm])でバター
ニングした基板7を用い、反応ガスとして、供給管3を
通し、Arを80 h Q /m1nl、酸素ガスを8
0 [wQ /win] 、さらに供給管14を通して
、モノシラン、SiH4を20[すQ/l!110]
導入し、反応圧力を3 [mTo r r]にして、
上記基板上に5iOz膜を10分平坦化堆梼させた。こ
の時、印加した高周波パワは500[wlとした。堆積
状況の模式図を第9図(a)。Example 5: A thermal oxide film was formed on a Si wafer of 100 φ and a substrate 7 was patterned with AQ (thickness: 0.8 [μm]), and a supply pipe 3 was used as a reaction gas. through 80 hQ/ml of Ar and 80 h of oxygen gas.
0 [wQ/win], and then through the supply pipe 14, monosilane, SiH4, was added at 20 [wQ/l! 110]
and set the reaction pressure to 3 [mTorr].
A 5iOz film was planarized and deposited on the substrate for 10 minutes. At this time, the high frequency power applied was 500 [wl]. Figure 9(a) shows a schematic diagram of the deposition situation.
(b)に示す、(a)はバイアス電位を利用した方法、
(b)は誘導力を利用した方法の場合を示す、この結果
を見てわかるように、バイアス電位を用いた方法では、
10[分]では平坦化されていないものの、誘導力を用
いた方法では、充分平坦化されていることがわかる。Shown in (b), (a) is a method using bias potential,
(b) shows the case of the method using inductive force.As you can see from this result, in the method using bias potential,
It can be seen that although the surface was not flattened after 10 minutes, it was sufficiently flattened using the method using the induction force.
実施例6.100φ[搦コのポリカーボネイト板を基板
7を用い、ガス供給管3から、Arを80 [wQ/l
1inコ導入し、基Fi7をArで1分間スパッタ処理
した後、続けて、ガス供給管3からアンモニア、NH3
を80〔讐ff/minコガス供給管14より、SiH
4を20[vQ/社n]導入し、ポリカーボネイト板上
にチツ化ケイ素、SiN暎をloo[nm]堆積させ、
ポリカーボネイト材とSiN膜の密着力を調べたArス
パッタ時は高周波印加パワは350[wlとし、SiN
堆積時はパワ70[wlとした。比較のため、Ar処理
を第4図の装置で行ない、その後、−度空気中でさらし
、次にSiNを堆積させた基板、及び、Ar処理をせず
SiNを堆積した基板についても調べた。密着力の評価
は、SiN膜堆積後のウェハを60[℃コ、90[%I
RH雰囲気の中で、加速劣化の2000[h]までのテ
ス1〜をし、その時のはがれを目視観測した。Ar処理
をしない基板では2時間後に、Ar処理した後、−度空
気にさらした基板では10時間後に、バイアス電位を利
用した方法で、かつ、同一チャンバ内で表面改質後、S
iN膜を堆積したものは、800時間後にはがれが生じ
た。これらの結果から、Arで基板処理した方が、さら
に、同一チャンバ内で続けて膜堆積した方が、W4の密
着力が著しく高くなることがわかった。誘導力を利用し
てAr処理を行なった後、続けて同一チャンバ内でSi
N膜を形成した基板では、2000時間を越えてもはが
れは生しなかった。この結果に実施例4に示したドーピ
ングプロファイルを参照すると、密着性の向上には誘導
力を利用して、基板表面で深い所までイオンが効率良く
到達することが重要であることがわかる。Example 6. Using a polycarbonate plate of 100 φ as the substrate 7, Ar was applied from the gas supply pipe 3 to 80 [wQ/l]
After introducing 1 inch of Fi7 and sputtering the group Fi7 with Ar for 1 minute, ammonia and NH3 were introduced from the gas supply pipe 3.
