JPH0283272A - Glass capsule hip method of ceramic molded article - Google Patents
Glass capsule hip method of ceramic molded articleInfo
- Publication number
- JPH0283272A JPH0283272A JP63235080A JP23508088A JPH0283272A JP H0283272 A JPH0283272 A JP H0283272A JP 63235080 A JP63235080 A JP 63235080A JP 23508088 A JP23508088 A JP 23508088A JP H0283272 A JPH0283272 A JP H0283272A
- Authority
- JP
- Japan
- Prior art keywords
- melting point
- glass
- compact
- point glass
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 102
- 239000000919 ceramic Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims description 24
- 239000002775 capsule Substances 0.000 title claims description 16
- 238000002844 melting Methods 0.000 claims abstract description 45
- 238000001513 hot isostatic pressing Methods 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 abstract description 32
- 239000000843 powder Substances 0.000 abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 6
- 229910002804 graphite Inorganic materials 0.000 abstract description 6
- 239000010439 graphite Substances 0.000 abstract description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 6
- 239000011888 foil Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 239000000155 melt Substances 0.000 abstract description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 11
- 239000005297 pyrex Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000156 glass melt Substances 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 239000006060 molten glass Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000003708 ampul Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Landscapes
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、セラミックス成形体をガラス浴中に浸して熱
間静水圧プレス処理を実施することにより高密度の焼結
体を得る方法(以下、ガラスカプセルHIP方法と記す
)の改良に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention describes a method for obtaining a high-density sintered body by immersing a ceramic molded body in a glass bath and subjecting it to hot isostatic pressing. , the glass capsule HIP method).
(従来の技術)
従来から知られているように、ガラスカプセルHIP方
法は、焼結すべきセラミックス成形体の全表面をガス不
透過性のガラス膜で覆った後、そのまわりから通常10
0〜3000atm 、 1000〜2300 t:の
熱間静水圧を加えて高密度のセラミックス焼結体を得て
いる。このとき、ガラスカプセル化の方法としては、ア
ンプル法、焼結ガラス法、ガラス浴法が知られている。(Prior Art) As is conventionally known, in the glass capsule HIP method, after covering the entire surface of a ceramic molded body to be sintered with a gas-impermeable glass film, a film of usually 10
A high-density ceramic sintered body is obtained by applying hot hydrostatic pressure of 0 to 3000 atm and 1000 to 2300 t. At this time, the ampoule method, the sintered glass method, and the glass bath method are known as glass encapsulation methods.
従来、ガラス浴法のガラスカプセル化の一例としては、
特公昭62−22954号公報に開示された方法がある
。この方法は、その−例を第4図(a)、 (b)に示
すように、るつぼ21内にセラミックス成形体等の被処
理物22がその上下のガラス板23.23’ と、中間
のガラス粉粒体24とによって包囲されて収納されてい
る。るつぼ21と、それらの被処理物22及びガラス2
3.23’ 、 24との間には被処理物22及びガラ
ス23.23’ 、 24の全面を囲繞して、無通気性
でかつ可撓性を有する黒鉛の箔又はシート25が設けら
れている。更にその上面には、HIP時におけるガラス
の溶解時の被処理物22の浮上を抑止する重り26を自
由動可能に載置している。Conventionally, an example of glass encapsulation using the glass bath method is:
There is a method disclosed in Japanese Patent Publication No. 62-22954. As an example of this method is shown in FIGS. 4(a) and 4(b), a workpiece 22 such as a ceramic molded body is placed in a crucible 21 with glass plates 23, 23' above and below it, and glass plates 23 and 23' in between. It is surrounded and housed by glass powder 24. Crucible 21, their processed objects 22 and glass 2
3.23', 24, an air-impermeable and flexible graphite foil or sheet 25 is provided, surrounding the entire surface of the object 22 and the glass 23.23', 24. There is. Further, on the upper surface thereof, a weight 26 is freely movably placed to prevent the workpiece 22 from floating when the glass is melted during HIP.
なお、これらのガラス23.23’ 、 24としては
、パイレフクス(商品名)ガラス等の低融点ガラス又は
シリカガラス、バイコール(商品名)ガラス等の高融点
ガラスを使用している。As these glasses 23, 23' and 24, low melting point glass such as Pyrex (trade name) glass or high melting point glass such as silica glass or Vycor (trade name) glass is used.
(発明が解決しようとする課題)
上述した構成において、ガラス23.23’ 、 24
としてパイレックスガラス等の低融点ガラスを使用した
場合は、セラミックス成形体の被処理物22の密度が低
い低温度の状態でガラスが溶融し、被処理物22が溶融
ガラス中に浮かぶこととなる問題があった。被処理物2
2の浮上は重り26があるためある程度抑えられるが、
重り26の位置によっては被処理物22が傾いたりして
被処理物が融液の表面から突出してしまい、良好なカプ
セル化を達成できなくなる問題があった。(Problem to be Solved by the Invention) In the above-described configuration, the glasses 23, 23', 24
When a low melting point glass such as Pyrex glass is used as a ceramic molded object, the problem is that the glass melts at a low temperature where the density of the object to be processed 22 is low, and the object to be processed 22 floats in the molten glass. was there. Processed object 2
The levitation of 2 can be suppressed to some extent due to the weight 26, but
Depending on the position of the weight 26, the object 22 to be treated may be tilted and protrude from the surface of the melt, making it impossible to achieve good encapsulation.
また、ガラス23 23’ 、 24としてバイコール
ガラス等の高融点ガラスを使用した場合は、1500℃
以上の温度になるまで溶融しないため、それまでガラス
シールの効果がないとともに、静水圧を被処理物22に
加えることができなくなる問題もあった。In addition, when high melting point glass such as Vycor glass is used as the glasses 23, 23' and 24, the temperature is 1500°C.
Since it does not melt until the temperature reaches the above temperature, the glass seal is not effective until then, and there is also the problem that hydrostatic pressure cannot be applied to the object 22 to be treated.
本発明の目的は上述した課題を解消して、高温になるま
での低温の段階から静水圧を加えることができるととも
に、セラミックス成形体等の被処理物の浮上があっても
その表面への突出を完全に防止することができるセラミ
ックス成形体のガラスカプセルHIP方法を提供しよう
とするものである。The purpose of the present invention is to solve the above-mentioned problems, to be able to apply hydrostatic pressure from a low temperature stage until it reaches a high temperature, and to prevent protrusion from the surface of a workpiece such as a ceramic molded object even if it floats. The present invention aims to provide a glass capsule HIP method for ceramic molded bodies that can completely prevent the above.
(課題を解決するための手段)
本発明のセラミックス成形体のガラスカプセルHIP方
法は、セラミックス成形体をガラス浴中に浸して熱間静
水圧プレス処理するガラスカプセルHIP方法において
、るつぼ中でセラミックス成形体を低融点ガラスで包み
込むとともに、高融点ガラスでるつぼに蓋をした状態で
、熱間静水圧プレスすることを特徴とするものである。(Means for Solving the Problems) The glass capsule HIP method of a ceramic molded body of the present invention is a glass capsule HIP method in which a ceramic molded body is immersed in a glass bath and subjected to hot isostatic pressing. It is characterized by hot isostatic pressing with the body wrapped in low-melting glass and the crucible covered with high-melting glass.
(作 用)
上述した構成において、るつぼ内において、セラミック
ス成形体等の被処理物のまわりには低融点ガラスを配置
するとともに、るつぼの蓋とじてるつぼ内の低融点ガラ
スの上に高融点ガラスの蓋を配置しているため、以下に
説明するように良好なガラスカプセル化を達成できる。(Function) In the above-mentioned configuration, a low melting point glass is arranged in the crucible around the object to be processed such as a ceramic molded body, and a high melting point glass is placed on top of the low melting point glass in the crucible when the lid of the crucible is closed. Due to the placement of the lid, good glass encapsulation can be achieved as explained below.
すなわち、ガラス(例えばパイレックスガラスの場合)
の温度が820℃を越えると低融点ガラスは軟化を開始
し、その中のセラミックス成形体には浮き上がろうとす
る力が作用する。しかし、低融点ガラスは高粘度の状態
であり、浮き上がるには相当の長時間を要する。ガラス
温度が1220℃を越えたころになるとパイレックスガ
ラス中をセラミックス成形体が容易に浮き上がるだけの
低粘度になる。しかし、この程度の温度でパイレックス
ガラス浴の中でセラミックス成形体が浮き上がってもそ
の上部表面にはガラス被膜が形成された状態であり、セ
ラミックス成形体はガスタイトな膜につつまれている。i.e. glass (e.g. for Pyrex glass)
When the temperature exceeds 820° C., the low melting point glass starts to soften, and a force acting on the ceramic molded body therein causes it to rise. However, low melting point glass is in a highly viscous state and requires a considerable amount of time to float. When the glass temperature exceeds 1220° C., the viscosity becomes low enough for the ceramic molded body to easily float in the Pyrex glass. However, even if the ceramic molded body floats in the Pyrex glass bath at this temperature, a glass coating is still formed on its upper surface, and the ceramic molded body is surrounded by a gas-tight film.
更に温度が上がって1500℃程度に達すると、セラミ
ックス成形体の上部表面のパイレックスガラスの被膜は
流れ落ちてしまう程、極めて流動性に富む状態となる。When the temperature further rises to about 1500° C., the Pyrex glass coating on the upper surface of the ceramic molded body becomes so fluid that it runs off.
この時点で上部に配したバイコールガラスは始めて軟化
を開始し、パイレックスガラスの被膜のかわりを行うよ
うに作用する。At this point, the Vycor glass placed on top begins to soften and acts to replace the Pyrex glass coating.
1700℃程度に達すると、バイコールガラスも極めて
流れ易い状態に達するが、セラミックス成形体はこのと
きすでに焼結の終了段階に達し、密度3.0に近くなる
。そのため、セラミックス成形体はガラスの中にゆっく
りと沈んでいくことになり、終始ガスタイトな膜に包ま
れたままのガラスカプセルHI Pが可能となる。When the temperature reaches about 1700° C., Vycor glass also reaches a state where it is extremely easy to flow, but at this time the ceramic molded body has already reached the completion stage of sintering and has a density close to 3.0. Therefore, the ceramic molded body slowly sinks into the glass, making it possible to perform HIP of a glass capsule while being surrounded by a gas-tight film from beginning to end.
なお、参考のために、第1図に焼結助剤として!、Ig
Oを1wt%含む窒化珪素の焼結曲線を示す。For reference, Figure 1 shows sintering aids! ,Ig
A sintering curve of silicon nitride containing 1 wt% O is shown.
(実施例)
第2図(a)、 (b)および(C)は、それぞれ本発
明のガラスカプセルHIP方法を実際実施する際の状態
を示す図である。第2図(a)はHIP装置に装着する
前の状態を示す図である。本実施例において、黒鉛るつ
ぼ1の内側にグラファイト箔、モリブデン板またはモリ
ブデン箔等のシール材2を設ける。(Example) FIGS. 2(a), 2(b), and 2(C) are diagrams each showing a state in which the glass capsule HIP method of the present invention is actually implemented. FIG. 2(a) is a diagram showing the state before being attached to the HIP device. In this embodiment, a sealing material 2 such as a graphite foil, a molybdenum plate, or a molybdenum foil is provided inside the graphite crucible 1.
その上にパイレックスガラス等の低融点ガラス板3を載
置し、さらにその上に処理すべき窒化珪素等の被焼成体
4を設置する。次に、被焼成体4のまわりに、パイレッ
クスガラス等の低融点ガラス粉末5を充填した後、被焼
成体4および低融点ガラス粉末5の上に、パイレックス
ガラス等の低融点ガラス板6を載せ、さらにその上にバ
イコールガラス、シリカガラス等の高融点ガラス板7を
設置して、HIP装置に装着する前の準備を終了する。A low melting point glass plate 3 such as Pyrex glass is placed thereon, and a fired object 4 such as silicon nitride to be processed is further placed thereon. Next, after filling a low melting point glass powder 5 such as Pyrex glass around the object to be fired 4, a low melting point glass plate 6 such as Pyrex glass is placed on the object to be fired 4 and the low melting point glass powder 5. Further, a high melting point glass plate 7 such as Vycor glass or silica glass is placed thereon, and preparations before mounting on the HIP device are completed.
上述した構造の内部に被焼成体4を設置したるつぼ1を
、従来から公知のHIP装置に装着してHIP処理を実
施すると、上述した作用の項でも説明したように、まず
、1220℃を越えた温度で低融点ガラス板3,6およ
び低融点ガラス粉末5が溶融して、被焼成体4が溶融し
たガラス9中を浮上する。この状態を第2図(b)に示
す。この状態で低融点ガラスは溶融するが、高融点ガラ
ス板7は溶融しないため、ガスタイトな状態を維持する
ことができる。When the crucible 1 with the object to be fired 4 placed inside the structure described above is mounted on a conventionally known HIP device and HIP processing is performed, the temperature exceeds 1220°C, as explained in the section of the above-mentioned operation. At this temperature, the low melting point glass plates 3 and 6 and the low melting point glass powder 5 melt, and the object to be fired 4 floats in the molten glass 9. This state is shown in FIG. 2(b). In this state, the low melting point glass melts, but the high melting point glass plate 7 does not melt, so a gas tight state can be maintained.
さらにHI P処理が進行すると、第2図(C)に示す
ように高融点ガラス板7は溶融するが、同時に被焼成体
4の密度も3.0程度になりパイレックスガラスの密度
2.23程度よりも高くなるためガラス融液中を下降し
、ガスタイトな状態はHIP処理終了まで維持されるこ
ととなる。As the HIP process further progresses, the high melting point glass plate 7 melts as shown in FIG. Since it becomes higher than that, it descends in the glass melt, and the gas-tight state is maintained until the end of the HIP process.
第3図(a)〜(d)は、それぞれ本発明のガラスカプ
セルHIP方法を実施する際の他の例の状態を示す図で
ある。第3図(a)〜(d)に示す例において、第2図
(a)〜(C)に示す例と同一の部材には同一の符号を
付し、その説明を省略する。第3図(a)〜(d)に示
す例では、パイレックスガラス浴の中央にさらにバイコ
ールガラス、シリカガラス等の高融点ガラス板8を設け
ることによって、被焼成体4の浮き上がりの時間をさら
に長くすることができ、前述のガラスカプセルHIPが
さらに確実になる。FIGS. 3(a) to 3(d) are diagrams showing other examples of states when implementing the glass capsule HIP method of the present invention, respectively. In the examples shown in FIGS. 3(a) to 3(d), the same members as in the examples shown in FIGS. 2(a) to (C) are given the same reference numerals, and their explanations will be omitted. In the example shown in FIGS. 3(a) to 3(d), by further providing a high melting point glass plate 8 such as Vycor glass or silica glass in the center of the Pyrex glass bath, the time for the object to be fired 4 to float is further lengthened. This makes the glass capsule HIP described above even more reliable.
本発明は上述した実施例にのみ限定されるものではなく
、幾多の変形、変更か可能である。例えば、上述した実
施例において、低融点ガラスおよび高融点ガラスとして
示した例は一例であって、他の材料の組み合わせでも上
述した低融点ガラスおよび高融点ガラスの構成をとれば
、本発明を好適に達成できることはいうまでもない。ま
た、被焼成体の例として窒化珪素を示したが、他の材料
でも本発明を好適に適用できることはいうまでもない。The present invention is not limited to the embodiments described above, but can be modified and changed in many ways. For example, in the embodiments described above, the examples shown as low melting point glass and high melting point glass are just examples, and the present invention can be applied to other combinations of materials if the above low melting point glass and high melting point glass are used. Needless to say, this can be achieved. Moreover, although silicon nitride is shown as an example of the object to be fired, it goes without saying that the present invention can be suitably applied to other materials as well.
(発明の効果)
以上の説明から明らかなように、本発明のセラミックス
成形体のガラスカプセルHIP方法によれば、HIP装
置に装着前のるつぼ内において、セラミックス成形体等
の被処理物のまわりには低融点ガラスを配置するととも
に、るつぼの蓋としてるつぼ内の低融点ガラスの上に高
融点ガラスの蓋を配置することにより、重り等を使用せ
ずにガラス浴法においても良好なガラスカプセル化が達
成でき、その結果高密度の焼結体を得ることができる。(Effects of the Invention) As is clear from the above explanation, according to the glass capsule HIP method for ceramic molded bodies of the present invention, in the crucible before installation in the HIP apparatus, around the object to be processed such as the ceramic molded body. By placing low melting point glass and placing a high melting point glass lid on top of the low melting point glass in the crucible as the lid of the crucible, it is possible to achieve good glass encapsulation even in the glass bath method without using weights etc. can be achieved, and as a result, a high-density sintered body can be obtained.
第1図は窒化珪素における温度と密度の関係を示すグラ
フ、
第2図(a)〜(C)はそれぞれ本発明のガラスカプセ
ルHIP方法を実際に実施する際の状態を示す図、第3
図(a)〜(d)はそれぞれ本発明のガラスカプセルH
IP方法を実線に実施する際の例の状態を示す図、
第4図(a)、 (b)はそれぞれ従来のガラスカプセ
ルHIP方法の例を示す図である。
1・・・黒鉛るつぼ 2・・・シール材3.6・
・・低融点ガラス板
4・・・被焼成体 5・・・低融点ガラス粉末
7、訃・・高融点ガラス板
9・・・溶融ガラスFigure 1 is a graph showing the relationship between temperature and density in silicon nitride, Figures 2 (a) to (C) are diagrams showing the conditions when actually implementing the glass capsule HIP method of the present invention, and Figure 3 is a graph showing the relationship between temperature and density in silicon nitride.
Figures (a) to (d) are glass capsules H of the present invention, respectively.
Figures 4(a) and 4(b) are diagrams showing examples of the conventional glass capsule HIP method, respectively. 1...Graphite crucible 2...Sealing material 3.6.
...Low melting point glass plate 4...Object to be fired 5...Low melting point glass powder 7, Death...High melting point glass plate 9... Molten glass
Claims (1)
圧プレス処理するガラスカプセルHIP方法において、
るつぼ中でセラミックス成形体を低融点ガラスで包み込
むとともに、高融点ガラスでるつぼに蓋をした状態で、
熱間静水圧プレスすることを特徴とするセラミックス成
形体のガラスカプセルHIP方法。1. In a glass capsule HIP method in which a ceramic molded body is immersed in a glass bath and subjected to hot isostatic pressing,
The ceramic molded body is wrapped in low-melting glass in a crucible, and the crucible is covered with high-melting glass.
A glass capsule HIP method for a ceramic molded body, which is characterized by hot isostatic pressing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63235080A JPH0283272A (en) | 1988-09-21 | 1988-09-21 | Glass capsule hip method of ceramic molded article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63235080A JPH0283272A (en) | 1988-09-21 | 1988-09-21 | Glass capsule hip method of ceramic molded article |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0283272A true JPH0283272A (en) | 1990-03-23 |
Family
ID=16980767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63235080A Pending JPH0283272A (en) | 1988-09-21 | 1988-09-21 | Glass capsule hip method of ceramic molded article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0283272A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04346828A (en) * | 1991-05-22 | 1992-12-02 | Kozo Ishizaki | Treatment of material in zero gravity |
CN107538013A (en) * | 2017-06-19 | 2018-01-05 | 安泰科技股份有限公司 | A kind of circle shears blade and preparation method thereof |
-
1988
- 1988-09-21 JP JP63235080A patent/JPH0283272A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04346828A (en) * | 1991-05-22 | 1992-12-02 | Kozo Ishizaki | Treatment of material in zero gravity |
CN107538013A (en) * | 2017-06-19 | 2018-01-05 | 安泰科技股份有限公司 | A kind of circle shears blade and preparation method thereof |
CN107538013B (en) * | 2017-06-19 | 2020-02-07 | 安泰科技股份有限公司 | Disc shearing machine blade and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0218270B1 (en) | Self-sealing fluid die | |
US4446100A (en) | Method of manufacturing an object of metallic or ceramic material | |
JPS57136505A (en) | Sinterable material for intermediate layer between high melting point metal tooth alloy and ceramic tooth | |
US4692288A (en) | Method of hot isostatic pressing of a porous silicon ceramic compact | |
US4478789A (en) | Method of manufacturing an object of metallic or ceramic material | |
US3383208A (en) | Compacting method and means | |
GB2048952A (en) | Isostatic Hot Pressing Metal or Ceramic | |
JPH0283272A (en) | Glass capsule hip method of ceramic molded article | |
US3465943A (en) | Apparatus for making encapsulations | |
GB967387A (en) | Method of sealing metallic elements between members,one of which is made of glass or ceramic material and the other of which is made of glass or ceramic material or of metal | |
US4539231A (en) | Method for sealing a ceramic molding | |
US4952353A (en) | Hot isostatic pressing | |
US4505871A (en) | Method for manufacturing an object of silicon nitride | |
SE414920B (en) | SET TO MAKE A FORM OF A MATERIAL IN THE FORM OF A POWDER THROUGH ISOSTATIC PRESSING OF A POWDER-FORMATED BODY | |
US3253152A (en) | Auto-canning of radiation sources | |
EP0094164A1 (en) | Method of consolidating material with a cast pressure transmitter | |
JP2709002B2 (en) | Sintering method using glass capsule | |
EP0077881A2 (en) | Bonding ceramic components and removing bubbles from bonding material | |
US5067987A (en) | Method of manufacturing a silver alloy which is blackened throughout its bulk | |
JPH0283271A (en) | Glass capsule hip method of ceramic molded article | |
US3219736A (en) | Method for producing hydrostatic pressure | |
JP2589815B2 (en) | Hot isostatic pressing method | |
JPS6292808A (en) | Hot hydrostatic press treating method of ceramics | |
US4431599A (en) | Method for the melting and solidification of silicon | |
US3796555A (en) | Method and apparatus for producing hollow glass articles by module immersion technique |