JPH0274029A - Thin film forming method and device - Google Patents
Thin film forming method and deviceInfo
- Publication number
- JPH0274029A JPH0274029A JP22711888A JP22711888A JPH0274029A JP H0274029 A JPH0274029 A JP H0274029A JP 22711888 A JP22711888 A JP 22711888A JP 22711888 A JP22711888 A JP 22711888A JP H0274029 A JPH0274029 A JP H0274029A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- gas
- raw material
- reaction chamber
- growth substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔概 要〕
原子層エピタキシー法とそれに適用する装置に関し、
不純物含有の少ない高品質な薄膜を、しかも、高速に成
長させることを目的とし、
反応チャンバ内において同一方向に定常流れを有する複
数の原料ガスの間に、同一方向に定常流れを有する不活
性ガスを介在させ、被成長基板を該不活性ガスを横切っ
て前記複数の原料ガスの流れの中に交互に移動させて原
子層エピタキシャル成長させるようにしたことを特徴と
し、薄膜形成装置は、扇形の反応チャンバを主体とし、
該反応チャンバの要め部にオリフィス弁とターボ分子ポ
ンプを配置し、同チャンバの先端部の中央に不活性ガス
導入口の両側にそれぞれ原料ガス導入口を配置し、被成
長基板を前記チャンバ内の先端部と要め部の中間に位置
させて移動するように構成する。[Detailed Description of the Invention] [Summary] Regarding the atomic layer epitaxy method and the equipment applied thereto, the purpose is to grow high-quality thin films with low impurity content at high speed, and to grow them in the same direction within a reaction chamber. An inert gas having a steady flow in the same direction is interposed between the plurality of source gases having a steady flow, and the substrate to be grown is alternately moved across the inert gas into the flow of the plurality of source gases. The thin film forming apparatus is mainly composed of a fan-shaped reaction chamber,
An orifice valve and a turbo-molecular pump are arranged in the main part of the reaction chamber, and source gas inlets are arranged on both sides of an inert gas inlet in the center of the tip of the chamber, and the substrate to be grown is placed inside the chamber. It is configured to move while being positioned midway between the tip and main part of the.
本発明は薄膜の形成方法とその装置に係り、特に原子層
エピタキシー法とそれに適用する装置に関する。The present invention relates to a method of forming a thin film and an apparatus therefor, and more particularly to an atomic layer epitaxy method and an apparatus applied thereto.
近年、単原子層レベルで成長を制御できる原子層エピタ
キシー(A L E ; Atomic Layer
Epitaxy)法によって高品質な半魂体薄膜を形成
する方法が研究されており、その将来性が期待されてい
る。In recent years, atomic layer epitaxy (ALE), which can control growth at the monoatomic layer level, has been developed.
A method of forming a high-quality half-soul thin film using the epitaxy method has been studied, and its future potential is expected.
また、絶縁膜も高品位な改質のものが望まれて、不純物
・膜欠陥などのない高耐圧・無欠陥・長寿命な絶縁膜が
要望されている。In addition, a high-quality modified insulating film is desired, and an insulating film that is free of impurities, film defects, etc., has a high breakdown voltage, is defect-free, and has a long life.
原子層エピタキシー法は複数の異種原料ガスを交互に切
り換えて被成長基板面に導入しl原子層づつ形成する方
法で、通常の化学気相成長(CVD)法は原料ガスが被
成長基板の上部で反応して被着することが起こるが、原
子層エビクキシー法は一層ずつ積層して確実に被成長基
板面で反応するためにCVD法に比べて高品質な薄膜が
形成できるとして注目されている方法である。The atomic layer epitaxy method is a method in which a plurality of different raw material gases are alternately switched and introduced onto the surface of the growth substrate to form one atomic layer at a time. However, the atomic layer evisceration method stacks one layer at a time to ensure that the reaction occurs on the surface of the growth substrate, so it is attracting attention as being able to form higher-quality thin films than the CVD method. It's a method.