From the gas supply pipe 14, SiH
4 was introduced at 20 [vQ/n], silicon titanide and SiN were deposited to a thickness of loo [nm] on the polycarbonate plate,
During Ar sputtering, which investigated the adhesion between polycarbonate material and SiN film, the high frequency applied power was 350[wl],
The power was 70 [wl] during deposition. For comparison, we also investigated a substrate that was subjected to Ar treatment using the apparatus shown in FIG. 4, then exposed to -degree air, and then deposited SiN, and a substrate that was deposited with SiN without Ar treatment. The adhesion strength was evaluated by heating the wafer after SiN film deposition at 60°C and 90%I.
Test 1 for accelerated deterioration up to 2000 [h] was conducted in an RH atmosphere, and peeling at that time was visually observed. After 2 hours for a substrate not subjected to Ar treatment, after 10 hours for a substrate exposed to -degree air after Ar treatment, and after surface modification in the same chamber using a method using a bias potential, S
The deposited iN film peeled off after 800 hours. From these results, it was found that the adhesion of W4 was significantly higher when the substrate was treated with Ar and when the film was continuously deposited in the same chamber. After performing Ar treatment using induction force, Si was subsequently treated in the same chamber.
The substrate on which the N film was formed did not peel off even after more than 2000 hours. Referring to these results and the doping profile shown in Example 4, it can be seen that in order to improve adhesion, it is important for ions to efficiently reach deep areas on the substrate surface by utilizing inductive force.
このように本実施例によれば、基板を排気方向に平行に
設置し、かつ、マイクロ波の導入方向と磁力線の方向を
、基板に対し、それぞれ平行及び垂直に位置させると、
装置を大型化せずとも、基板の処理能力が向上する効果
、バイアス電位を利用して基板をイオン処理する方法に
おいて、上記設置位置で、バイアス電位を印加する平板
電極に平行に対面するアース電位の平板電極を設置する
と、バイアス電位印加の安定化が図れ、イオン処理効率
が向上する効果、また、イオンを基板へ到達させるのに
、バイアス電位を利用する方法よすは、磁界を高周波電
界の相互作用による誘導力を利用した方が、よりイオン
処理効率及び処理特性が高まる効果がある。According to this embodiment, if the substrate is installed parallel to the exhaust direction, and the microwave introduction direction and the magnetic field line direction are respectively parallel and perpendicular to the substrate,
In the method of ion processing a substrate using a bias potential, which improves the processing capacity of a substrate without increasing the size of the device, at the above installation position, the ground potential is placed parallel to and facing the flat plate electrode to which the bias potential is applied. Installing a flat plate electrode stabilizes the application of bias potential and improves ion processing efficiency.Also, it is better to use bias potential to bring ions to the substrate by converting the magnetic field into a high-frequency electric field. Utilizing the induction force due to interaction has the effect of further increasing ion processing efficiency and processing characteristics.
本発明によれば、装置の大型化及び排気能力の増大化を
招くことなく、スルーブツトの向上、大面積基板の処理
、また、イオン処理特性の向上を図ることができるので
、LSIや機能性薄膜デバイス、さらに光ディスク等の
イオン処理装置の低価格化、処理時間の短縮、処理コイ
スの低減化が図れる効果がある。According to the present invention, it is possible to improve throughput, process large area substrates, and improve ion processing characteristics without increasing the size of the device or increasing the exhaust capacity. This has the effect of reducing the cost of devices, as well as ion processing equipment for optical disks, etc., shortening processing time, and reducing processing coils.
第1図は本発明の一実施例であるプラズマ処理装置の主
要部の模式図、第2図は装置中心軸上の磁束密度分布図
、第3図は従来型のプラズマ処理装置の主要部の模式図
、第4図(a)及び(b)は本発明の一実施例であるプ
ラズマ処理装置の主要部それぞれ正面及び側面の模式図
、第5図、第6図はAQのエツチング速度及びパターン
からのシフト量を示す図、第7図はSiO2のスパッタ
量を示す図、第8図はドーピングプロファイルを示す図
、第9図(a)、(b)は平坦化堆積状況を示す模式図
である。
1・・真空容器、3,14・・・ガス供給管、4・・・
磁界発生コイル、5・・マイクロ波、7・・基板、8・
・・イオン流、9・・・高周波印加1!極、10・・・
アース電極、A・・基板にバイアス電位印加時、B・・
イオンに誘導力印加時。
第4図
(久)
第5図
前6図
高層r反ぽpnoパワ(w)
1亮M;Eef’n011”)(W)
マイフロラ劇導入π口カ゛らのΣ旦鯉(句句)第7図
第8図
高間壕epnaへ叡
斥ご方向171距離(νm)
第9図Figure 1 is a schematic diagram of the main parts of a plasma processing apparatus that is an embodiment of the present invention, Figure 2 is a magnetic flux density distribution diagram on the central axis of the equipment, and Figure 3 is a diagram of the main parts of a conventional plasma processing apparatus. 4(a) and 4(b) are schematic front and side views of the main parts of a plasma processing apparatus according to an embodiment of the present invention, and FIGS. 5 and 6 show the etching speed and pattern of AQ. Figure 7 is a diagram showing the amount of sputtering of SiO2, Figure 8 is a diagram showing the doping profile, and Figures 9 (a) and (b) are schematic diagrams showing the planarization deposition situation. be. 1... Vacuum container, 3, 14... Gas supply pipe, 4...
Magnetic field generating coil, 5...microwave, 7...substrate, 8...
...Ion flow, 9...High frequency application 1! Extreme, 10...
Earth electrode, A... When bias potential is applied to the substrate, B...
When applying inductive force to ions. Figure 4 (Ku) Figure 5 Front 6 Figure High Rise R Anti-Popno Power (W) 1 Ryo M; Eef'n011'') (W) My Flora Drama Introduction Figure 8. 171 distance (νm) towards Takama trench epna Figure 9
Claims (1)
した真空容器と、真空容器内に磁界を印加する磁界発生
部を有した装置を用いて、電子サイクロトロン共鳴を引
き起こし、基板を処理する方法において、導入するマイ
クロ波の伝播方向と平行に、平板電極を設置し、該電極
に高周波あるいは直流電位を印加しながら、該電極上、
あるいは該電極と垂直方向に設置した基板をプラズマ処
理することを特徴としたマイクロ波プラズマ処理方法。 2、真空容器内に導入したマイクロ波と印加した磁界と
の相互作用により電子サイクロトロン共鳴を引き起こし
、基板を処理する方法において導入するマイクロ波の伝
播方向と平行に、平板電極を設置し、該電極から、マイ
クロ波の伝播方向に垂直に電界をかけ、プラズマ中のイ
オンを電位勾配、あるいは、磁界と印加交周波電界の相
互作用力を利用して基板方向に加速して入射させること
を特徴としたマイクロ波プラズマ処理方法。 3、平板電極を導入する磁力線方向とほぼ垂直に位置さ
せ、基板を上記平板電極上に置いて、基板平面に垂直方
向に電位勾配をもたせながらプラズマ処理することを特
徴とした、特許請求の範囲第1項又は第2項に記載のマ
イクロ波プラズマ処理方法。 4、電極に印加する電位は、直流電位であること、ある
いは、交周波電位、あるいは、直流電位と交周波電位で
あることを特徴とした特許請求の範囲の第3項に記載の
マイクロ波プラズマ処理方法。 5、平板電極を導入するマイクロ波の伝播方向及び磁力
線方向に平行に設置し、該電極面と垂直方向に置いた基
板方向に、上記電極から導入した高周波電界と該磁界と
の相互作用力により、イオンを加速させながら、プラズ
マ処理を行なうことを特徴とした特許請求の範囲第1項
又は第2項に記載のマイクロ波プラズマ処理方法。 6、電子サイクロトロン共鳴条件を満たす磁束密度を、
基板面の前方に、基板面とほぼ平行なる面内に位置させ
ることを特徴とした特許請求の範囲の第1項乃至第5項
に記載のマイクロ波プラズマ処理方法。 7、プラズマ処理する基板を、同一平面に複数枚並べて
設置し、これらを同時に処理することを特徴とした特許
請求の範囲の第1項乃至第6項に記載のマイクロ波プラ
ズマ処理方法。 8、平板電極は、基板を処理する真空容器内壁の一部と
なつていることを特徴とした特許請求の範囲の第1項乃
至第7項に記載のマイクロ波プラズマ処理方法。 9、プラズマ処理として、基板上の所望材をエッチング
することを特徴とした特許請求の範囲の第1項乃至第8
項に記載のマイクロ波プラズマ処理方法。 10、プラズマ処理として、基板をスパッタすることを
特徴とした特許請求の範囲第1項乃至第8項に記載のマ
イクロ波プラズマ処理方法。 11、プラズマ処理として、基板上に膜を形成すること
を特徴とした特許請求の範囲の第1項乃至第8項に記載
のマイクロ波プラズマ処理方法。 12、プラズマ処理として、基板上に膜を形成する工程
にエッチングあるいはスパッタ工程を組み合わせた処理
を行なうことを特徴とした特許請求の範囲第1項乃至第
8項に記載のマイクロ波プラズマ処理方法。 13、プラズマ処理として、基板上の構成材に不純物を
ドーピングすることを特徴とした特許請求の範囲の第1
項乃至第8項に記載のマイクロ波プラズマ処理方法。 14、プラズマ処理として、基板表面の改質を行なうこ
とを特徴とした特許請求の範囲の第1項乃至第8項に記
載のマイクロ波プラズマ処理方法。 15、基板表面の改質を行なつた後、同一装置内におい
て該改質表面上に膜形成を行なうことを特徴とした特許
請求の範囲の第1項乃至第8項に記載のマイクロ波プラ
ズマ処理方法。[Claims] 1. Electron cyclotron resonance is achieved using a vacuum container having a microwave introduction window, a reaction gas supply system, and an exhaust system, and a device having a magnetic field generating section that applies a magnetic field to the vacuum container. In this method, a flat plate electrode is installed parallel to the propagation direction of the microwave to be introduced, and while applying a high frequency or DC potential to the electrode,
Alternatively, a microwave plasma processing method characterized in that a substrate placed perpendicular to the electrode is subjected to plasma processing. 2. A flat plate electrode is installed parallel to the propagation direction of the microwave introduced in the method of processing a substrate by causing electron cyclotron resonance due to the interaction between the microwave introduced into the vacuum container and the applied magnetic field, and the electrode It is characterized by applying an electric field perpendicular to the direction of microwave propagation, and accelerating ions in the plasma toward the substrate using the potential gradient or the interaction force between the magnetic field and the applied alternating frequency electric field. Microwave plasma treatment method. 3. Claims characterized in that a flat plate electrode is positioned substantially perpendicular to the direction of the introduced magnetic field lines, a substrate is placed on the flat plate electrode, and plasma processing is performed while creating a potential gradient in a direction perpendicular to the plane of the substrate. The microwave plasma processing method according to item 1 or 2. 4. The microwave plasma according to claim 3, wherein the potential applied to the electrode is a direct current potential, an alternating frequency potential, or a direct current potential and an alternating frequency potential. Processing method. 5. A flat plate electrode is installed parallel to the direction of propagation of the microwave to be introduced and the direction of the lines of magnetic force, and due to the interaction force between the high frequency electric field introduced from the electrode and the magnetic field in the direction of the substrate placed perpendicular to the electrode surface. 3. The microwave plasma processing method according to claim 1, wherein the plasma processing is performed while accelerating ions. 6. The magnetic flux density that satisfies the electron cyclotron resonance condition is
6. The microwave plasma processing method according to claim 1, wherein the microwave plasma processing method is positioned in front of the substrate surface and in a plane substantially parallel to the substrate surface. 7. The microwave plasma processing method according to any one of claims 1 to 6, characterized in that a plurality of substrates to be plasma processed are arranged side by side on the same plane and are processed simultaneously. 8. The microwave plasma processing method according to any one of claims 1 to 7, wherein the flat plate electrode is a part of the inner wall of a vacuum chamber in which the substrate is processed. 9. Claims 1 to 8, characterized in that the plasma treatment involves etching a desired material on the substrate.
The microwave plasma treatment method described in . 10. The microwave plasma processing method according to any one of claims 1 to 8, characterized in that the plasma treatment involves sputtering the substrate. 11. A microwave plasma processing method according to any one of claims 1 to 8, characterized in that the plasma processing involves forming a film on a substrate. 12. The microwave plasma processing method according to any one of claims 1 to 8, wherein the plasma processing is performed by combining an etching or sputtering process with a process of forming a film on a substrate. 13. The first aspect of claim 1, characterized in that the plasma treatment involves doping impurities into the constituent material on the substrate.
The microwave plasma processing method according to items 8 to 8. 14. The microwave plasma processing method according to any one of claims 1 to 8, characterized in that the plasma treatment involves modifying the surface of the substrate. 15. The microwave plasma according to claims 1 to 8, characterized in that after modifying the substrate surface, a film is formed on the modified surface in the same apparatus. Processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23504688A JPH0283924A (en) | 1988-09-21 | 1988-09-21 | Method for microwave plasma treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23504688A JPH0283924A (en) | 1988-09-21 | 1988-09-21 | Method for microwave plasma treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0283924A true JPH0283924A (en) | 1990-03-26 |
Family
ID=16980283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23504688A Pending JPH0283924A (en) | 1988-09-21 | 1988-09-21 | Method for microwave plasma treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0283924A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499289A (en) * | 1990-08-08 | 1992-03-31 | Sumitomo Metal Ind Ltd | Etching method |
-
1988
- 1988-09-21 JP JP23504688A patent/JPH0283924A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0499289A (en) * | 1990-08-08 | 1992-03-31 | Sumitomo Metal Ind Ltd | Etching method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0477890B1 (en) | Processing method and apparatus | |
JPS61179872A (en) | Apparatus and method for magnetron enhanced plasma auxiliarytype chemical vapor deposition | |
EP0563899B1 (en) | Plasma generating method and plasma generating apparatus using said method | |
US5983829A (en) | Microwave plasma etching apparatus | |
JP3520577B2 (en) | Plasma processing equipment | |
JP2595002B2 (en) | Microwave plasma processing method and apparatus | |
JPH03204925A (en) | Plasma processor | |
JPH0283924A (en) | Method for microwave plasma treatment | |
JP2515833B2 (en) | Microwave plasma processing method | |
JP2750430B2 (en) | Plasma control method | |
JPH07153595A (en) | Existent magnetic field inductive coupling plasma treating device | |
JPH0415921A (en) | Method and apparatus for activating plasma | |
JP3220528B2 (en) | Vacuum processing equipment | |
JPH0244720A (en) | Microwave plasma processing equipment | |
JPH0717147Y2 (en) | Plasma processing device | |
JPH0680640B2 (en) | Plasma equipment | |
JP2700890B2 (en) | Plasma processing equipment | |
JPH0896990A (en) | Plasma treatment device and plasma treatment method | |
JPH09181048A (en) | Plasma apparatus, thin film forming method and etching method | |
JP3455616B2 (en) | Etching equipment | |
JPH0340422A (en) | Film formation device | |
JP2892347B2 (en) | Thin film formation method | |
JP3193178B2 (en) | Thin film formation method | |
JPH04107919A (en) | Plasma processor provided with magnetic field and absorbing microwave | |
Sumiya et al. | Energy Control of Incident Ions to the Chamber-Wall by Using Push–Pull Bias (Phase-Controlled Bias) in UHF-ECR Etching System |