JPH0269357A - Production of isotropic graphite material having high density and high strength - Google Patents
Production of isotropic graphite material having high density and high strengthInfo
- Publication number
- JPH0269357A JPH0269357A JP63218376A JP21837688A JPH0269357A JP H0269357 A JPH0269357 A JP H0269357A JP 63218376 A JP63218376 A JP 63218376A JP 21837688 A JP21837688 A JP 21837688A JP H0269357 A JPH0269357 A JP H0269357A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- strength
- tar
- graphite material
- mesophase microspheres
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007770 graphite material Substances 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000000465 moulding Methods 0.000 claims abstract description 13
- 238000005245 sintering Methods 0.000 claims abstract description 8
- 238000010304 firing Methods 0.000 claims description 12
- 239000004005 microsphere Substances 0.000 abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 5
- 239000002904 solvent Substances 0.000 abstract description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 abstract description 4
- 239000002641 tar oil Substances 0.000 abstract description 4
- 229910002804 graphite Inorganic materials 0.000 abstract description 3
- 239000010439 graphite Substances 0.000 abstract description 3
- WHRZCXAVMTUTDD-UHFFFAOYSA-N 1h-furo[2,3-d]pyrimidin-2-one Chemical compound N1C(=O)N=C2OC=CC2=C1 WHRZCXAVMTUTDD-UHFFFAOYSA-N 0.000 abstract description 2
- 235000006173 Larrea tridentata Nutrition 0.000 abstract description 2
- 244000073231 Larrea tridentata Species 0.000 abstract description 2
- 229960002126 creosote Drugs 0.000 abstract description 2
- 238000005194 fractionation Methods 0.000 abstract description 2
- 239000011301 petroleum pitch Substances 0.000 abstract description 2
- 239000011294 coal tar pitch Substances 0.000 abstract 1
- 239000002184 metal Substances 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 20
- 239000011269 tar Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000003575 carbonaceous material Substances 0.000 description 8
- 239000011295 pitch Substances 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 238000003475 lamination Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 4
- 238000000280 densification Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000009694 cold isostatic pressing Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011316 heat-treated pitch Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- YLWHMZSPWNQGFG-UHFFFAOYSA-N octadecanoic acid;silicon Chemical class [Si].CCCCCCCCCCCCCCCCCC(O)=O YLWHMZSPWNQGFG-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は放電加工用電極、半導体用冶R@、坩堝、原子
力用カーボンあるいはメカニカルシール等の機械用カー
ボンなど産業上の利用分野で使用されている炭素材料、
特に高密度、高強度の炭素材料の製造方法に関する。[Detailed Description of the Invention] <Industrial Application Fields> The present invention is used in industrial application fields such as electrodes for electrical discharge machining, semiconductor metallurgy, crucibles, carbon for nuclear power, and carbon for machines such as mechanical seals. carbon material,
In particular, the present invention relates to a method for producing a high-density, high-strength carbon material.
〈従来の技術〉
コールタール5ピツチ、石油ピッチ等を350〜500
℃の温度で加熱処理すると、光学的等方性ピッチ中に光
学的異方性を有するメソフェーズ小球体が生成する。こ
のメソフェーズ小球体(以下小球体と称す)は溶剤分別
によりピッチマトリックス中から分離され等方性・高密
度・高強度炭素材料の原料となる。<Conventional technology> 5 pitches of coal tar, 350 to 500 pitches of petroleum pitch, etc.
Heat treatment at a temperature of 0.degree. C. produces mesophase spherules with optical anisotropy in an optically isotropic pitch. These mesophase spherules (hereinafter referred to as spherules) are separated from the pitch matrix by solvent fractionation and serve as a raw material for an isotropic, high-density, and high-strength carbon material.
例えば特公昭6G−25364号公報によれば小球体を
溶剤分別する際に溶剤としてピッチに対しキノリンより
も抽出力の弱いベンゼン、ピリジン、タール中油等の溶
剤を使用し、ピッチ中のβ成分等の成分の一部を小球体
と共に残存させ、しかる後に不活性雰囲気中において2
00〜450℃の温度で仮焼処理することにより、自己
焼結性の優れた高密度・高強度の炭素材用原料が得られ
ることが示されている。この方法により得られた原料を
使用すればバインダーを使用することなく通常の法に従
って成形、焼成、黒鉛化することにより嵩密度が1.8
5 g /cd以上、曲げ強度カ800kg/cd以上
の高密度・高強度・等方性黒鉛材が容易に製造可能であ
る。For example, according to Japanese Patent Publication No. 6G-25364, when small spheres are separated into solvents, solvents such as benzene, pyridine, and oil in tar, which have a weaker extraction power than quinoline for pitch, are used as solvents, and the β components in pitch are separated. A portion of the components of is left with the spherules, and then 2
It has been shown that by calcining at a temperature of 00 to 450°C, a high-density, high-strength raw material for carbon material with excellent self-sintering properties can be obtained. If the raw material obtained by this method is used, the bulk density can be reduced to 1.8 by molding, firing, and graphitizing according to normal methods without using a binder.
A high-density, high-strength, isotropic graphite material with a bending strength of 5 g/cd or more and a bending strength of 800 kg/cd or more can be easily manufactured.
〈発明が解決しようとする課題〉
以上述べたごとく、自己焼結性を有するメソカーボン小
球体は高密度、高強度の炭素材用原料として極めて優れ
た特徴を持っているが、その一方で粉体としては極めて
すべりが悪く、成形性に劣るという欠点を持ワている0
例えば金型を使用して加圧成形を行うに際し、粉体のす
べりが悪いために離型時にラミネーシヨンが発生したり
、あるいは成形圧力の割に成形体の嵩密度が向上し難い
といった問題点がある。<Problems to be solved by the invention> As mentioned above, mesocarbon spherules with self-sintering properties have extremely excellent characteristics as raw materials for high-density and high-strength carbon materials, but on the other hand, It has the drawbacks of extremely poor slippage and poor moldability as a body.
For example, when performing pressure molding using a mold, there are problems such as poor sliding of the powder, which causes lamination when releasing the mold, or difficulty in improving the bulk density of the molded product despite the molding pressure. There is.
したがってこうしたメソフェーズ小球体の成形は通常C
IP(冷間静水圧プレス)法が使用される例が多い、し
かし、CIP法は成形の連続化が困難であり、経済性の
面で劣る1頃向にある。特に比較的小型の炭素材料に関
しては連続化が可能な金型成形が求められる場合が多い
。Therefore, the formation of such mesophase spherules is usually C
The IP (cold isostatic pressing) method is often used, however, the CIP method has difficulty in continuous molding and is less economical. In particular, for relatively small carbon materials, continuous molding is often required.
こうした問題点を解決する手段として通常−膜内には離
型剤として天然黒鉛、シリコンステアリン酸類等を使用
することが行われている。As a means to solve these problems, it is common practice to use natural graphite, silicon stearic acids, etc. as a mold release agent in the film.
しかしこうした対策も該小球体を対象とした場合には充
分ではない。However, these measures are not sufficient when targeting the small spheres.
本発明の目的は、自己焼結性を有するメソフェーズ小球
体を原料として、金型成形が容易で、かつ高密度、高強
度を有する等方性黒鉛材の製造方法を提案するものであ
る。An object of the present invention is to propose a method for producing an isotropic graphite material that is easy to mold with a mold and has high density and high strength using mesophase small spheres having self-sintering properties as a raw material.
く課題を解決するための手段〉
本発明は自己焼結性を有するメソフェーズ小球体を成形
、焼成、黒鉛化することにより等方性黒鉛材を製造する
方法において、成形に先立ちメソフェーズ小球体にター
ル系の油を好ましくは1〜5重量%添加することを特徴
とする高密度、高強度を有する等方性黒鉛材の製造方法
である。Means for Solving the Problems> The present invention provides a method for producing an isotropic graphite material by molding, firing, and graphitizing mesophase spherules having self-sintering properties, in which a tar is added to the mesophase spherules prior to molding. This is a method for producing an isotropic graphite material having high density and high strength, characterized by adding preferably 1 to 5% by weight of oil.
く作 用〉 以下に本発明の詳細な説明する。For Kusaku The present invention will be explained in detail below.
小球体に添加すべきタール系の油とは具体的にはタール
蒸留時に製造されるナフタレン油、クレオソート油、洗
浄油、アントラセン油類を指す。The tar-based oil to be added to the small spheres specifically refers to naphthalene oil, creosote oil, cleaning oil, and anthracene oil produced during tar distillation.
該油類は小球体と極めて親和性に優れ、室温で例えばヘ
ンシェルミキサ等で撹拌することにより容易に均一に混
合することが可能である。該油類はメソフェーズ小球体
表面を均一にぬらし、その表面のすべりを改善する。こ
うして得られる油を添加したメソフェーズ小球体は粉体
としての成形性は良好であり、ラミネーシ言ンの発生も
なく良好な成形体が得られる。The oils have an extremely good affinity with the small spheres, and can be easily and uniformly mixed by stirring with a Henschel mixer or the like at room temperature. The oil uniformly wets the surface of the mesophase spherules and improves the slippage of the surface. The oil-added mesophase microspheres thus obtained have good moldability as a powder, and a good molded product can be obtained without any lamination problems.
しかもさらに重要なことは、該油の添加効果は単に成形
性の改良のみにとどまるものでなく、成形体を焼成ある
いは黒鉛化して得られる炭素材料の高密度・高強度化に
寄与することである。この理由は以下の2点から説明可
能である。まず第1点は同一成形圧力下ではその良好な
成形性から成形体の嵩密度が向上する効果である。第2
魚目は該油類の通常の沸点が100〜360℃の範囲に
あることである0通常このような低沸点留分は成形体の
焼成過程でその大部分が揮発分として飛散して成形体の
緻密化には寄与しないと考えられていた。What is more important is that the effect of adding the oil is not limited to simply improving formability, but also contributes to increasing the density and strength of the carbon material obtained by firing or graphitizing the compact. . The reason for this can be explained from the following two points. The first point is that the bulk density of the molded product is improved due to its good moldability under the same molding pressure. Second
This is due to the fact that the normal boiling point of the oil is in the range of 100 to 360°C.Normally, most of these low boiling point fractions are scattered as volatile matter during the firing process of the molded product It was thought that it would not contribute to the densification of
しかし本発明者等の研究によれば、成形体内部から成形
体外部への該油類の拡散が非常に遅く、メソフェーズ小
球体の緻密化に重要な要因を示す400〜600℃の炭
化領域にまで該油類が成形体内部に残存し炭化溶融反応
を促進し、結果として成形体の焼成時における体積(線
)収縮率を向上させ焼成体さらには黒鉛体の緻密化を促
進することが確認された。However, according to the research conducted by the present inventors, the diffusion of the oil from the inside of the molded body to the outside of the molded body is extremely slow, and the carbonization region of 400 to 600°C, which is an important factor for the densification of mesophase spherules, has been found to be extremely slow. It has been confirmed that the oil remains inside the compact and promotes the carbonization melting reaction, resulting in an increase in volumetric (linear) shrinkage during firing of the compact and promotes densification of the fired compact and even graphite. It was done.
こうした現象は通常使用される天然黒鉛、シリコン、ス
テアリン酸類等の離型剤では起こり得ないものである。Such a phenomenon cannot occur with commonly used mold release agents such as natural graphite, silicone, and stearic acids.
添加すべき量は通常メソフェーズ小球体に対し、1重量
%以上あれば充分に効果が期待出来る。−方添加量が増
加しすぎると成形体焼成時の揮発分が多くなって成形体
焼成時の割れやクラックの原因となる。従って添加する
タール油の種類、メソフェーズ小球体の特性、更には焼
成条件によっても異なるが通常5重量%以下が望ましい
、また例え成形体焼成時に割れやクラックの発生がなく
ても、5重量%以上の油の添加は成形性の改善及び緻密
化に大きく寄与せず、その効果が飽和する傾向にある。A sufficient effect can usually be expected if the amount to be added is 1% by weight or more based on the mesophase small spheres. If the amount added is too large, the amount of volatile matter during firing of the molded body will increase, causing cracks and cracks during firing of the molded body. Therefore, although it varies depending on the type of tar oil to be added, the characteristics of the mesophase spherules, and even the firing conditions, it is usually 5% by weight or less, and even if no cracks occur during firing of the molded product, it is 5% by weight or more. The addition of oil does not significantly contribute to the improvement of moldability and densification, and the effect tends to be saturated.
また添加するクール系の油の種類は通常比重の大きい重
質油の方が効果的であるが、一方で比重の増加とともに
その粘度も上昇するため、メソフェーズ小球体との均一
な混合が困難となるので、その都度適宜選択することが
望ましい。In addition, when it comes to the type of cool oil to be added, heavy oil with a high specific gravity is usually more effective, but on the other hand, as the specific gravity increases, the viscosity also increases, making it difficult to mix uniformly with the mesophase spherules. Therefore, it is desirable to select it appropriately each time.
以下具体的な実施例で本発明をさらに詳しく説明する。The present invention will be explained in more detail with reference to specific examples below.
〈実施例〉
実施例1
キノリンネ溶分を3重量%含有する軟化点(R&B法)
80″Cのタールピッチを450°Cで熱処理しメソフ
ェーズ小球体を発生させた。該熱処理ピッチを6倍容量
のタール中油(沸点範囲150〜230”C)を用いて
抽出・濾過を2回実施した。濾過残留物を引続き360
℃で3時間不活性雰囲気下で仮焼処理を行い自己焼結性
を有するメソフェーズ小球体を得た。<Example> Example 1 Softening point containing 3% by weight of quinoline solution (R&B method)
Tar pitch at 80″C was heat treated at 450°C to generate mesophase spherules.The heat treated pitch was extracted and filtered twice using 6 times the volume of oil in tar (boiling range 150-230″C). did. Continue filtering residue at 360
Calcination treatment was performed at ℃ for 3 hours in an inert atmosphere to obtain mesophase spherules having self-sintering properties.
該メソフェーズ小球体に対し、タール中油(沸点範囲1
50〜230℃)をそれぞれ1重量%、2重量%、3重
量%、6重量%添加し、4種類のタール中油を含んだメ
ソフェーズ小球体を得た0次いで室温でヘンシェルミキ
サにより5分間混合した。For the mesophase spherules, oil in tar (boiling range 1
50~230℃) were added at 1%, 2%, 3%, and 6% by weight, respectively, to obtain mesophase spherules containing four types of oil in tar.Then, they were mixed for 5 minutes in a Henschel mixer at room temperature. .
この該タール中油を含有したメソフェーズ小球体4種類
をそれぞれ金型を用いて120φX40hm/mのサイ
ズに成形を行った。成形圧力は550kg/C−とした
、得られた成形体はラミネーションの発生やかけもな(
良好なものであった。該成形体を通常の法に従って10
00℃まで96時間の速度で焼成後さらに2500℃に
て黒鉛化を行った6表1に焼成体及び黒鉛化品の物理特
性の測定結果を示した。Four types of mesophase small spheres containing this oil-in-tar were each molded into a size of 120 φ x 40 hm/m using a mold. The molding pressure was 550 kg/C-, and the molded product obtained had no lamination or cracks (
It was in good condition. The molded body was processed for 10 minutes according to the usual method.
After firing at a rate of 00°C for 96 hours, graphitization was further performed at 2500°C.6 Table 1 shows the measurement results of the physical properties of the fired product and the graphitized product.
実施例2
実施例1に示した方法に従ってメソフェーズ小球体を得
た。該メソフェーズ小球体に対し、タール蒸留にて得ら
れる洗浄油(沸点範囲240〜330’C)をそれぞれ
1M量%、3重量%、5重量%。Example 2 Mesophase spherules were obtained according to the method shown in Example 1. To the mesophase spherules, cleaning oil (boiling point range 240 to 330'C) obtained by tar distillation was added in an amount of 1M, 3%, and 5% by weight, respectively.
7重量%添加し、実施例1と同様にヘンシェルミキサに
より混合を行った。該混合物を実施例1に従って成形、
焼成、黒鉛化を行い得られた各成形体、焼成体、黒鉛化
品の物理特性の測定結果を表1に示した。なお成形体は
ラミネーション、かけもなく良好なものであった。7% by weight was added and mixed using a Henschel mixer in the same manner as in Example 1. Shaping the mixture according to Example 1;
Table 1 shows the measurement results of the physical properties of each molded body, fired body, and graphitized product obtained by firing and graphitizing. The molded product had good lamination and no defects.
比較例1
実施例1に示した方法に従って得られたメソフェーズ小
球体にタール系の油を添加することなくそのまま実施例
1に従って成形、焼成9wA鉛化を行った。成形体には
一部ラミネーションの発生や端部にかけが認められた。Comparative Example 1 The mesophase spherules obtained according to the method shown in Example 1 were molded, fired, and subjected to 9wA leading according to Example 1 without adding tar-based oil. In the molded product, lamination was observed in some parts and cracking was observed at the edges.
比較的形状の良好であった成形体についてのみ焼成、黒
鉛化を行い、得られた黒鉛化品の物理特性の測定結果を
表1に示した。Only the compacts with relatively good shapes were fired and graphitized, and Table 1 shows the measurement results of the physical properties of the graphitized products obtained.
〈発明の効果〉
本発明によれば成形性に劣るメソフェーズ小球体も容易
に金型成形が可能となり生産性の向上が期待できる。し
かも得られる炭素材料の一層の高密度・高強度化が可能
となった。<Effects of the Invention> According to the present invention, even mesophase small spheres with poor moldability can be easily molded with a mold, and an improvement in productivity can be expected. Furthermore, it has become possible to further increase the density and strength of the resulting carbon material.
Claims (2)
成,黒鉛化することにより等方性黒鉛材を製造する方法
において、成形に先立ちメソフェーズ小球体にタール系
の油を添加することを特徴とする高密度,高強度を有す
る等方性黒鉛材の製造方法。1. A method for producing an isotropic graphite material by molding, firing, and graphitizing mesophase spherules having self-sintering properties, which is characterized by adding tar-based oil to the mesophase spherules prior to molding. A method for producing isotropic graphite material with high density and high strength.
重量%を添加することを特徴とする請求項1記載の高密
度,高強度を有する等方性黒鉛材の製造方法。2. 1-5 times tar-based oil for mesophase spherules
2. The method for producing an isotropic graphite material having high density and high strength according to claim 1, wherein the addition is performed in an amount of % by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63218376A JPH0791107B2 (en) | 1988-09-02 | 1988-09-02 | Method for producing isotropic graphite material having high density and high strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63218376A JPH0791107B2 (en) | 1988-09-02 | 1988-09-02 | Method for producing isotropic graphite material having high density and high strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0269357A true JPH0269357A (en) | 1990-03-08 |
JPH0791107B2 JPH0791107B2 (en) | 1995-10-04 |
Family
ID=16718927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63218376A Expired - Fee Related JPH0791107B2 (en) | 1988-09-02 | 1988-09-02 | Method for producing isotropic graphite material having high density and high strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0791107B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08113668A (en) * | 1994-10-14 | 1996-05-07 | Osaka Gas Co Ltd | Production of mesocarbon powder molding and production of carbon sinter |
CN117024146A (en) * | 2023-10-09 | 2023-11-10 | 山西雅盛炭材料科技有限公司 | Preparation method of isotropic nuclear graphite |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2431326B1 (en) | 2009-05-06 | 2016-11-02 | Incubation Alliance Inc. | Manufacturing method of a carbon material |
-
1988
- 1988-09-02 JP JP63218376A patent/JPH0791107B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08113668A (en) * | 1994-10-14 | 1996-05-07 | Osaka Gas Co Ltd | Production of mesocarbon powder molding and production of carbon sinter |
CN117024146A (en) * | 2023-10-09 | 2023-11-10 | 山西雅盛炭材料科技有限公司 | Preparation method of isotropic nuclear graphite |
CN117024146B (en) * | 2023-10-09 | 2024-01-02 | 山西雅盛炭材料科技有限公司 | Preparation method of isotropic nuclear graphite |
Also Published As
Publication number | Publication date |
---|---|
JPH0791107B2 (en) | 1995-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3565980A (en) | Slip casting aqueous slurries of high melting point pitch and carbonizing to form carbon articles | |
EP0283211B1 (en) | Binderless carbon materials | |
JP2015218089A (en) | Method for manufacturing carbon material, and carbon material | |
JPS589879A (en) | Manufacture of anisotropic carbon formed body | |
JPH0269357A (en) | Production of isotropic graphite material having high density and high strength | |
CN110282960A (en) | A kind of preparation method of carbon composite refractory | |
JPS5978914A (en) | Manufacture of special carbonaceous material | |
JPS61122110A (en) | Production of high-density carbon material | |
JPH05270812A (en) | Sinterable carbon powder and production thereof | |
JPS61251504A (en) | Production of formed graphite | |
JPS63151610A (en) | Raw material composition for producing large-sized carbonaceous material | |
JPS6112888A (en) | Manufacture of electrode binder | |
JPH04228412A (en) | Composition for specific carbon material | |
JP2697482B2 (en) | Method for producing pitch-based material and method for producing carbon material using the same as raw material | |
SU1034994A1 (en) | Method for preparing coke and pitch composition for making fine-grained graphite products | |
JPH0735299B2 (en) | Method for producing isotropic high strength carbon material having low coefficient of thermal expansion | |
JPH0360415A (en) | Production of high density and high strength isotropic carbon material and starting material of carbon material for injection molding | |
JPH0764528B2 (en) | Method for producing high-quality carbonaceous compact | |
JPH05848A (en) | Method for producing isotropic high strength graphite material | |
JPS62187167A (en) | Manufacture of graphite formed body | |
JPS6235964B2 (en) | ||
JPH0288464A (en) | Production of density and high strength carbon material and graphite electrode material for electric spark machining | |
JPS63236709A (en) | Manufacturing method of carbon material | |
JPH04104954A (en) | Method for producing oxidation-resistant high-density carbon material | |
JPH01239058A (en) | Production of isotropic high-density carbon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |