[go: up one dir, main page]

JPH0269781A - Corona electrifying device - Google Patents

Corona electrifying device

Info

Publication number
JPH0269781A
JPH0269781A JP22199888A JP22199888A JPH0269781A JP H0269781 A JPH0269781 A JP H0269781A JP 22199888 A JP22199888 A JP 22199888A JP 22199888 A JP22199888 A JP 22199888A JP H0269781 A JPH0269781 A JP H0269781A
Authority
JP
Japan
Prior art keywords
voltage
high voltage
discharge
corona
corona discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22199888A
Other languages
Japanese (ja)
Inventor
Satoshi Fukushima
聡 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22199888A priority Critical patent/JPH0269781A/en
Publication of JPH0269781A publication Critical patent/JPH0269781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

PURPOSE:To prevent the deterioration of an image without causing an abnormal discharge to a photosensitive body or a shield electrode, etc., by superposing an AC voltage on a DC high voltage, generating a (+) corona current being equal to the case of only the DC high voltage efficiently by executing a stronger discharge, and using a square wave of 25% - 80% duty as the AC voltage. CONSTITUTION:When the charge give to the surface of an electrifying member is required by >=200nc/m<2> in order to electrify a member to be electrified to a desired potential, a high voltage is obtained by superposing an AC voltage on a DC high voltage. Also, a DC voltage value and on AC voltage value are set so that the polarity of a corona discharge current becomes only a component of the same polarity as that of the DC high voltage, a waveform of the AC voltage is a square wave, and a ratio of the same polarity portion as the DC voltage superposed on the square wave per one period of the square wave is 25% - 80%. In such a way, an abnormal discharge (spark discharge, etc.) to the member to be electrified, a shield electrode member, etc., is not caused, and the deterioration of an image quality can be prevented.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は被帯電部材を一様に帯電させるためのコロナ帯
電装置に関し、詳しくはコロナ放電線にDC(直流)電
圧とAC(交流)電圧の重畳電圧を印加してコロナ放電
を発生させるコロナ帯電装置、より具体的には静電写真
作像面を正又は負に帯電させるコロナ帯電装置に関する
Detailed Description of the Invention: "Industrial Application Field" The present invention relates to a corona charging device for uniformly charging a member to be charged. The present invention relates to a corona charging device that generates corona discharge by applying a superimposed voltage, and more specifically to a corona charging device that positively or negatively charges an electrostatographic imaging surface.

「従来の技術」 コロナ放電線に高電圧を印加してコロナ放電を発生させ
、被帯電部材を一様に帯電させるための帯電装置は印加
電圧の種類から見て下記の4つの系のものに分類される
"Prior Art" Charging devices for uniformly charging a charged member by applying a high voltage to a corona discharge wire to generate a corona discharge are classified into the following four types based on the type of applied voltage. being classified.

■ DC高電圧を印加する系のもの 最も一般的なものでコロナ放電線に正極性(■)のDC
高電圧を印加することにより■放電を生じ、負極性eの
高電圧を印加することによりO放電を生じる。
■ The most common system that applies DC high voltage. Positive polarity (■) DC is applied to the corona discharge wire.
By applying a high voltage, a (1) discharge is generated, and by applying a high voltage of negative polarity (e), an O discharge is generated.

■ AC電圧とDC電圧の重畳電圧を印加する系のもの AC電圧による■・0両極性のコロナ放電が主体で、そ
の両極性のコロナ放電荷重(電流量)の差分て被帯電部
材の■帯電又はθ帯電を行うもの。DC電圧は補助的な
もので、AC電圧による■と0両極性のコロナ放電電荷
量の差を加減したり、その差を一定に保つ役目をする。
■ Systems that apply a superimposed voltage of AC voltage and DC voltage Mainly corona discharge of ■・0 polarity due to AC voltage, and the charged member is charged by the difference in the corona discharge load (current amount) of both polarities. Or one that performs θ charging. The DC voltage is an auxiliary voltage, and serves to adjust the difference in the amount of corona discharge charge between the two polarities and the zero polarity due to the AC voltage, and to keep the difference constant.

■ AC電圧とDC高電圧の重畳電圧を印加する系のも
の DC高電圧によって決まる■もしくは○極性のコロナ放
電電荷のみにより被帯電部材を該電荷に応じた極性に帯
電するもの、AC電圧は補助的なものでDC高電圧によ
る■もしくはe極性のコロナ電流量を時間的に変動させ
る役目をする。
■ Systems that apply a superimposed voltage of AC voltage and DC high voltage Systems that charge the charged member to the polarity corresponding to the ■ or ○ polarity corona discharge charge determined by the DC high voltage, and the AC voltage is auxiliary. It serves to temporally vary the amount of corona current of either 2 or e polarity due to DC high voltage.

■ 印加電圧として、交流波形を片方へ歪ませたり、脈
流のみなどの特殊波形電圧を印加する系のもの また本出願人は特開昭61−4082号公報において上
記■の系の改善に関する■の系の開示を行っている。
■ A system in which a special waveform voltage is applied as the applied voltage, such as distorting the AC waveform to one side or generating only pulsating current.The present applicant also published Japanese Patent Application Laid-Open No. 61-4082 regarding the improvement of the above system (■). We are disclosing the system.

該公開公報ζこ示す発明は高電圧をコロナ放電線に印加
してコロナ放電を発生させるコロナ放電装置において、
該高電圧がDC高電圧にAC1FC圧を重畳したもので
あり、かつコロナ放電電流の極性がDC高電圧と同極の
成分のみになるようにDC電圧値およびAC電圧値を設
定したことを特徴とするコロナ放電装置であり、放電線
の状態(表面性、汚れ具合、線径等)によるコロナ放′
1線長手に沿う放電分布に実質的にムラのない安定した
コロナ放電を得ることを主な目的としたものである。
The invention disclosed in the published publication ζ relates to a corona discharge device that generates corona discharge by applying a high voltage to a corona discharge wire,
The high voltage is a DC high voltage superimposed with an AC1FC voltage, and the DC voltage value and the AC voltage value are set so that the polarity of the corona discharge current is only a component with the same polarity as the DC high voltage. This is a corona discharge device with
The main objective is to obtain a stable corona discharge with substantially no unevenness in the discharge distribution along the length of one line.

「発明が解決しようとしている課題」 一般に静電写真に用いられる感光体のように製造過程で
大面積成膜を行う場合に、特に真空成膜法では膜の異常
成長、ピンホールの発生が不可避である。被帯電部材に
上記異常成長、ピンホールが存在すると、その部分は低
抵抗な微小領域となり例えば静電写真画像形成過程では
該部分が画像欠陥となる現象がある。
``Problem to be solved by the invention'' When large-area films are formed during the manufacturing process, such as with photoreceptors generally used in electrostatic photography, abnormal growth of the film and the occurrence of pinholes are unavoidable, especially in vacuum film-forming methods. It is. If the above-mentioned abnormal growth or pinhole exists on the member to be charged, that portion becomes a minute region of low resistance, and for example, there is a phenomenon in which the portion becomes an image defect in an electrostatic image forming process.

このように被帯電部材上に電荷保持能力のない低抵抗な
微小領域が存在した場合、該被帯電部材に対するコロナ
放電による帯電部材表面に付与する電荷を200nc/
cm2以上必要とするような条件の下では、従来の方法
では放電線の状態を極力均一にし放電ムラを抑制しても
上記低抵抗領域周囲が通常の被帯電部材上に対して過剰
に帯電される現象が生じた。上記現象が生ずる機(4°
4は明らかではないが、以下のような理由によると考え
られる。被帯電部材に低抵抗微小領域が存在するとその
領域と周囲の正常部分との帯電能力の差により電位差が
生じ、近傍の電界が強化される。これによりコロナ帯電
装置の該領域に対向する部分の放電が強化されることに
より、被帯電部材への充電電流が増加し上記領域周囲が
過剰に帯電される。さらに被帯電部材表面に付与する電
荷を200nc/cm2以上必要とし、すなわち被帯電
部材に対する充電電流をより多く必要とし、その結果と
して被帯電部材上での電界強度がより強く、また、コロ
ナ生成物による影響がより増大する場合に、成膜過程に
おいて発生する異常成長、ピンホール等が上記過剰帯電
現象を顕著に生ずるような微小低抵抗領域となる。
In this way, if there is a low-resistance minute region with no charge retention ability on the charged member, the charge applied to the surface of the charged member due to corona discharge to the charged member may be reduced to 200 nc/min.
Under conditions where cm2 or more is required, even if the conventional method makes the state of the discharge wire as uniform as possible and suppresses discharge unevenness, the area around the low resistance region will be excessively charged compared to the normal charged member. A phenomenon occurred. The machine where the above phenomenon occurs (4°
4 is not clear, but it is thought to be due to the following reasons. When a low-resistance minute region exists in a member to be charged, a potential difference is generated due to a difference in charging ability between the region and a surrounding normal portion, and the electric field in the vicinity is strengthened. This intensifies the discharge of the portion of the corona charging device that faces the area, thereby increasing the charging current to the charged member and excessively charging the area around the area. Furthermore, it is necessary to apply a charge of 200 nc/cm2 or more to the surface of the charged member, that is, a larger charging current is required for the charged member, and as a result, the electric field strength on the charged member is stronger, and corona products are generated. When the influence of this phenomenon increases, abnormal growth, pinholes, etc. that occur during the film formation process become a minute low-resistance region where the above-mentioned excessive charging phenomenon occurs significantly.

このような過剰帯電現象を防止することを目的としてさ
らに充分に強いコロナ放電を行い、これによる総数電電
流の一部分を被帯電部材に対する充電電流として用いる
ことによって上記の過剰帯電現象を抑制し帯電を均一化
する場合、総放電電流量を増大させる必要があり、その
ために使用電源は高出力高容量の大型のものとなる問題
があった。更に放電電流密度の増大に伴いシールド電極
部材等との異常放電(火花放電等)を引き起こすといっ
た問題もあった。又、総放電電流量の増大に伴いオゾン
(05)、窒素酸化物(NOx)等のコロナ生成物の発
生量も増大するという問題があった。また上記問題を解
決することを目的として、すなわち総放電電流量を一定
にして放電を強化するために、DC高電圧にAC電圧の
重畳電圧を用いた放電を行う場合については、被放電部
材表面に付与する電荷量を2oonc/cm2以上必要
とする場合、前述のように必然的に放電空間での電界強
度が強化されることによって、例えばAC電圧としてサ
イン波もしくはデユーティの少ない(より具体的には2
5%以下の)矩形波を用いると被帯電部材、シールド電
極部材等との異常放電(火花放電等)を引き起こすとい
った問題が生じた。
In order to prevent such excessive charging phenomenon, a sufficiently strong corona discharge is performed, and a part of the total electric current resulting from this is used as a charging current for the charged member, thereby suppressing the above excessive charging phenomenon and reducing charging. In order to achieve uniformity, it is necessary to increase the total amount of discharge current, which poses a problem in that the power source used must be large with high output and high capacity. Furthermore, as the discharge current density increases, there is a problem in that abnormal discharge (spark discharge, etc.) occurs with the shield electrode member and the like. Furthermore, there is a problem in that as the total amount of discharge current increases, the amount of corona products such as ozone (05) and nitrogen oxides (NOx) increases. In addition, for the purpose of solving the above problem, that is, in order to keep the total amount of discharge current constant and strengthen the discharge, when performing discharge using a superimposed voltage of AC voltage on DC high voltage, the surface of the discharged member When it is necessary to apply a charge amount of 2oonc/cm2 or more to is 2
When a rectangular wave (of 5% or less) is used, a problem arises in that abnormal discharge (spark discharge, etc.) occurs with the charged member, the shield electrode member, etc.

「課題を解決するための手段」 本発明は高電圧をコロナ放電線に印加してコロナ放電を
発生させるコロナ帯電装置において、被帯電部材を所望
の電位に帯電させるために該帯電部材表面に付与する電
荷を200 tlc々2l上々要とする場合に、該高電
圧が直流高電圧に交流電圧を重畳したものであり、かつ
、コロナ放電電流の極性が直流高電圧と同極の成分のみ
になるように直流電圧値および交流電圧値を設定し、前
記交流電圧の波形が矩形波であり、矩形波1周期あたり
の矩形波と重畳する直流電圧と同極性分の比率が25%
〜80チであることを特徴とするコロナ帯電装置である
"Means for Solving the Problems" The present invention relates to a corona charging device that applies a high voltage to a corona discharge wire to generate corona discharge, in which a high voltage is applied to the surface of a charging member in order to charge the member to a desired potential. When the electric charge required is at most 200 tlc or 2 liters, the high voltage is a superimposition of an alternating current voltage on a direct current high voltage, and the polarity of the corona discharge current is only a component with the same polarity as the direct current high voltage. The DC voltage value and the AC voltage value are set as follows, the waveform of the AC voltage is a rectangular wave, and the ratio of the DC voltage and the same polarity component superimposed on the rectangular wave per period of the rectangular wave is 25%.
This is a corona charging device characterized in that the electrification speed is 80 cm.

「実施例」 〔実施例1〕 第1図において、電子写真複写機のドラム型感光体1(
被帯電部材)は矢印方向に所定の周速度で回転駆動され
る。該感光体1は例えばアモルファス・シリコンで、感
光体上に電荷保持能力のない微小低抵抗領域が存在する
"Example" [Example 1] In FIG. 1, a drum-type photoreceptor 1 (
The charged member) is rotated in the direction of the arrow at a predetermined circumferential speed. The photoreceptor 1 is made of, for example, amorphous silicon, and there is a minute low-resistance region on the photoreceptor that does not have the ability to retain charge.

感光体1の面に画像形成するために均一帯電処理するコ
ロナ放電器2が設けである。静電写真を作像するにあた
って、感光体1を所望の電位に帯電させるために必要な
該感光体1に対する電荷付与量は約250nc/cm2
である。感光体1の周囲及び周辺部にはその他、画像露
光装置、現像装置、転写装置、感光体クリーニング装置
等の所要のプロセス実行機器が配設されて電子写真複写
機としての全体機構が構成されるが、図には省略する。
A corona discharger 2 is provided for uniformly charging the surface of the photoreceptor 1 to form an image. When forming an electrostatic photograph, the amount of charge applied to the photoreceptor 1 necessary to charge the photoreceptor 1 to a desired potential is approximately 250 nc/cm2.
It is. Other necessary process execution equipment such as an image exposure device, a developing device, a transfer device, and a photoconductor cleaning device are arranged around and around the photoconductor 1, thereby configuring the entire mechanism of an electrophotographic copying machine. However, it is omitted from the figure.

コロナ放電器2はコロナ放電線3とシールド板4を備え
る。コロナ放電線3と接地間には直列に矩形波AC高圧
電源5とDC高圧電源6が接続される。この直列の両電
源5,6によりコロナ放電線3に対してDC高電圧VD
Cに矩形波AC電圧VPPを重畳した電圧VDC+VP
Pが印加される。シールド板4は接地しである。
The corona discharger 2 includes a corona discharge wire 3 and a shield plate 4. A rectangular wave AC high voltage power source 5 and a DC high voltage power source 6 are connected in series between the corona discharge wire 3 and the ground. DC high voltage VD is applied to the corona discharge wire 3 by these two power supplies 5 and 6 in series.
Voltage VDC+VP where square wave AC voltage VPP is superimposed on C
P is applied. The shield plate 4 is grounded.

本例に於て、矩形波AC高圧電源5の出力vppは周波
数的5oaHz、電圧的8.5 KVpp (peak
lo peak)、DC高圧電源6の出力電圧vDcは
約4.35 KVである。また矩形波−周期あたりの正
電圧出力(デユーティ)は全体の50%とする。
In this example, the output vpp of the square wave AC high voltage power supply 5 has a frequency of 5 oaHz and a voltage of 8.5 KVpp (peak
lo peak), and the output voltage vDc of the DC high voltage power supply 6 is approximately 4.35 KV. Further, the positive voltage output (duty) per rectangular wave period is 50% of the total.

この電圧条件に於てコロナ放電器2から感光体1へ■コ
ロナ放電電源I2が流れ、感光体1面は■帯電を受ける
。前述のとうり感光体1の面を所望の帯電電位にするた
めの充電電流によって該感光体1に対して充電される電
荷量は250nc々2であり、DC高電圧VOCとこれ
に重畳した矩形波AC電圧vppによりこの値が得られ
る。
Under this voltage condition, the corona discharge power source I2 flows from the corona discharger 2 to the photoreceptor 1, and the surface of the photoreceptor is charged. As mentioned above, the amount of charge charged to the photoreceptor 1 by the charging current to bring the surface of the photoreceptor 1 to the desired charging potential is 250 nc2, and the DC high voltage VOC and the rectangle superimposed thereon are This value is obtained by the wave AC voltage vpp.

下表はコロナ放電電流I2を一定に保つようにして、上
記のDC高電圧■Dcに1周期あたりの正電圧出力の占
める割合を種々変化させた矩形波AC電圧VPPを重畳
させた各場合における、実際に画像を出力した場合の感
光体1に存在する低抵抗領域周囲の、均一に帯電された
領域に対する画像濃度差、画像上でのムラの度合いを測
定した結果を示すものである。
The table below shows the results for each case in which a rectangular wave AC voltage VPP with various proportions of positive voltage output per cycle is superimposed on the DC high voltage ■Dc while keeping the corona discharge current I2 constant. , shows the results of measuring the image density difference and the degree of unevenness on the image with respect to a uniformly charged area around the low resistance area existing on the photoreceptor 1 when an image is actually output.

X:実用レベル以下 Δ:はぼ実用レベル ○:実用レベル以上 表から明らかなようにDC高電圧VDCに矩形波AC電
圧VPPを重畳し、ピーク電圧vPを約7.4KV以上
にすることで画像上にムラがほぼ表われなくなる。ピー
ク電圧vPを必要以上に高めるのはスパーク放電防止上
さけねばならず、本例では矩形波AC電圧VPPのデユ
ーティ50%、ピーク電圧8,5KVとした。
X: Below practical level Δ: Almost practical level ○: Above practical level As is clear from the table, by superimposing square wave AC voltage VPP on DC high voltage VDC and making the peak voltage vP about 7.4 KV or more, the image can be improved. There will be almost no unevenness on the top. In order to prevent spark discharge, it is necessary to avoid increasing the peak voltage vP more than necessary, and in this example, the duty of the rectangular wave AC voltage VPP is 50% and the peak voltage is 8.5 KV.

〔実施例2〕 第2図は他の実施例であり、本例は総コロナ電流量工1
を減少させる目的でコロナ放電器2のシールド板4にD
C高圧電源6と同極のバイアス電圧VBをバイアス電源
7から印加して使用するようにしたもので他の構成は第
1図の実施例のものと同様である。バイアス電圧VBは
線形、非線形素子により印加してもよい。
[Example 2] Figure 2 shows another example, and this example shows a total corona current amount of 1
D on the shield plate 4 of the corona discharger 2 for the purpose of reducing
A bias voltage VB of the same polarity as the C high voltage power supply 6 is applied from a bias power supply 7, and the other configuration is the same as that of the embodiment shown in FIG. Bias voltage VB may be applied by a linear or nonlinear element.

コロナ放電a3に対する印加電圧はV。C(4,35K
V) +Vpp(8,7KV、約5ooHz矩形波) 
トL、バイアス電圧VBを1Kvにすると、総電流量1
1は639μAまで減少させしかもコロナ放電電流I2
による感光体1に対する電荷付与量は前記例と同じ25
0nc/an2にして前記例と同等の感光体電位が得ら
れる。また矩形波AC電圧vPi” 1周期あたりの正
電圧出力の割合は25q6とした。
The voltage applied to corona discharge a3 is V. C (4,35K
V) +Vpp (8,7KV, approximately 5ooHz square wave)
When L and bias voltage VB are set to 1Kv, the total current amount is 1
1 reduces the corona discharge current I2 to 639 μA.
The amount of charge applied to the photoreceptor 1 by 25 is the same as in the above example.
At 0 nc/an2, a photoreceptor potential equivalent to that of the above example can be obtained. Further, the ratio of positive voltage output per cycle of the rectangular wave AC voltage vPi'' was set to 25q6.

下表はコロナ放電電流工2を一定に保つようにして、上
記のDC高電圧VDCに1周期あたりの正電圧出力の占
める割合を変化させた矩形波AC電圧”PPを重畳させ
た各場合における実際に画像を出力した場合の感光体1
上に存在する低抵抗領域周囲の、均一に帯電された領域
に対する画像濃度差、画像上でのムラの度合いを測定し
た結果を示すものである。
The table below shows the results for each case in which a rectangular wave AC voltage "PP" in which the proportion of positive voltage output per cycle is varied is superimposed on the above DC high voltage VDC while keeping the corona discharge current 2 constant. Photoconductor 1 when actually outputting an image
This figure shows the results of measuring the difference in image density and the degree of unevenness on the image with respect to the uniformly charged area around the low-resistance area that exists above.

×:実用レベル以下 Δ:はぼ実用レベル O:実用レベル以上 表から明らかなようにDC高電圧Vnc iこ矩形波A
C電圧VPPを重畳し、ピーク電圧vPを約7.1Kv
以上にすることで画像上にムラが表われなくなる。
×: Below practical level Δ: Above practical level O: Above practical level As is clear from the table, DC high voltage Vnc i square wave A
C voltage VPP is superimposed, and the peak voltage vP is approximately 7.1Kv.
By doing the above, unevenness will not appear on the image.

〔実施例3〕 本例では第3図に示すように感光体表面の電位を制御す
ることを目的としてコロナ放電器2にグリッド電極8を
設は該電極にDC高圧電源6と同極のバイアス電圧vG
をバイアス電源7から印加して使用するようにしたもの
で他の構成は第1図の実施例1のものと同様である。バ
イアス電圧vGは線形、非線形素子により印加してもよ
い。シールド板4は接地しである。
[Embodiment 3] In this embodiment, as shown in FIG. 3, a grid electrode 8 is provided in the corona discharger 2 for the purpose of controlling the potential on the surface of the photoreceptor. voltage vG
is used by applying it from a bias power supply 7, and the other configuration is the same as that of the first embodiment shown in FIG. The bias voltage vG may be applied by a linear or nonlinear element. The shield plate 4 is grounded.

コロナ放電線3に対する印加電圧はVDC(4,4KV
) +V、、(8,8KV、 約50 oHz矩形波)
 トL、バイアス電圧vGを所望の感光体1の表面電位
(本例においては約450V)とほぼ同等の電圧にする
ことで上記表面電位を得ることができる。また矩形波A
C電圧vppの正電圧出力のデユーティは50チとした
The voltage applied to the corona discharge wire 3 is VDC (4.4KV
) +V, (8,8KV, approx. 50oHz square wave)
The above-mentioned surface potential can be obtained by setting the bias voltage vG to a voltage substantially equal to the desired surface potential of the photoreceptor 1 (approximately 450 V in this example). Also, square wave A
The duty of the positive voltage output of the C voltage vpp was set to 50 inches.

下表はコロナ放電電流を一定に保つようにして、上記の
DC高電圧VDCにデユーティを変化させた矩形波AC
電圧vppを重畳させた各場合における実際に画像を出
力した場合の感光体上に存在する低抵抗領域周囲の均一
に帯電された領域に対する画像濃度差、画像上でのムラ
の度合いを測定した結果を示すものである。
The table below shows the square wave AC with varying duty to the above DC high voltage VDC while keeping the corona discharge current constant.
Results of measuring the image density difference and degree of unevenness on the image with respect to the uniformly charged area around the low resistance area existing on the photoreceptor when an image is actually output in each case where the voltage vpp is superimposed. This shows that.

×:実用レベル以上 Δ:はぼ実用レベル ○:実用レベル以上 表から明らかなようにDC高電圧VDCに矩形波AC電
圧VPPを重畳し、ピーク電圧を約y、yKV以上にす
ることで画像上にムラがほぼ表われなくなる。またピー
ク電圧を必要以上に高めるのはスパーク放電防止上さけ
なければならず、本例では矩形波AC電圧VPPのデユ
ーティ50%、ピーク電圧8,8KVとした。
×: Practical level or higher Δ: Practical level ○: Practical level or higher The unevenness almost disappears. Further, it is necessary to avoid increasing the peak voltage more than necessary in order to prevent spark discharge, and in this example, the duty of the rectangular wave AC voltage VPP is 50% and the peak voltage is 8.8 KV.

ところで、この直流高電圧と交流電圧の重畳電圧による
感光体に存在する微小低抵抗領域周囲に対する過剰帯電
を抑制する効果は次のような現象によるものと考えられ
る。すなわち、上記重畳電圧を用いることにより実効的
には直流高電圧と同等の感光体方向電流となるが、瞬時
的にはより強い放電を行っている。つまり単位時間あた
りの総数1!電流、感光体に対する充電電流がより大き
く、これを用いて感光体に対して帯電を行っていること
になる。放電を強化し、総数電電流を増加した場合、感
光体上の微小低抵抗領域近傍の電界が強まることによる
対向部分の放電への影響が相対的に少なくなる。これに
よって該領域周囲の過剰帯電を抑制し、より均一な帯電
が可能であると考えられる。
By the way, the effect of suppressing excessive charging around the minute low resistance region existing on the photoreceptor due to the superimposed voltage of the DC high voltage and the AC voltage is thought to be due to the following phenomenon. That is, by using the above-mentioned superimposed voltage, the photoreceptor direction current is effectively equivalent to a DC high voltage, but a stronger discharge is instantaneously performed. In other words, the total number per unit time is 1! The charging current for the photoreceptor is larger, and this is used to charge the photoreceptor. When the discharge is strengthened and the total current is increased, the influence of the electric field in the vicinity of the minute low resistance region on the photoreceptor on the discharge in the opposing portion becomes relatively small. It is thought that this suppresses excessive charging around the area and enables more uniform charging.

本発明は特に■放電に基づいて述べたが、これに限定さ
れるものではない。またシールド板4への印加バイアス
電圧VBは直流、交流に限定されるものではない。
Although the present invention has been particularly described based on (1) discharge, it is not limited thereto. Further, the bias voltage VB applied to the shield plate 4 is not limited to direct current or alternating current.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、例えば■コロナ放電において微小低
抵抗領域の存在する感光体を所望の電位に帯電させる場
合に、直流高電圧のみでコロナ放電させるよりも、直流
高電圧に交流電圧を重畳させ、より強い放電を行い実効
的には直流高電圧のみの場合と同等の■コロナ電流を発
生させることにより又交流電圧としてデユーティ25%
〜80%の矩形波を用いることにより、感光体に付与す
る電荷量を200nc/an’以上必要とするような場
合に、感光体もしくはシールド電極等と異常放電を起こ
さず従って、それによる帯電ムラによって画像劣化させ
ることなく安定な放電を維持しつつ上記低抵抗領域周囲
が過剰に帯電され、他の均一に帯電された領域に対して
画像濃度が高くなり画像品質を劣化させる現象を抑制し
、実用上複写画像上の濃度差によるムラが表われないよ
うにする効果が得られた。
As explained above, for example, when charging a photoreceptor with a small low resistance region to a desired potential during corona discharge, superimposing an AC voltage on a high DC voltage is preferable to performing a corona discharge with only a high DC voltage. , by generating a corona current that is effectively equivalent to the case of only DC high voltage, the duty is 25% as an AC voltage.
By using a ~80% rectangular wave, when the amount of charge applied to the photoconductor needs to be 200 nc/an' or more, abnormal discharge does not occur with the photoconductor or the shield electrode, and therefore uneven charging due to this can be avoided. While maintaining stable discharge without image deterioration, suppressing the phenomenon in which the periphery of the low resistance area is excessively charged, the image density becomes higher than other uniformly charged areas, and the image quality deteriorates, In practice, the effect of preventing the appearance of unevenness due to density differences on a copied image was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1のコロナ放電装置の概略図、第2図は
実施例2のコロナ放電装置の概略図、第3図は実施例3
のコロナ放電装置の概略図である。 1拳・感光体 2・・コロナ放電装置 3・・コロナ放
電a 4・・シールド板 5・・矩形波AC高圧電源 
6・、DC高圧電源 7・・バイアス電源 8・・グリ
ッド電極。 第1図
Fig. 1 is a schematic diagram of the corona discharge device of Example 1, Fig. 2 is a schematic diagram of the corona discharge device of Example 2, and Fig. 3 is a schematic diagram of the corona discharge device of Example 3.
FIG. 2 is a schematic diagram of a corona discharge device. 1. Photoconductor 2. Corona discharge device 3. Corona discharge a 4. Shield plate 5. Square wave AC high voltage power supply
6. DC high voltage power supply 7. Bias power supply 8. Grid electrode. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、高電圧をコロナ放電線に印加してコロナ放電を発生
させるコロナ帯電装置において、被帯電部材を所望の電
位に帯電させるために該帯電部材表面に付与する電荷を
200nc/cm^2以上必要とする場合に、該高電圧
が直流高電圧に交流電圧を重畳したものであり、かつ、
コロナ放電電流の極性が直流高電圧と同極の成分のみに
なるように直流電圧値および交流電圧値を設定し、前記
交流電圧の波形が矩形波であり、矩形波1周期あたりの
矩形波と重畳する直流電圧と同極性分の比率が25%〜
80%であることを特徴とするコロナ帯電装置。
1. In a corona charging device that generates corona discharge by applying a high voltage to a corona discharge wire, in order to charge the charged member to a desired potential, it is necessary to apply a charge of 200 nc/cm^2 or more to the surface of the charging member. In this case, the high voltage is a DC high voltage superimposed with an AC voltage, and
The DC voltage value and the AC voltage value are set so that the polarity of the corona discharge current is only a component with the same polarity as the DC high voltage, and the waveform of the AC voltage is a rectangular wave, and the waveform of the AC voltage is a rectangular wave per cycle of the rectangular wave. The ratio of the same polarity as the superimposed DC voltage is 25% ~
A corona charging device characterized in that the charging rate is 80%.
JP22199888A 1988-09-05 1988-09-05 Corona electrifying device Pending JPH0269781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22199888A JPH0269781A (en) 1988-09-05 1988-09-05 Corona electrifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22199888A JPH0269781A (en) 1988-09-05 1988-09-05 Corona electrifying device

Publications (1)

Publication Number Publication Date
JPH0269781A true JPH0269781A (en) 1990-03-08

Family

ID=16775490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22199888A Pending JPH0269781A (en) 1988-09-05 1988-09-05 Corona electrifying device

Country Status (1)

Country Link
JP (1) JPH0269781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230653A (en) * 1993-02-05 1994-08-19 Japan Vilene Co Ltd Corona discharge device
US5508788A (en) * 1993-09-22 1996-04-16 Kabushiki Kaisha Toshiba Image forming apparatus having contact charger wtih superposed AC/DC bias

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230653A (en) * 1993-02-05 1994-08-19 Japan Vilene Co Ltd Corona discharge device
US5508788A (en) * 1993-09-22 1996-04-16 Kabushiki Kaisha Toshiba Image forming apparatus having contact charger wtih superposed AC/DC bias

Similar Documents

Publication Publication Date Title
JPH0210426B2 (en)
US20040141766A1 (en) Color image forming apparatus
JPS59113458A (en) Apparatus for evenly charging moving web
JPH04171464A (en) Charging device
US5581331A (en) Color image forming apparatus
JPH0269781A (en) Corona electrifying device
JPH08234523A (en) Corona generation apparatus for reelectrification
JPS61278879A (en) Corona discharging device
JPS60216361A (en) Brush electrostatic charging and transferring device
JPH04115168A (en) Current detection circuit
JPH0416867A (en) Contact electrostatic charging device
JPH02189565A (en) Method and device for electrophotographic image formation
JPH05107876A (en) Electrostatic charging device fitted to be used in image forming device
JP2671041B2 (en) Image forming device
JPS6294867A (en) Corona discharging device
JPH06202487A (en) Transfer material transferring and separating method for image forming device
JPS62240980A (en) Destaticizing and electrifying device
JPS60220381A (en) Destaticizing device
JPH05107879A (en) Contact type electrifying device and image forming device
JPS6294866A (en) Corona discharging device
JPH04162059A (en) Developing method
JPH0377981A (en) Method for controlling electrification of dielectric layer and insulating powder layer on dielectric layer
JPS6236229B2 (en)
JPH0442270A (en) Electrification controller for image forming device
JPH04258973A (en) Electrifying device for electrophotography