第4図はその原子層エピタキシー法を適用する従来の薄
膜形成装置の断面図を示しており、1は反応管、2は被
成長基板、3はオリフィス弁、4は真空ポンプ、5は原
料ガスAの導入口、6は原料ガスBの導入口、7はバリ
アガスの導入口、5v。Figure 4 shows a cross-sectional view of a conventional thin film forming apparatus applying the atomic layer epitaxy method, in which 1 is a reaction tube, 2 is a growth substrate, 3 is an orifice valve, 4 is a vacuum pump, and 5 is a source gas. Inlet A, 6 inlet for raw material gas B, 7 inlet for barrier gas, 5V.
6V、 7Vはそれらの開閉バルブである。このような
薄膜形成装置は、バリアガスおよび原料ガスA。6V and 7V are their on/off valves. Such a thin film forming apparatus uses barrier gas and raw material gas A.
Bの切り換えによって被成長基板面を流れるガスの種類
を切り換えて1原子層づつ形成する方法が採られる。A method is adopted in which the type of gas flowing on the surface of the growth substrate is changed by switching B to form one atomic layer at a time.
また、このような薄膜形成装置の他に、原料ガスA、B
を別々の仕切られたチャンバ内に流入させておき、被成
長基板をその両チャンバ間に移動させる方法を採る薄膜
形成装置も提案されている。In addition to such a thin film forming apparatus, raw material gases A and B are also used.
A thin film forming apparatus has also been proposed that employs a method in which the growth substrate is caused to flow into separate chambers and the growth substrate is moved between the two chambers.
ところが、それらの方式による原子層エピタキシー法は
原料ガスAと原料ガスBとの切り換えの間に流す遮蔽用
バリアガスの量と時間が不十分であったり、また、ガス
の淀みやすい部分(反応チャンバの壁面やガス導入口近
傍など)ができ、原料ガスが被成長基板面以外の部分で
反応して薄膜が異常成長し、そのように異常成長した薄
膜は剥離され易いためにガスの流れに乗って被成長基板
面に達し、被成長基板面に形成される薄膜中で不純物に
なる問題があり、そうして薄膜の品質が低下する。However, in the atomic layer epitaxy method using these methods, the amount and time of the shielding barrier gas flowing between the switching between source gas A and source gas B is insufficient, and there are cases where the gas stagnates easily (in the reaction chamber). (e.g. on the wall or near the gas inlet), the raw material gas reacts on areas other than the surface of the substrate to be grown, and the thin film grows abnormally, and such abnormally grown thin films are easily peeled off, so they are easily removed by the gas flow. There is a problem that it reaches the surface of the growth substrate and becomes an impurity in the thin film formed on the surface of the growth substrate, thus deteriorating the quality of the thin film.
本発明はそのような問題点を軽減して、不純物含有の少
ない高品質な薄膜を、しかも、高速に形成することを目
的とした薄膜の形成方法とその装置を提案するものであ
る。The present invention proposes a method and apparatus for forming a thin film, which aims to alleviate such problems and form a high-quality thin film containing few impurities at high speed.
その課題は、反応チャンバ内において同一方向に定常流
れを有する複数の原料ガスの間に、同一方向に定常流れ
を有する不活性ガスを介在させ、被成長基板を該不活性
ガスを横切って前記複数の原料ガスの流れの中に交互に
移動させて原子層エピタキシャル成長させるようにした
薄膜の形成方法によって解決される。The problem is to interpose an inert gas having a steady flow in the same direction between a plurality of raw material gases having a steady flow in the same direction in a reaction chamber, and to move the growth substrate across the plurality of inert gases. This problem is solved by a method of forming a thin film in which atomic layer epitaxial growth is performed by moving the source gases alternately into the flow of the source gas.
また、それを実施する薄膜形成装置として、第1図に示
す実施例図のように、扇形の反応チャンバ10の要め部
11にオリフィス弁OFとターボ分子ポンプvPを配置
し、同チャンバの先端部12の中央に不活性ガス導入口
Ncの両側にそれぞれ原料ガス導入口Ha、 Nbを配
置し、被成長基板Wを前記チャンバ内の先端部と要め部
の中間に位置させて移動するように構成にする。In addition, as a thin film forming apparatus for carrying out this process, an orifice valve OF and a turbo molecular pump vP are arranged in the main part 11 of a fan-shaped reaction chamber 10, as shown in the embodiment diagram shown in FIG. Source gas inlets Ha and Nb are arranged on both sides of an inert gas inlet Nc in the center of the chamber 12, and the growth substrate W is moved to a position between the tip and the main part in the chamber. Configure it.
即ち、本発明は、複数の原料ガスの流れの間に不活性ガ
スの流れを介在させ、これらを同一方向の定常流れとし
て被成長基板を移動させて原子層エピタキシャル成長さ
せる。That is, in the present invention, a flow of inert gas is interposed between the flows of a plurality of raw material gases, and the growth substrate is moved as a steady flow in the same direction to perform atomic layer epitaxial growth.
それを実施するための装置は、例えば、扇形反応チャン
バの要め部にオリフィス弁とターボ分子ポンプなどの排
気系を配置し、出先端部に原料ガス、不活性ガスの導入
口を設けてそれらの定常流れをつくり、被成長基板Wは
その中間に位置させて定常流れの中を移動するような構
造にする。A device for carrying out this process is, for example, by arranging an exhaust system such as an orifice valve and a turbomolecular pump at the main part of a fan-shaped reaction chamber, and providing an inlet for raw material gas and inert gas at the tip. A steady flow is created, and the growth substrate W is positioned in the middle and moves in the steady flow.
そうすれば、ガスの淀み部分で原料ガスが反応して異常
成長する問題もなくなり、且つ、ガス切り換えの必要も
ないから、高品質な薄膜を高速に成長できる。This eliminates the problem of abnormal growth caused by reaction of the raw material gas in gas stagnation areas, and also eliminates the need for gas switching, allowing high-quality thin films to be grown at high speed.
以下、図面を参照して実施例によって詳細に説明する。 Hereinafter, embodiments will be described in detail with reference to the drawings.
第1図は本発明の第1実施例にかかる薄膜形成装置の概
念図を示しており、第2図はその斜視図である。図中の
IOは扇形の反応チャンバ、 11はその要め部、12
は出先端部、Wは被成長基板、叶はオリフィス弁、vP
はターボ分子ポンプ、 Ncは不活性ガス導入口、 H
aはA原料ガス導入口、 NbはB原料ガス導入口、
Vc、 Va、 Vbはそれらの導入口に付属した開閉
バルブである。本装置は不活性ガスを中央にして両側に
原料ガスを流して定常流れをつくり、被成長基板Wを原
料ガスの間に往復移動させて成長するような構成である
。被成長基板Wの移動機構は図示していないが、例えば
、移動区間にベルトを配置して、その上に被成長基板W
を載置し、反応チャンバの外部からベローズ封止を介し
てモータ駆動によって左右に移動させる方法を用いる。FIG. 1 shows a conceptual diagram of a thin film forming apparatus according to a first embodiment of the present invention, and FIG. 2 is a perspective view thereof. In the figure, IO is a fan-shaped reaction chamber, 11 is its main part, 12
is the protrusion tip, W is the growth substrate, leaf is the orifice valve, vP
is a turbo molecular pump, Nc is an inert gas inlet, H
a is the A source gas inlet, Nb is the B source gas inlet,
Vc, Va, and Vb are on-off valves attached to these inlets. This apparatus has a structure in which a steady flow is created by flowing source gas on both sides with an inert gas in the center, and growth is performed by moving the substrate W to be grown back and forth between the source gases. Although the mechanism for moving the growth substrate W is not shown, for example, a belt may be arranged in the movement section and the growth substrate W may be moved on the belt.
A method is used in which a sample is placed on the reaction chamber and moved left and right by a motor through a bellows seal from outside the reaction chamber.
このような第1図に示す薄膜形成装置によって、例えば
、GaAs結晶薄膜を形成する場合を説明すると、まず
、ターボ分子ポンプvPによって5X10−7Torr
まで排気し、被成長基板Wを300℃に加熱した後、最
初に、中央の開閉バルブVcを開けてAr (アルゴン
)ガスを不活性ガス導入口Ncから1000sccII
+流入し、反応チャンバII内の圧力がI Torrに
なるようにオリフィス弁OFを調整する。次に、開閉バ
ルブVa、 Vbを開けてA反応ガス導入口Naから水
素(H2)をキャリアガスとしたトリエチルガリウム(
Ga(C,H5)a )ガスを50secm流入し、且
つ、B反応ガス導入口NbからH2をキャリアガスとし
たアルシン(AsH3)ガスを50secrB流入する
。この時、中央のArガスの流れのためにH2+Ga(
Cユ115)aガスとH2+ Ga (C4H9) 3
ガスとは混合せず、定常な流れがつくられる。To explain the case where, for example, a GaAs crystal thin film is formed using the thin film forming apparatus shown in FIG.
After heating the growth substrate W to 300° C., first open the central opening/closing valve Vc and inject Ar (argon) gas from the inert gas inlet Nc at 1000 sccII.
+ inflow and adjust the orifice valve OF so that the pressure in reaction chamber II is I Torr. Next, open the on-off valves Va and Vb to inject triethyl gallium (
Ga(C,H5)a) gas flows in for 50 seconds, and arsine (AsH3) gas with H2 as a carrier gas flows in for 50 seconds from the B reaction gas inlet Nb. At this time, H2+Ga(
C115) a gas and H2+ Ga (C4H9) 3
It does not mix with gas, creating a steady flow.
そのようにしてつくられた定常流れを乱さないように、
被成長基板Wを往復速度5秒の周期でArガスの流れを
越えてH2+ Ga (C□1jyhガスとH2+ G
a (C工H1)3ガスとの間を移動させる。その操作
を500回繰り返して500分子層からなるGaAs結
晶薄膜を成長する。このような形成法によれば、原料ガ
スを切り換える必要がないがら、成長速度が速くて薄膜
が形成でき、しかも、異常成長がないために、成長した
GaAs結晶薄膜は薄膜中に不純物の混入が観察されず
、高品質な薄膜が形成された。In order not to disturb the steady flow created in this way,
H2+ Ga (C□1jyh gas and H2+ G
a (C Engineering H1) Move between 3 gases. This operation is repeated 500 times to grow a GaAs crystal thin film consisting of 500 molecular layers. According to this formation method, it is not necessary to switch the raw material gas, the growth rate is fast, and a thin film can be formed. Moreover, since there is no abnormal growth, the grown GaAs crystal thin film is free from the contamination of impurities in the thin film. This was not observed, and a high quality thin film was formed.
次に、第3図は本発明の第2実施例にかかる薄膜形成装
置の概念図を示しており、第1図と同一部材には同一記
号が付けであるが、その他のSaはA原料ガス源容器、
sbはB原料ガス源容器、 fla。Next, FIG. 3 shows a conceptual diagram of a thin film forming apparatus according to a second embodiment of the present invention, in which the same members as in FIG. 1 are given the same symbols. source container,
sb is B raw material gas source container, fla.
Hbはキャリアガス流入口である。本装置は第1図で説
明した構成の特徴の他に、A原料ガス導入口Na、 B
原料ガス導入口Nbに直接開閉バルブを設けず、A原料
ガス源容器Sa、 B原料ガス源容器sbへのキャリ
アガスの流入・停止によって反応ガスの反応管への流入
・停止をおこなう装置で、開閉バルブVa、 Vbは容
器Sa、 Sbより後のキャリアガス流入口側に設けで
ある。このような装置は腐食性の強い反応ガスを用いて
薄膜を形成する場合に使用される。例えば、Al203
(アルミナ)は従来のCVD法では十分な絶縁耐圧が得
られず、そのために原子層エピタキシー法が用いられて
いるが、そのようなAl2o、、薄膜の形成に使用して
有効な装置である。Hb is a carrier gas inlet. In addition to the features of the configuration explained in Fig. 1, this device has a raw material gas inlet A, Na,
A device that does not provide a direct opening/closing valve at the raw material gas inlet Nb, and flows and stops the reaction gas into the reaction tube by flowing and stopping the carrier gas into the A raw material gas source container Sa and the B raw material gas source container sb, The on-off valves Va and Vb are provided on the carrier gas inlet side after the containers Sa and Sb. Such an apparatus is used when forming a thin film using a highly corrosive reaction gas. For example, Al203
For (alumina), sufficient dielectric strength cannot be obtained by the conventional CVD method, and therefore the atomic layer epitaxy method is used, but this is an effective device for forming such a thin film.
第3図に示す薄膜形成装置(II)によってAl2O3
薄膜を形成する場合について説明すると、ターボ分子ポ
ンプvPによって5 X 10’Torrまで排気し、
被成長基板Wを300℃に加熱した後、最初に、中央の
開閉バルブVcを開けてArガスを不活性ガス導入口N
cから1000scc+*流入し、反応チャンバ11内
の圧力がI Torrになるようにオリフィス弁針を絞
る。次に、A原料ガス源容器SaにAlCl3 (塩
化アルミニウム)を収容し、110℃に加熱して開閉バ
ルブVaを開け、また、日原料ガス源容器sbに水を収
容して開閉バルブvbを開けて、キャリアガスとして計
ガスをキャリアガス流人口Ha、 Hbから流入してA
r+AlCl3ガスと計+水蒸気の定常流れを形成する
。この時、中央のArガスの流れのために計+AlCl
、ガスとAr十氷水蒸気ガスは混合されない。Al2O3 is formed by the thin film forming apparatus (II) shown in FIG.
To explain the case of forming a thin film, exhaust to 5 x 10'Torr using a turbo molecular pump vP,
After heating the growth substrate W to 300°C, first open the central opening/closing valve Vc to inject Ar gas into the inert gas inlet N.
The orifice valve needle is throttled so that the pressure in the reaction chamber 11 becomes I Torr. Next, AlCl3 (aluminum chloride) is stored in the A raw material gas source container Sa, heated to 110°C and the on-off valve Va is opened, and water is stored in the raw material gas source container sb and the on-off valve Vb is opened. Then, the meter gas as a carrier gas flows in from the carrier gas flows Ha and Hb to A.
A steady flow of r+AlCl3 gas and water vapor is formed. At this time, due to the central Ar gas flow, total +AlCl
, the gas and Ar ice water vapor gas are not mixed.
かくしてつくられた定常流れを乱さないように、被成長
基板Wを往復速度5秒の周期でArガスの流れを越えて
Ar+^Ic1.ガスとAr十氷水蒸気ガスの間を移動
させ、その操作を3000回繰り返して2000分子層
からなるアルミナ多結品薄■りを成長する。In order not to disturb the steady flow created in this way, the growth substrate W is moved over the Ar gas flow at a reciprocating speed of 5 seconds so as not to disturb the steady flow of Ar+^Ic1. A thin alumina polycrystalline product consisting of 2000 molecular layers is grown by moving between the gas and the Ar ice water vapor gas and repeating this operation 3000 times.
このようなアルミナ薄膜はガス切り換えが不要のために
成長速度が速く、しかも、被成長基板面以外での異常成
長がなく、従って、ピンホールが観察されず、薄膜中に
不純物粒子が見られず、進縁耐圧の高いアルミナ薄膜が
得られる。This kind of alumina thin film has a fast growth rate because it does not require gas switching, and there is no abnormal growth on surfaces other than the growth substrate surface, so no pinholes are observed and no impurity particles are observed in the thin film. , an alumina thin film with high leading edge breakdown voltage can be obtained.
このようなアルミナ薄膜はELパネルの絶縁層などに利
用して、その品質を向上させることができる。Such an alumina thin film can be used as an insulating layer of an EL panel to improve its quality.
以上の実施例の説明から明らかなように、本発明にかか
る薄膜の形成方法および装置によれば、異常成長が薄膜
中に含まれず、高品質な結晶薄膜。As is clear from the description of the embodiments above, according to the thin film forming method and apparatus according to the present invention, a high quality crystalline thin film is produced without abnormal growth in the thin film.
多結晶薄膜が得られて、しかも、高速に形成できて製造
コストを低下させることができ、半導体装置その他の電
子デバイスの発展に大きく寄与するものである。A polycrystalline thin film can be obtained, which can be formed at high speed, and manufacturing costs can be reduced, thereby greatly contributing to the development of semiconductor devices and other electronic devices.
第1図は本発明の第1実施例にかかる薄膜形成装置の概
念図、
第2図は第1図の薄膜形成装置の斜視図、第3図は本発
明の第2実施例にかかる薄膜形成装置の概念図、
第4図は従来の薄膜形成装置の概念図である。
図において、
10は扇形反応チャンバ、
11は要め部、
12は開先端部、
vpはターボ分子ポンプ、
OFはオリフィス弁、
Wは被成長基板、
Ncは不活性ガス導入口、
闘aはA原料ガス導入口、
NbはB原料ガス導入口、
Vc、 Va、 Vbは開閉バルブ、
SaはA原料ガス源容器、
SbはB原料ガス源容器、
Ha、 Hbはキャリアガス流入口
を示している。
′ミミH奪 ントqasq二jT りざ111例(H
7)z・3プ鵡トi更セρ冥゛;駒%−1社すして仁り
]暮 第、□
才[m−)族形双に1の斜視■
第
図
■P
シト劣5g耳、、うi2Eズ臼例1:r>xi尽檗形八
へ8ど【っ叛Gり第3図FIG. 1 is a conceptual diagram of a thin film forming apparatus according to a first embodiment of the present invention, FIG. 2 is a perspective view of the thin film forming apparatus of FIG. 1, and FIG. 3 is a thin film forming apparatus according to a second embodiment of the present invention. Conceptual Diagram of Apparatus FIG. 4 is a conceptual diagram of a conventional thin film forming apparatus. In the figure, 10 is a fan-shaped reaction chamber, 11 is a main part, 12 is an open end, vp is a turbo molecular pump, OF is an orifice valve, W is a growth substrate, Nc is an inert gas inlet, and a is A Raw material gas inlet; Nb is B raw gas inlet; Vc, Va, and Vb are on/off valves; Sa is A raw gas source container; Sb is B raw gas source container; Ha and Hb are carrier gas inlets. . 'Mimi H abduction ntqasq2jT Riza 111 cases (H
7) z・3 putts i further set ρmei゛; piece %-1 company sushi niri] second, □ sai [m-) family form double 1 strabismus■ fig.■P sit inferior 5g ears ,,ui2Ezu example 1: r>xi exhaustion form 8 to 8do [rebellion Fig.
Claims (3)
流れを有する複数の原料ガスの間に、同一方向に定常流
れを有する不活性ガスを介在させ、被成長基板(W)を
該不活性ガスを横切って前記複数の原料ガスの流れの中
に交互に移動させて原子層エピタキシャル成長させるよ
うにしたことを特徴とする薄膜の形成方法。(1) An inert gas having a steady flow in the same direction is interposed between a plurality of raw material gases having a steady flow in the same direction in the reaction chamber (10), and the growth substrate (W) is A method for forming a thin film, characterized in that atomic layer epitaxial growth is performed by moving the plurality of source gases alternately across the flow of the plurality of source gases.
停止を原料ガス源へのキャリアガスの流入・停止によっ
ておこなうようにしたことを特徴とする請求項1記載の
薄膜の形成方法。(2) Inflow of the raw material gas into the reaction chamber (10)
2. The method of forming a thin film according to claim 1, wherein the stopping is performed by inflowing and stopping carrier gas to the raw material gas source.
チャンバの要め部(11)にオリフィス弁(OF)とタ
ーボ分子ポンプ(VP)を配置し、同チャンバの先端部
(12)の中央に不活性ガス導入口(Nc)の両側にそ
れぞれ原料ガス導入口(Na、Nb)を配置し、被成長
基板(W)を前記チャンバ内の先端部と要め部の中間に
位置させて移動するように構成したことを特徴とする薄
膜形成装置。(3) The fan-shaped reaction chamber (10) is the main body, an orifice valve (OF) and a turbo molecular pump (VP) are arranged at the main part (11) of the reaction chamber, and the tip part (12) of the chamber is Raw material gas inlets (Na, Nb) are arranged on both sides of an inert gas inlet (Nc) in the center, and the growth substrate (W) is located between the tip and the main part in the chamber. A thin film forming apparatus characterized in that it is configured to move.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22711888A JP2717972B2 (en) | 1988-09-09 | 1988-09-09 | Method and apparatus for forming thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22711888A JP2717972B2 (en) | 1988-09-09 | 1988-09-09 | Method and apparatus for forming thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0274029A true JPH0274029A (en) | 1990-03-14 |
JP2717972B2 JP2717972B2 (en) | 1998-02-25 |
Family
ID=16855759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22711888A Expired - Fee Related JP2717972B2 (en) | 1988-09-09 | 1988-09-09 | Method and apparatus for forming thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2717972B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05166734A (en) * | 1991-12-13 | 1993-07-02 | Mitsubishi Electric Corp | Chemical vapor growth method and chemical vapor growth processing system therefor and chemical vapor growth apparatus |
US5480818A (en) * | 1992-02-10 | 1996-01-02 | Fujitsu Limited | Method for forming a film and method for manufacturing a thin film transistor |
US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US7033922B2 (en) | 2000-06-28 | 2006-04-25 | Applied Materials. Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
-
1988
- 1988-09-09 JP JP22711888A patent/JP2717972B2/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05166734A (en) * | 1991-12-13 | 1993-07-02 | Mitsubishi Electric Corp | Chemical vapor growth method and chemical vapor growth processing system therefor and chemical vapor growth apparatus |
US5480818A (en) * | 1992-02-10 | 1996-01-02 | Fujitsu Limited | Method for forming a film and method for manufacturing a thin film transistor |
US7501343B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
US7033922B2 (en) | 2000-06-28 | 2006-04-25 | Applied Materials. Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
US7094685B2 (en) | 2002-01-26 | 2006-08-22 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
US7473638B2 (en) | 2002-01-26 | 2009-01-06 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
US7732325B2 (en) | 2002-01-26 | 2010-06-08 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
Also Published As
Publication number | Publication date |
---|---|
JP2717972B2 (en) | 1998-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2712367B2 (en) | Method and apparatus for forming thin film | |
US5483919A (en) | Atomic layer epitaxy method and apparatus | |
JPS6364993A (en) | Growth method of elemental semiconductor single crystal thin film | |
JPH0274029A (en) | Thin film forming method and device | |
JPH01313927A (en) | Compound-semiconductor crystal growth method | |
JPS6291495A (en) | Vapor growth method for thin semiconductor film | |
JPH04162418A (en) | Chemical vapor growth method | |
US20220123131A1 (en) | Method of forming structures for threshold voltage control | |
JPS63226917A (en) | Semiconductor vapor phase processing equipment | |
JP2577544B2 (en) | Method for manufacturing semiconductor device | |
JPS6355193A (en) | Apparatus for growing compound semiconductor crystal | |
JP2587624B2 (en) | Epitaxial crystal growth method for compound semiconductor | |
JP2541037B2 (en) | Oxide superconducting thin film synthesis method | |
JPS6364994A (en) | Apparatus for growing compound semiconductor crystal | |
JPS62274712A (en) | Molecular beam crystal growth | |
JPS61260622A (en) | Growth method of GaAs single crystal thin film | |
JP2743444B2 (en) | (III)-Vapor phase growth apparatus for Group V compound semiconductor | |
JPS6324614A (en) | Apparatus for manufacturing semiconductor | |
JP2753832B2 (en) | III-V Vapor Phase Growth of Group V Compound Semiconductor | |
JP3242333B2 (en) | Compound semiconductor vapor phase growth apparatus and growth method using the same | |
JP2736417B2 (en) | Semiconductor element manufacturing method | |
JPH02117128A (en) | Method for manufacturing compound semiconductor device | |
JPH03195016A (en) | Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus | |
JPS62202894A (en) | Vapor phase growth method for Group III/V compound semiconductors | |
JPH02116120A (en) | Crystal growth method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |