JP2709002B2 - Sintering method using glass capsule - Google Patents
Sintering method using glass capsuleInfo
- Publication number
- JP2709002B2 JP2709002B2 JP4196785A JP19678592A JP2709002B2 JP 2709002 B2 JP2709002 B2 JP 2709002B2 JP 4196785 A JP4196785 A JP 4196785A JP 19678592 A JP19678592 A JP 19678592A JP 2709002 B2 JP2709002 B2 JP 2709002B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- glass
- support
- capsule
- material powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガラスカプセルの中に
封じ込めた原料粉末成形体を、HIP(熱間静水圧プレ
ス)又は自己発熱燃焼法等の如く、高温の等方加圧条件
下にて緻密な焼結体に成形する焼結方法の改良に関す
る。BACKGROUND OF THE INVENTION The present invention relates to a raw material powder compact encapsulated in a glass capsule under a high-temperature isostatic pressing condition such as a hot isostatic pressing (HIP) or a self-heating combustion method. To a sintering method for forming a compact sintered body.
【0002】[0002]
【従来技術及び問題点】図1及び図6に示す如く、HI
P装置(1)は、下蓋(10)の上に気密容器(11)を載せ、該
気密容器を上蓋(12)で覆っており、装置内部は、下蓋(1
0)の上に支持台(13)を載せ、該支持体を断熱マントル(1
4)で包囲すると共に、加熱ヒータ(15)を配備し、上蓋に
はガス導入口(16)を設けて、原料粉末成形体を高い温度
及び高いガス圧下にて等方的に焼結できるようにする装
置である。2. Description of the Related Art As shown in FIGS.
The P device (1) places an airtight container (11) on a lower lid (10) and covers the airtight container with an upper lid (12).
0) on the support (13), the support is insulated mantle (1).
Around 4), a heater (15) is provided, and a gas inlet (16) is provided on the upper lid so that the raw material powder compact can be isotropically sintered at high temperature and high gas pressure. It is a device to make.
【0003】ところで、セラミックス等の原料粉末成形
体をガラスカプセルの中に脱気密封し、該カプセルをH
IP装置の中で焼結体に成形する焼結法は知られてい
る。この焼結法は、原料粉末成形体(20)を収容したガラ
スカプセル(22)をHIP装置(1)の支持台(13)に載せ、
装置内を真空に排気した後、上蓋(12)の導入口(16)から
Ar等の高圧不活性ガスを導入し、ヒータ(15)で所定の
焼結温度にまで加熱して焼結を行なうものである。A raw material powder compact such as ceramics is degassed and sealed in a glass capsule.
A sintering method for forming a sintered body in an IP device is known. In this sintering method, a glass capsule (22) containing a raw material powder compact (20) is placed on a support (13) of a HIP device (1),
After evacuating the inside of the apparatus, a high-pressure inert gas such as Ar is introduced from the inlet (16) of the upper lid (12) and heated to a predetermined sintering temperature by the heater (15) to perform sintering. Things.
【0004】従来は、図6に示す如く、原料粉末成形体
(20)を収容したガラスカプセル(22)を支持台(13)の上に
直接載せて焼結を行なっていた。ガラスカプセル(22)
は、高温で溶融して流動性の溶融ガラス(24)となるが、
図7に示す如く、焼結中も溶融ガラス(24)が原料粉末成
形体(20)を完全に被覆し、原料成形体の密封状態を維持
する役割を果たす。原料粉末成形体は、このガラス溶融
膜を通じて不活性ガスの高圧作用を受けるため、緻密な
焼結体に成形される。[0004] Conventionally, as shown in FIG.
The glass capsule (22) containing (20) was placed directly on the support (13) for sintering. Glass capsule (22)
Melts at a high temperature and becomes a fluid molten glass (24),
As shown in FIG. 7, even during sintering, the molten glass (24) completely covers the raw material powder compact (20) and plays a role in maintaining the hermetically sealed state of the raw material compact. Since the raw material powder compact is subjected to the high-pressure action of the inert gas through the glass melt film, it is compacted into a dense sintered compact.
【0005】しかし、金属のように比重の大きな物質を
原料粉末として使用する場合、ガラスカプセルが高温で
溶融すると、原料成形体の自重によって底部の溶融ガラ
ス(24)は外方に押し出されてしまう。このため、図8に
示す如く、原料粉末成形体(20)とHIP装置の支持台(1
3)との間に存在する溶融ガラス(24)の量は非常に少なく
なる。この結果、符号(26)で示す如き空洞部ができてし
まい、原料粉末成形体(20)の密封状態を維持することが
できない。原料粉末成形体自体は多数の空隙を含んでい
るから、非密封状態でいくら圧力を加えても緻密な焼結
体に成形することはできない。このように、原料粉末が
金属のように比重の大きな物質の場合、ガラスカプセル
を利用した焼結法では、緻密な焼結体を製造することが
できない問題があった。However, when a substance having a large specific gravity such as a metal is used as a raw material powder, when the glass capsule is melted at a high temperature, the molten glass (24) at the bottom is pushed out by the weight of the raw material molded body. . For this reason, as shown in FIG. 8, the raw material powder compact (20) and the support (1
The amount of the molten glass (24) existing between 3) is very small. As a result, a cavity as indicated by reference numeral (26) is formed, and the sealed state of the raw material powder molded body (20) cannot be maintained. Since the raw material powder compact itself contains a large number of voids, it cannot be molded into a dense sintered compact no matter how much pressure is applied in an unsealed state. As described above, when the raw material powder is a substance having a large specific gravity such as a metal, there is a problem that a dense sintered body cannot be manufactured by the sintering method using a glass capsule.
【0006】[0006]
【発明が解決しようとする課題】原料粉末が金属のよう
に比重の大きな物質であっても、ガラスカプセルを利用
して完全な緻密体に焼結できる方法を提供することを目
的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a method capable of sintering into a completely dense body using a glass capsule even if the raw material powder is a substance having a large specific gravity such as a metal.
【0007】[0007]
【課題を解決するための手段】ガラスカプセルの中に封
じ込めた原料粉末成形体を、不活性ガスで加圧しながら
高温で焼結する焼結法において、原料粉末成形体(20)を
封じ込めたガラスカプセル(22)の底部を複数の支持体(3
2)の上に載せ、該カプセルの底部を各支持体によって小
さな接触面積で支えた状態で温度及び圧力を付加し、焼
結を行なう。[MEANS FOR SOLVING THE PROBLEMS] In a sintering method in which a raw material powder compact encapsulated in a glass capsule is sintered at a high temperature while being pressurized with an inert gas, a glass containing a raw material powder compact (20) Place the bottom of the capsule (22) on several supports (3
2) The capsule is placed on top, and sintering is performed by applying temperature and pressure while the bottom of the capsule is supported by each support with a small contact area.
【0008】複数の支持体(32)は、ガラスカプセルの底
部を小さな接触面積で支えることができるものであれば
よく、球状体、円錐台等の形状が考えられる。支持体(3
2)の個数も、ガラスカプセルの底部を安定して支持でき
るように適宜選定することができる。The plurality of supports (32) may be any as long as they can support the bottom of the glass capsule with a small contact area, and may be in the form of a sphere, a truncated cone, or the like. Support (3
The number of 2) can be appropriately selected so that the bottom of the glass capsule can be stably supported.
【0009】また、支持体(32)は、HIP装置(1)等の
支持台(13)の上に直接配備することもできるし、支持台
(30)の上に載せるトレー(30)を準備し、該トレー(30)の
中に配備することもできる。The support (32) can be directly mounted on a support (13) such as a HIP device (1),
It is also possible to prepare a tray (30) to be placed on the (30) and deploy it in the tray (30).
【0010】支持体(32)の突出高さは、ガラスカプセル
(32)の肉厚と略同じ寸法にすることが望ましいが、特に
限定されるものではない。[0010] The projecting height of the support (32) is a glass capsule.
It is desirable that the thickness be substantially the same as the thickness of (32), but there is no particular limitation.
【0011】[0011]
【作用】装置内を真空に排気した後、Ar等の高圧不活
性ガスをガス導入口(16)から導入し、所定の焼結温度ま
で加熱する。ガラスカプセル(22)は、高温で溶融して流
動性の溶融ガラス(24)となり、原料成形体(20)の自重に
よって下方に移動する。このため、当初各支持体に支え
られていたカプセル底部の部分は、ガラス溶融膜(24)の
厚みが徐々に少なくなり、遂には各支持体(32)と接触す
る。After evacuating the inside of the apparatus, a high-pressure inert gas such as Ar is introduced from a gas inlet (16) and heated to a predetermined sintering temperature. The glass capsule (22) melts at a high temperature to become a flowable molten glass (24), and moves downward by the weight of the raw material molded body (20). For this reason, the thickness of the glass melt film (24) gradually decreases in the portion of the capsule bottom that was initially supported by each support, and finally comes into contact with each support (32).
【0012】しかし、原料成形体(20)と支持体(32)の接
触部の接触面積は小さいから、溶融ガラスの表面張力作
用によって接触部は直ちに溶融ガラスに包み込まれ、原
料成形体は溶融ガラスによって密封された状態が維持さ
れる。However, since the contact area of the contact portion between the raw material compact (20) and the support (32) is small, the contact portion is immediately wrapped in the molten glass by the action of the surface tension of the molten glass, and the raw material compact is Thus, the sealed state is maintained.
【0013】なお、支持体(32)の個数を多くした場合、
支持体どうしの間隔が狭くなるため、カプセル底部の溶
融ガラスは支持体の間に充満した状態となり、原料成形
体の密封状態は強固なものとなる。一方、支持体の個数
が少ない場合でも、図2に示す如く、溶融ガラスの一部
がトレー(30)の基部に接触して、原料成形体の密封状態
を確実に維持することができる。When the number of the supports (32) is increased,
Since the distance between the supports is narrowed, the molten glass at the bottom of the capsule is filled between the supports, and the sealed state of the raw material molded article becomes strong. On the other hand, even when the number of supports is small, as shown in FIG. 2, a part of the molten glass comes into contact with the base of the tray (30), so that the sealed state of the raw material molded body can be reliably maintained.
【0014】原料成形体(20)は、このガラス溶融膜(24)
を通じて不活性ガスの高圧作用を受けるため、緻密な焼
結体が形成される。The raw material compact (20) is made of the glass molten film (24)
, A dense sintered body is formed.
【0015】[0015]
【実施例】支持体(32)をトレー(30)の中に配備する実施
例について説明する。トレー(30)は、図3に示す如く、
円形の基部(33)を有しており、縁部に縦壁(34)を突設し
ている。縦壁(34)は、後記する如く、溶融ガラスの流れ
止めとなるものであるから、あらかじめ設けておくこと
がより望ましい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which a support (32) is provided in a tray (30) will be described. The tray (30) is, as shown in FIG.
It has a circular base (33), and a vertical wall (34) protrudes from the edge. The vertical wall (34) serves to stop the flow of the molten glass as described later, and is therefore preferably provided in advance.
【0016】支持体(32)は、市販の耐火物製ボールを使
用する。このため、トレーの基部(33)には、図4に示す
如くボール(32)を受ける凹部(35)を形成している。な
お、支持体(32)を、HIP装置の支持台(13)に直接配備
するときは、凹部(35)は支持台(13)に形成すればよい。As the support (32), a commercially available refractory ball is used. Therefore, a recess (35) for receiving the ball (32) is formed in the base (33) of the tray as shown in FIG. When the support (32) is directly provided on the support (13) of the HIP device, the recess (35) may be formed on the support (13).
【0017】なお、トレー(30)の基部(33)の形状は、円
形に限定されるものではなく、焼結体の形状に合わせて
適宜選定できることは勿論である。また、支持体(32)も
ボール体に限定されるものではなく、ガラスカプセルの
底部を小さな接触面積で支持できるものであればよい。
例えば、図5に示す如く、先細の突起(32)を基部(33)に
突設したものでもよい。The shape of the base (33) of the tray (30) is not limited to a circular shape, but can be appropriately selected according to the shape of the sintered body. In addition, the support (32) is not limited to the ball, but may be any as long as it can support the bottom of the glass capsule with a small contact area.
For example, as shown in FIG. 5, a tapered projection (32) may be protruded from the base (33).
【0018】本発明の焼結方法を、Cr粉末の焼結に適
用した。なお、Cr粉末は、比重が大きいため、ガラス
カプセルを利用した焼結法ではこれまでうまく焼結でき
なかった原料である。The sintering method of the present invention was applied to sintering of Cr powder. Note that Cr powder is a raw material that has not been successfully sintered by the sintering method using a glass capsule because of its large specific gravity.
【0019】平均粒径40μmのCr粉末を加圧成形し、
直径30mm×高さ50mmの原料粉末成形体(20)を調製した。
次に、この原料粉末成形体を厚さ3〜5mmのパイレック
スガラスの中に封入した。トレー(30)は、カーボン材か
ら、厚さ5mm、直径55mmの円板を調製し、周縁部に5mm
の縦壁部(34)を突設したものを使用した。支持体(32)と
して、直径3mmのAl2O3のボールを30個使用し、トレ
ー(30)の凹部(35)に夫々配備する。Pressure molding of a Cr powder having an average particle size of 40 μm,
A raw material powder compact (20) having a diameter of 30 mm and a height of 50 mm was prepared.
Next, this raw material powder compact was sealed in Pyrex glass having a thickness of 3 to 5 mm. For the tray (30), a disk with a thickness of 5 mm and a diameter of 55 mm is prepared from a carbon material, and a 5 mm
The vertical wall (34) of the above was used. As the support (32), 30 balls of Al 2 O 3 having a diameter of 3 mm are used, and they are respectively disposed in the recesses (35) of the tray (30).
【0020】図1に示す如く、HIP装置(1)の支持台
(13)の上にトレー(30)を載せ、トレー内の支持体(32)の
上に、原料粉末成形体(20)を封入したガラスカプセル(2
4)を載せる。As shown in FIG. 1, a support for the HIP device (1)
A tray (30) is placed on (13), and a glass capsule (2) enclosing a raw material powder compact (20) is placed on a support (32) in the tray.
Place 4).
【0021】前述したように、HIP装置(1)内を真空
に排気した後、上蓋(12)の導入口(16)からArガスを導
入し、ヒータ(15)で焼結温度にまで加熱した。ガス圧は
1000気圧、焼結温度は1300℃であった。As described above, after the inside of the HIP device (1) is evacuated to a vacuum, Ar gas is introduced from the inlet (16) of the upper lid (12) and heated to the sintering temperature by the heater (15). . Gas pressure
1000 atm and sintering temperature was 1300 ° C.
【0022】ガラスカプセル(22)は溶融して流動性の溶
融ガラス(24)となるため、図2に示す如く、原料成形体
(20)の自重によって外方に押し出される。この結果、原
料成形体(20)は下方に移動し、当初各支持体に支えられ
ていたカプセル底部の部分は、溶融ガラス(24)の厚みが
徐々に少なくなり、遂には各ボール(32)と接触する。し
かし、原料成形体(20)とボール(32)との接触面積は小さ
いから、溶融ガラスは表面張力作用によって接触部を直
ちに包み込む。また、各支持体間のガラス溶融膜はその
まま残っているから、原料成形体は溶融ガラスによって
密封されたままとなる。Since the glass capsule (22) is melted into a fluid molten glass (24), as shown in FIG.
It is pushed out by its own weight of (20). As a result, the raw material molded body (20) moves downward, and the thickness of the molten glass (24) gradually decreases at the bottom of the capsule initially supported by each support, and finally each ball (32) Contact with. However, since the contact area between the raw material compact (20) and the ball (32) is small, the molten glass immediately envelops the contact portion by the action of surface tension. Further, since the glass molten film between the supports remains as it is, the raw material molded body remains sealed with the molten glass.
【0023】また、トレー(30)には縦壁(34)を設けてい
るから、溶融ガラスの流出を防止できる。Further, since the tray (30) is provided with the vertical wall (34), the outflow of the molten glass can be prevented.
【0024】上記の方法によって、原料粉末成形体(20)
を緻密な焼結体に成形することができた。これは、焼結
中、原料粉末成形体(20)がガラス溶融膜(24)によって密
封されており、このガラス溶融膜を通じてArガスの高
圧作用を受けることができたからである。According to the above method, the raw material powder compact (20)
Could be formed into a dense sintered body. This is because, during sintering, the raw material powder compact (20) was sealed by the glass melt film (24), and the high pressure action of Ar gas could be received through the glass melt film.
【0025】[0025]
【発明の効果】ガラスカプセルを利用した焼結方法にお
いて、原料粉末が金属のように比重の大きな物質であっ
ても、完全な緻密体に焼結できる。According to the sintering method using a glass capsule, even when the raw material powder is a substance having a large specific gravity such as a metal, it can be sintered into a completely dense body.
【図1】本発明の焼結方法を説明する図である。FIG. 1 is a diagram illustrating a sintering method of the present invention.
【図2】本発明の焼結方法において、溶融ガラスの流動
状態を説明する図である。FIG. 2 is a diagram illustrating a flow state of molten glass in the sintering method of the present invention.
【図3】本発明の焼結方法に使用するトレー及び支持体
の一実施例を示す斜視図である。FIG. 3 is a perspective view showing one embodiment of a tray and a support used in the sintering method of the present invention.
【図4】図3に示す実施例の断面図である。FIG. 4 is a sectional view of the embodiment shown in FIG. 3;
【図5】トレー及び支持体の他の実施例の断面図であ
る。FIG. 5 is a sectional view of another embodiment of the tray and the support.
【図6】従来の焼結方法を説明する図である。FIG. 6 is a diagram illustrating a conventional sintering method.
【図7】従来の焼結方法において、原料粉末の比重が小
さいときの溶融ガラスの流動状態を説明する図である。FIG. 7 is a view for explaining a flow state of molten glass when a specific gravity of raw material powder is small in a conventional sintering method.
【図8】従来の焼結方法において、原料粉末の比重が大
きいときの溶融ガラスの流動状態を説明する図である。FIG. 8 is a diagram illustrating a flow state of molten glass when a specific gravity of raw material powder is large in a conventional sintering method.
(1) HIP装置 (13) 支持台 (20) 原料粉末成形体 (22) ガラスカプセル (24) 溶融ガラス (30) トレー (32) 支持体 (1) HIP device (13) Support base (20) Raw material powder compact (22) Glass capsule (24) Molten glass (30) Tray (32) Support
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 和善 大阪府大阪市西区京町堀2丁目4番7号 中外炉工業株式会社内 (72)発明者 河合 徹 大阪府枚方市中宮大池1丁目1番1号 株式会社クボタ枚方製造所内 (72)発明者 篠崎 斌 大阪府枚方市中宮大池1丁目1番1号 株式会社クボタ枚方製造所内 (56)参考文献 特開 平2−83271(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazuyoshi Nishida 2-4-7 Kyomachibori, Nishi-ku, Osaka-shi, Osaka Inside Chugai Furnace Industry Co., Ltd. (72) Inventor Toru Kawai 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka No. 1 Inside Kubota Hirakata Factory (72) Inventor Bin Shinozaki 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture Inside Kubota Hirakata Factory (56) References JP-A-2-83271 (JP, A)
Claims (1)
料粉末成形体(20)を高温の等方加圧条件下で焼結体に成
形する焼結方法において、原料粉末成形体(20)を封じ込
めたガラスカプセル(22)の底部を複数の支持体(32)の上
に載せ、該カプセルの底部を各支持体によって小さな接
触面積で支えた状態で温度及び圧力を付加することを特
徴とする、ガラスカプセルを用いた焼結方法。1. A sintering method for forming a raw material powder compact (20) encapsulated in a glass capsule (22) into a sintered body under high-temperature isostatic pressing conditions, comprising: Is placed on a plurality of supports (32), and the temperature and pressure are applied while the bottom of the capsule is supported by each support with a small contact area. Sintering method using a glass capsule.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4196785A JP2709002B2 (en) | 1992-07-23 | 1992-07-23 | Sintering method using glass capsule |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4196785A JP2709002B2 (en) | 1992-07-23 | 1992-07-23 | Sintering method using glass capsule |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0641611A JPH0641611A (en) | 1994-02-15 |
JP2709002B2 true JP2709002B2 (en) | 1998-02-04 |
Family
ID=16363602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4196785A Expired - Lifetime JP2709002B2 (en) | 1992-07-23 | 1992-07-23 | Sintering method using glass capsule |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2709002B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101745974B (en) * | 2008-12-17 | 2011-12-14 | 北京有色金属研究总院 | Method for directly preparing high temperature superconductive flat pre-sintered target blank by isostatic pressing method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107538013B (en) * | 2017-06-19 | 2020-02-07 | 安泰科技股份有限公司 | Disc shearing machine blade and preparation method thereof |
USD940438S1 (en) | 2020-06-16 | 2022-01-11 | Diana DiMaria | Headwear towel |
-
1992
- 1992-07-23 JP JP4196785A patent/JP2709002B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101745974B (en) * | 2008-12-17 | 2011-12-14 | 北京有色金属研究总院 | Method for directly preparing high temperature superconductive flat pre-sintered target blank by isostatic pressing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0641611A (en) | 1994-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0218270B1 (en) | Self-sealing fluid die | |
US4446100A (en) | Method of manufacturing an object of metallic or ceramic material | |
JPH035277B2 (en) | ||
US20160193653A1 (en) | Forming a Metal Component | |
CN103567444A (en) | Tungsten target manufacturing method | |
US5066454A (en) | Isostatic processing with shrouded melt-away mandrel | |
US4692288A (en) | Method of hot isostatic pressing of a porous silicon ceramic compact | |
JP2709002B2 (en) | Sintering method using glass capsule | |
US4478789A (en) | Method of manufacturing an object of metallic or ceramic material | |
JP2000514763A (en) | Vacuum insulated container and method of manufacturing the same | |
SE414920C (en) | SET TO MAKE A FORM OF A MATERIAL IN THE FORM OF A POWDER THROUGH ISOSTATIC PRESSING OF A POWDER-FORMATED BODY | |
US4505871A (en) | Method for manufacturing an object of silicon nitride | |
GB2067449A (en) | Hermetic sealing | |
US4960550A (en) | Encapsulation method for hot isostatic pressing | |
US4643322A (en) | Can for containing material for consolidation into widgets and method of using the same | |
SU1060097A3 (en) | Process for hot isostatic pressing of products from powder materials | |
JPH0283272A (en) | Glass capsule hip method of ceramic molded article | |
US4684339A (en) | Gas-loaded pressure diaphragm | |
JPH0812450A (en) | Production of sintered compact by hot isotropic pressure treatment | |
JPH10180492A (en) | Method and device for packing powder | |
JPS5842414Y2 (en) | Powder heating degassing equipment | |
SE414921B (en) | SET TO MAKE A FORMULA OF SILICON NITRID OR OF A SILICON NITRID AS MAIN COMPONENT CONSTRUCTED MATERIAL | |
JPH04285103A (en) | Method for vibration-packing powder | |
JPS62202003A (en) | Molding method for powder | |
KR910016416A (en) | Manufacturing method of plate material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19971007 |