[go: up one dir, main page]

JPH0288464A - Production of density and high strength carbon material and graphite electrode material for electric spark machining - Google Patents

Production of density and high strength carbon material and graphite electrode material for electric spark machining

Info

Publication number
JPH0288464A
JPH0288464A JP63163626A JP16362688A JPH0288464A JP H0288464 A JPH0288464 A JP H0288464A JP 63163626 A JP63163626 A JP 63163626A JP 16362688 A JP16362688 A JP 16362688A JP H0288464 A JPH0288464 A JP H0288464A
Authority
JP
Japan
Prior art keywords
weight
density
carbon material
mixture
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63163626A
Other languages
Japanese (ja)
Inventor
Noriyoshi Fukuda
福田 典良
Kiyoshi Hagiwara
萩原 潔
Takayuki Torii
孝行 鳥居
Katsuhiro Nagayama
勝博 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63163626A priority Critical patent/JPH0288464A/en
Publication of JPH0288464A publication Critical patent/JPH0288464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Ceramic Products (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

PURPOSE:To obtain a high density and high strength carbon material having regulable physical properties such as coefft. of thermal expansion without carrying out impregnation by adding less expensive aggregate than small spheres of carbonaceous mesophase to the spheres and graphitizing them. CONSTITUTION:Small spheres of carbonaceous mesophase are prepd. as starting material for a carbon material capable of being molded, calcined and graphitized without using a binder. 100 pts.wt. graphite powder and/or aggregate coke is mixed with 30-120 pts.wt. binder and this mixture is added to the small spheres of carbonaceous mesophase having self-sinterability by <=40wt.% of the total amt. They are molded, calcined and graphitized.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、放電加工用電極、治具、るつぼ、あるいは原
子力用などに利用可能な高密度・高強度炭素材料の製造
方法および放電加工用黒鉛電極材に関する。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention relates to a method for producing a high-density and high-strength carbon material that can be used as an electrode for electrical discharge machining, a jig, a crucible, or for nuclear power, and a method for producing a carbon material for electrical discharge machining. Regarding graphite electrode materials.

〈従来の技術〉 炭素質メソフェーズ小球体とはタールピッチ、石油ピッ
チ類を350℃〜500℃の温度で加熱処理する際に光
学的等方性ピッチ中に生成するメソフェーズ小球体をい
う。 この小球体は溶剤分別法によりピッチマトリック
ス中から分離され、等方性・高密度・高強度黒鉛材料用
の原料となることはよく知られている。
<Prior Art> Carbonaceous mesophase spherules are mesophase spherules that are generated in optically isotropic pitch when tar pitch and petroleum pitch are heat-treated at a temperature of 350°C to 500°C. It is well known that these small spheres are separated from the pitch matrix by a solvent fractionation method and serve as a raw material for isotropic, high-density, and high-strength graphite materials.

例えば特公昭60−25364号公報によれば、小球体
を溶剤分別する際にベンゼン、タール中油等のピッチに
対して若干抽出力の低い溶剤を使用することにより、ピ
ッチ中のβ成分の一部を小球体と共に残存させ、しかる
後に不活性雰囲気中において200〜450℃の温度で
仮焼処理することにより、自己焼結性の優れた原料とな
ることが示されている。
For example, according to Japanese Patent Publication No. 60-25364, by using a solvent with a slightly low extraction power for pitch such as benzene or oil in tar when separating small spheres with a solvent, part of the β component in pitch can be extracted. It has been shown that a raw material with excellent self-sintering properties can be obtained by allowing the particles to remain together with the small spheres and then calcining them at a temperature of 200 to 450°C in an inert atmosphere.

この方法により得られた原料を使用すれば、そのまま成
形、焼成、黒鉛化することにより、かざ密度が1 、8
5 g/cm3以上、曲げ強度がa o o kg/c
m”以上の高密度・高強度・等方性黒鉛材が容易に得ら
れる。
If the raw material obtained by this method is used, it can be molded, fired, and graphitized as it is, with a density of 1 to 8.
5 g/cm3 or more, bending strength is a o o kg/c
High-density, high-strength, and isotropic graphite material with a thickness of 1.5 m or more can be easily obtained.

〈発明が解決しようとする課題〉 しかしながら、上記炭素質メソフェーズ小球体は本質的
に結晶性(黒鉛化性)の良い原料ではなく、最終黒鉛材
料の品質のバリエーションの幅が狭い。 即ち密度が決
まれば強度、電気比抵抗、熱膨張係数が必然的に決まり
、個別の制御が難しいという欠点があった。
<Problems to be Solved by the Invention> However, the carbonaceous mesophase spherules are not inherently a raw material with good crystallinity (graphitizability), and the variation in quality of the final graphite material is narrow. That is, once the density is determined, the strength, electrical resistivity, and coefficient of thermal expansion are necessarily determined, which has the disadvantage that individual control is difficult.

この対策方法としては結晶子の発達した仮焼コークス、
人造黒鉛粉末、天然黒鉛粉末等を添加して、品質調整す
ることが考えられる。 しかもこれ等の原料は、上記炭
素質メソフェーズ小球体に比較して安価である。 とこ
ろが、これらの原料は自己焼結性を有していないため、
上記炭素質メソフェーズ小球体に添加すると、得られる
黒鉛材の強度が低下してしまうという欠点があった。
As a countermeasure for this problem, calcined coke with developed crystallites,
It is possible to adjust the quality by adding artificial graphite powder, natural graphite powder, etc. Furthermore, these raw materials are cheaper than the carbonaceous mesophase spherules. However, since these raw materials do not have self-sintering properties,
When added to the carbonaceous mesophase spherules, there is a drawback that the strength of the resulting graphite material decreases.

本発明は、上記の問題点に着目してなされたもので、炭
素質メソフェーズ小球体に比較して安価な骨材を利用し
、かつ広い範囲で電気比抵抗や熱膨張係数のような物理
特性の調節が可能な高密度・高強度炭素材料の製造方法
を提供することを目的としている。
The present invention was made in view of the above-mentioned problems, and utilizes an aggregate that is cheaper than carbonaceous mesophase spherules, and has physical properties such as electrical resistivity and thermal expansion coefficient in a wide range. The purpose of the present invention is to provide a method for producing a high-density, high-strength carbon material that allows adjustment of carbon.

また、炭素質メソフェーズ小球体のみを原料とする黒鉛
材を放電加工用電極として利用した場合、汎用の電極材
に比べて電極消耗が少なく加工速度が速いという利点が
あるが、反面硬度が高く加工が困難z高価という欠点が
あった。
In addition, when graphite material made only of carbonaceous mesophase small spheres is used as an electrode for electrical discharge machining, it has the advantage of less electrode wear and faster machining speed compared to general-purpose electrode materials, but on the other hand, it has high hardness and machining The drawbacks were that it was difficult and expensive.

また、炭素質メソフェーズ小球体は本質的に結晶性の良
い原料ではなく、従って密度が決まると電気比抵抗、硬
度など他の特性が決まってしまい個別の制御が難しかっ
た。
Furthermore, carbonaceous mesophase spherules are not inherently a raw material with good crystallinity, so once the density is determined, other properties such as electrical resistivity and hardness are determined, making individual control difficult.

この対策方法としては、結晶性に優れかつ上記メソフェ
ーズより安価な人造黒鉛粉末、天然黒鉛粉末などを添加
して品質の調整を行い、さらに強度、硬度などの制御を
はかる為に粘結剤を添加することが考えられる。
As a countermeasure to this problem, we adjust the quality by adding artificial graphite powder, natural graphite powder, etc., which have excellent crystallinity and are cheaper than the mesophase mentioned above, and also add a binder to control strength, hardness, etc. It is possible to do so.

しかしながら、上記方法にて製造した材料を放電加工用
電極として利用した場合、材料内部の不均一さなどのた
めに電極表面に微小突起物が発生し、加工精度が著しく
低下してしまうという欠点があった。
However, when the material manufactured by the above method is used as an electrode for electrical discharge machining, there is a drawback that micro protrusions are generated on the electrode surface due to non-uniformity inside the material, which significantly reduces machining accuracy. there were.

本発明は、上記の問題を解決すべくなされたもので、広
い範囲で電気比抵抗、硬度などの調節が可能な放電加工
電極用の等方性高密度高強度黒鉛材料を提供することを
目的としている。
The present invention was made in order to solve the above problems, and an object of the present invention is to provide an isotropic high-density, high-strength graphite material for electrical discharge machining electrodes that can adjust electrical resistivity, hardness, etc. over a wide range. It is said that

く課題を解決するための手段〉 上記目的を達成するために、本発明によれば、自己焼結
性を有する炭素質メソフェーズ小球体に対して、黒鉛粉
末および/または骨材コークスと粘結剤との混和物を添
加し、次いで成形、焼成および黒鉛化処理を施すことを
特徴とする高密度・高強度炭素材料の製造方法が提供さ
れる。
Means for Solving the Problems> In order to achieve the above objects, according to the present invention, graphite powder and/or aggregate coke and a binder are added to carbonaceous mesophase small spheres having self-sintering properties. Provided is a method for producing a high-density, high-strength carbon material, which is characterized by adding a mixture with a carbon material, followed by molding, firing, and graphitization.

混和物が、黒鉛粉末および/または骨材コークス100
重量部に対し粘結剤を30〜120重量部混ねつしたも
のであり、かつこの混和物を総量に対して40重量%以
下の割合で添加することが好ましい。
The mixture contains graphite powder and/or aggregate coke 100
It is preferable that 30 to 120 parts by weight of a binder are mixed with the weight part, and that this mixture is added in a proportion of 40% by weight or less based on the total amount.

また粘結剤がベンゼン不溶分を40重量%以上95重量
%未満含有するピッチ類であることが好ましい。
Further, it is preferable that the binder is a pitch containing a benzene-insoluble content of 40% by weight or more and less than 95% by weight.

前記混和物が黒鉛粉末および/または骨材コークス10
0重量部に対し、前記ピッチ類15〜60重量部の割合
で配合したものを総量に対して60重量%以下の割合で
添加することが好ましい。
The mixture may include graphite powder and/or aggregate coke.
It is preferable to add a mixture of 15 to 60 parts by weight of the pitches to 0 parts by weight in a ratio of 60% by weight or less based on the total amount.

また、自己焼結性を有する炭素質メソフェーズ小球体と
黒鉛粉末および/または骨材コークスとピッチ類とを、
ピッチ類を加熱することなく乾式混合し、次いで成形、
焼成および黒鉛化処理を施すことが好ましい。
In addition, carbonaceous mesophase small spheres having self-sintering properties, graphite powder and/or aggregate coke, and pitches,
Pitches are dry mixed without heating, then molded,
It is preferable to perform firing and graphitization treatment.

前記ピッチ類の粒径が10μm以下であることが好まし
い。
It is preferable that the pitches have a particle size of 10 μm or less.

また、前記黒鉛粉末および/または骨材コークスの粒径
が、30μm以下であることが好ましい。
Moreover, it is preferable that the particle size of the graphite powder and/or aggregate coke is 30 μm or less.

本発明の方法によって製造される放電加工用黒鉛電極材
は、炭素質メソフェーズ小球体の最大粒子径が30μm
以下で、黒鉛粉末および/または骨材コークスの粒子径
が使用される炭素質メソフェーズ小球体の最大粒子径以
下であるのが好ましい。
In the graphite electrode material for electrical discharge machining manufactured by the method of the present invention, the maximum particle diameter of carbonaceous mesophase small spheres is 30 μm.
In the following, it is preferable that the particle size of the graphite powder and/or aggregate coke is equal to or smaller than the maximum particle size of the carbonaceous mesophase spherules used.

以下に、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明において使用する自己焼結性を有する炭素質メソ
フェーズ小球体は、例えば特公昭60−25364号公
報に示されるように、平均粒径数〜十数μmのメソフェ
ーズ小球体表面に粘結成分を保持させたものであり、炭
素材を製造するのにバインダーを使用することなく成形
、焼成、黒鉛化が可能な炭素材用原料である。 また、
該炭素材用原料を単独に成形、焼成、黒鉛化した場合に
は、粘結成分がメソフェーズ小球体表面に均一に分散し
ているので、バインダー使用の場合には不可能ながさ密
度1.85g/cm’以上、特に曲げ強度800kg/
cm’以上の炭素材が容易に得られる。
The carbonaceous mesophase spherules having self-sintering properties used in the present invention have a viscous component on the surface of the mesophase spherules with an average particle diameter of several to several tens of μm, as shown in Japanese Patent Publication No. 60-25364, for example. It is a raw material for carbon materials that can be molded, fired, and graphitized without using a binder to produce carbon materials. Also,
When the raw material for carbon material is individually molded, fired, and graphitized, the caking component is uniformly dispersed on the surface of the mesophase spherules, so the bulk density is 1.85 g/1, which is impossible when using a binder. cm' or more, especially bending strength of 800 kg/
A carbon material with a diameter of cm' or more can be easily obtained.

本発明は該小球体に対して、黒鉛粉末および/または骨
材コークスと粘結剤との混和物を添加することを特徴と
している。
The present invention is characterized in that a mixture of graphite powder and/or aggregate coke and a binder is added to the small spheres.

黒鉛粉末および/または骨材コークスの粒径は、30μ
m以下、好ましくは15μm以下が望ましい。  30
μmを越えるとメソフェーズ小球体との接着力が弱くな
り、強度低下の原因となる。
The particle size of graphite powder and/or aggregate coke is 30μ
m or less, preferably 15 μm or less. 30
If it exceeds μm, the adhesive force with the mesophase spherules becomes weak, causing a decrease in strength.

放電加工用電極材においては、該小球体の最大粒径は3
0μm以下好ましくは15μm以下が望ましい。  3
0μmを越えると、放電加工後の被加工材の表面粗度が
著しく低下してしまう。
In the electrode material for electric discharge machining, the maximum particle size of the small spheres is 3
The thickness is desirably 0 μm or less, preferably 15 μm or less. 3
If it exceeds 0 μm, the surface roughness of the workpiece after electrical discharge machining will be significantly reduced.

該小球体に対して、黒鉛粉末および/または骨材コーク
スと、粘結剤との混和物を添加することにより電気比抵
抗、硬度などの物理特性の調整が可能であり、使用され
る該小球体以下の最大粒径の黒鉛粉末および/または骨
材コークスを用いることで、黒鉛材内部が均一になり放
電加工用電極として利用した際、放電点が十分分散して
電極表面の微小突起物の発生を防止することができる。
Physical properties such as electrical resistivity and hardness can be adjusted by adding a mixture of graphite powder and/or aggregate coke and a binder to the small spheres. By using graphite powder and/or aggregate coke with a maximum particle size smaller than a sphere, the inside of the graphite material becomes uniform, and when used as an electrode for electrical discharge machining, the discharge points are sufficiently dispersed to prevent microscopic protrusions on the electrode surface. Occurrence can be prevented.

本発明において使用可能な粘結剤としては、ピッチ、樹
脂類などを代表的に挙げることができる。
Typical binders that can be used in the present invention include pitch, resins, and the like.

黒鉛粉末および/または骨材コークスと粘結剤との混合
比は、黒鉛粉末および/または骨材コークスの粒径や、
該混和物とメソフェーズ小球体との添加比で異るが黒鉛
粉末および/または骨材コークス100重量部に対し、
30〜120重量部の粘結剤を混ねつすることが好まし
い。 粘結剤が30重量部未満では、黒鉛粉末および/
または骨材コークスと球晶との粘結力か弱く、得られる
黒鉛材の強度の低下が著しい。 粘結剤が120重量部
を越えると、ガス化する成分が多いため、焼結体ブロッ
クに多数の気孔が発生し、高密度、高強度が得られない
The mixing ratio of the graphite powder and/or aggregate coke and the binder depends on the particle size of the graphite powder and/or aggregate coke,
The addition ratio of the mixture and mesophase spherules varies, but based on 100 parts by weight of graphite powder and/or aggregate coke,
Preferably, 30 to 120 parts by weight of a binder are incorporated. If the binder is less than 30 parts by weight, graphite powder and/or
Or, the cohesive force between the coke aggregate and the spherulites is weak, resulting in a significant decrease in the strength of the graphite material obtained. When the amount of the binder exceeds 120 parts by weight, there are many components that gasify, and a large number of pores are generated in the sintered block, making it impossible to obtain high density and high strength.

また、該メソフェーズ小球体に対する該混和物の添加比
は、総量に対して40重量%以下が望ましい。 この範
囲であれば、該メソフェーズ小球体を用いた炭素材本来
の強度を低下させることなく添加が可能である。
Further, the addition ratio of the mixture to the mesophase spherules is preferably 40% by weight or less based on the total amount. Within this range, it can be added without reducing the original strength of the carbon material using the mesophase spherules.

この添加物の混合は、得られる黒鉛材内部の不均一性を
防止するために出来るだけ均一に実施されなければなら
ない。 放電加工用電極材として用いる場合には、混合
が不均一であると電極が不均一な消耗をおこしてしまう
。 そのための混合方法としては、例えば回転式のボー
ルミル等で1〜5時間行うことが効果的である。
The mixing of this additive must be carried out as homogeneously as possible in order to prevent inhomogeneities within the resulting graphite material. When used as an electrode material for electrical discharge machining, if the mixture is uneven, the electrode will be worn out unevenly. An effective mixing method for this purpose is, for example, to use a rotary ball mill or the like for 1 to 5 hours.

さらに、コークス等は異方性を有しているので、成形体
の異方性発現を防止するため、該混合物の成形に際して
は、冷間静水圧(CIP)成形法を用いることが望まし
い。 成形圧力は、強度発現のために500 kg/c
m2以上が望ましい。
Furthermore, since coke and the like have anisotropy, it is desirable to use cold isostatic pressure (CIP) molding when molding the mixture in order to prevent the development of anisotropy in the molded product. Molding pressure is 500 kg/c to develop strength.
m2 or more is desirable.

また、本発明において使用可能な粘結剤としては、ベン
ゼン不溶分を40重量%以上95重量%未満含有するピ
ッチ類であることが好ましく、石炭系、石油系ピッチ類
を代表的に挙げることができる。ベンゼン不溶分が40
重量%未満のピッチ類の場合は、軽質分が多いため微粉
砕が困難であり、かつ残炭率が低いため炭素材料の一層
の高密度化、高強度化に寄与しない。
In addition, the binder that can be used in the present invention is preferably a pitch containing 40% by weight or more and less than 95% by weight of benzene-insoluble matter, and representative examples include coal-based and petroleum-based pitches. can. Benzene insoluble content is 40
In the case of pitches that are less than % by weight, it is difficult to pulverize them because of their large light content, and their residual carbon content is low, so they do not contribute to further increasing the density and strength of the carbon material.

ベンゼン不溶分が95重量%を越える場合は、均質な黒
鉛材が得られない。その理由は、焼成時300〜500
℃付近の炭化反応領域においてバインダー成分であるピ
ッチ類が軟化溶融し、骨材コークスの表面をぬらすと同
時にメソフェーズ小球体表面に存在するバインダー成分
とも反応して炭素材料としての強度発現に必要なベンゼ
ン可溶分の量が不足するためと推測される。
If the benzene insoluble content exceeds 95% by weight, a homogeneous graphite material cannot be obtained. The reason is that 300 to 500
Pitch, which is a binder component, softens and melts in the carbonization reaction region at around ℃, wets the surface of aggregate coke, and at the same time reacts with the binder component present on the surface of mesophase spherules, producing benzene, which is necessary for developing strength as a carbon material. It is presumed that this is due to a lack of soluble content.

黒鉛粉末および/または骨材コークスと上記粘結剤とし
てのピッチ類との配合比は、黒鉛粉末および/または骨
材コークスの粒径や、この二原料とメソフェーズ小球体
との添加比で異るが、黒鉛粉末および/または骨材コー
クス100重量部に対し、15〜60重量部のピッチ類
を混和することが好ましい。 ピッチ類が15重量部未
満では、黒鉛粉末および/または骨材コークスと球晶と
の粘結力が弱く、得られる黒鉛材の強度の低下が著しい
。 ピッチ類が60重量部を越えると、ガス化する成分
が多いため、焼結体ブロックに多数の気孔が発生し、高
密度、高強度が得られない。
The blending ratio of graphite powder and/or aggregate coke and pitch as the binder varies depending on the particle size of graphite powder and/or aggregate coke and the addition ratio of these two raw materials and mesophase spherules. However, it is preferable to mix 15 to 60 parts by weight of pitches with respect to 100 parts by weight of graphite powder and/or aggregate coke. When the amount of pitches is less than 15 parts by weight, the caking force between the graphite powder and/or aggregate coke and the spherulites is weak, and the strength of the graphite material obtained is significantly reduced. When the amount of pitch exceeds 60 parts by weight, there are many components that gasify, and a large number of pores are generated in the sintered block, making it impossible to obtain high density and high strength.

また、このピッチ類では該メソフェーズ小球体に対する
該混和物の添加比は、総量に対して60重量%以下が望
ましい。 この範囲であれば、該メソフェーズ小球体を
用いた炭素材本来の強度を低下させることなく添加が可
能である。
Further, in this pitch, the addition ratio of the mixture to the mesophase spherules is preferably 60% by weight or less based on the total amount. Within this range, it can be added without reducing the original strength of the carbon material using the mesophase spherules.

添加物の混合は、得られる黒鉛材内部の不均一性を防止
するために出来るだけ均一に実施されなければならない
。 放電加工用電極材として用いる場合には、混合が不
均一であると電極が不均一な消耗をおこしてしまう。 
そのための混合方法としては、例えば回転式のボールミ
ル等で1〜5時間行うことが効果的である。
The mixing of the additives must be carried out as homogeneously as possible to prevent inhomogeneities within the resulting graphite material. When used as an electrode material for electrical discharge machining, if the mixture is uneven, the electrode will be worn out unevenly.
An effective mixing method for this purpose is, for example, to use a rotary ball mill or the like for 1 to 5 hours.

また、メソフェーズ小球体と黒鉛粉末および/または骨
材コークスとピッチ類とをそれぞれ室温のまま直接、例
えば回転式のボールミルを用いて乾式混合することがで
きる。
Further, the mesophase small spheres, the graphite powder and/or the aggregate coke, and the pitch can be directly mixed at room temperature using, for example, a rotary ball mill.

この乾式混合では、黒鉛粉末および/または骨材コーク
スの粒径は、30μm以下、好ましくは10μm以下が
望ましい。30μmを越えるとメソフェーズ小球体およ
びピッチ類との混合が十分に行われず、黒鉛材の品質が
不均一となる。
In this dry mixing, the particle size of the graphite powder and/or aggregate coke is preferably 30 μm or less, preferably 10 μm or less. If it exceeds 30 μm, mixing with mesophase spherules and pitches will not be carried out sufficiently, and the quality of the graphite material will become non-uniform.

ピッチ類の粒径は、10μm以下が好ましい。 10μ
mを越えるとメソフェーズ小球体、黒鉛粉末および/ま
たは骨材コークスとの混合が十分に行われず、黒鉛材の
品質が不均一となる。
The particle size of pitches is preferably 10 μm or less. 10μ
If it exceeds m, mixing with the mesophase small spheres, graphite powder and/or aggregate coke will not be carried out sufficiently, and the quality of the graphite material will become non-uniform.

さらに、コークス等は異方性を有しているので、成形体
の異方性発現を防止するため、該混合物の成形に際して
は、冷間静水圧(arp)成形法を用いることが望まし
い。 成形圧力は、強度発現のために500 kg/c
m’以上が望ましい。
Furthermore, since coke and the like have anisotropy, it is desirable to use cold isostatic pressure (ARP) molding when molding the mixture in order to prevent the development of anisotropy in the molded product. Molding pressure is 500 kg/c to develop strength.
m' or more is desirable.

このように調整された混合物は、上記のとおり成形、焼
成、黒鉛化することで、含浸を行わなくても等方性、高
密度、高強度炭素材料となる。
The mixture thus prepared becomes an isotropic, high-density, and high-strength carbon material by shaping, firing, and graphitizing as described above, even without impregnation.

〈実施例〉 以下に本発明を実施例に基づき、具体的に説明する。<Example> The present invention will be specifically described below based on Examples.

(実施例1) 平均粒径5μm の生ニードルコークス(仮焼前)10
0重量部に対し軟化点90℃(RB法、以下軟化点はす
べてRB法で示す)(BI:31wt%)のピッチ60
重量部を配合し、ニーダ−で130℃、1時間混ねっし
、放冷後粉砕して混和物を得た。 また、タールピッチ
を450℃で熱処理し、メソフェーズ小球体を発生させ
、これを6倍容量のタール中油を用いて抽出・濾過し、
さらに360℃で3時間仮焼して自己焼結性を有するメ
ソフェーズ小球体を得た。 該メソフェーズ小球体に対
し、上記混和物を総量に対して、それぞれ、10.20
.30.40.50重量%ずつ回転式ボールミルでエチ
ルアルコールの溶剤下で添加し5時間混式混合した。 
これらを濾過および乾燥后、1000 kg/cm’の
圧力で冷間静水圧(a r p)成形し、次いで10℃
/hの昇温速度でtooo℃まで昇温して焼成し、これ
を2500℃の温度で黒鉛化した。 これらの黒鉛材の
混和物の添加割合とカサ密度および曲げ強度との関係を
第1図に示した。 混和物の添加割合が40重量%以下
の黒鉛材は、カサ密度1 、85 g/Cm’以上、曲
げ強度700 kg/cm’以上の高密度、高強度を得
ているが、50重量%の黒鉛材はカサ密度および曲げ強
度の低下が著しい。
(Example 1) Raw needle coke (before calcination) with an average particle size of 5 μm 10
Pitch 60 with a softening point of 90°C (RB method, all softening points below are indicated by the RB method) (BI: 31 wt%) for 0 parts by weight
Parts by weight were blended, kneaded in a kneader at 130°C for 1 hour, allowed to cool, and then pulverized to obtain a mixture. In addition, tar pitch was heat-treated at 450°C to generate mesophase spherules, which were extracted and filtered using 6 times the volume of oil in tar.
Further, the mixture was calcined at 360° C. for 3 hours to obtain mesophase small spheres having self-sintering properties. For the mesophase spherules, each of the above mixtures was added in an amount of 10.20% of the total amount.
.. 30, 40, and 50% by weight were added in a rotary ball mill under a solvent of ethyl alcohol and mixed for 5 hours.
After filtration and drying, these were cold isostatically pressed (a r p) at a pressure of 1000 kg/cm' and then heated at 10°C.
The temperature was raised to too much °C at a temperature increase rate of /h and fired, and this was graphitized at a temperature of 2500 °C. The relationship between the addition ratio of these graphite material admixtures, bulk density and bending strength is shown in FIG. Graphite materials with an admixture content of 40% by weight or less have a bulk density of 1,85 g/cm' or more and a bending strength of 700 kg/cm' or more, achieving high density and strength. Graphite materials have a significant decrease in bulk density and bending strength.

(比較例1) 平均粒径5μmの生ニードルコークスを実施例1と同様
の自己焼結性を有するメソフェーズ小球体に、総量に対
して、10〜50重量%添加して混合し、実施例1と同
じ条件で成形・焼成・黒鉛化した。 その曲げ強度を実
施例1と比較して第2図に示す。 生ニードルコークス
にピッチを配合した実施例1に比べ、強度の低下が著し
いことがわかる。
(Comparative Example 1) Raw needle coke with an average particle size of 5 μm was added to mesophase small spheres having the same self-sintering properties as in Example 1 in an amount of 10 to 50% by weight based on the total amount, and mixed. It was molded, fired, and graphitized under the same conditions. The bending strength is shown in FIG. 2 in comparison with Example 1. It can be seen that the strength is significantly reduced compared to Example 1, in which pitch was blended into raw needle coke.

(実施例2) 平均粒径10μmの仮焼ニードルコークス100重量部
に対し軟化点90℃(BI:31wt%)のピッチを2
0〜130重量部の範囲で配合し130℃で混ねつして
混和物とし、実施例1と同様のメソフェーズ小球体に、
該混和物を総量に対して20重量%添加し、以下実施例
1と同様の方法で黒鉛材を得た。 カサ密度の結果を第
3図に示す。 コークス100重量部に対するピッチの
配合割合が30〜120重量部の範囲でカサ密度1 、
85 g/cn+”以上の高密度を得ている。
(Example 2) 2 pitches with a softening point of 90°C (BI: 31 wt%) were added to 100 parts by weight of calcined needle coke with an average particle size of 10 μm.
Blend in the range of 0 to 130 parts by weight and mix at 130°C to obtain a mixture, and form mesophase small spheres similar to Example 1.
The mixture was added in an amount of 20% by weight based on the total amount, and a graphite material was obtained in the same manner as in Example 1. The results of the bulk density are shown in Figure 3. Bulk density 1 when the blending ratio of pitch to 100 parts by weight of coke is in the range of 30 to 120 parts by weight,
A high density of 85 g/cn+" or more has been obtained.

(実施例3) 平均粒径5.18.30.38.47μmの各仮焼ニー
ドルコークス100重量部に対し、軟化点107℃(B
I+33wt%)のピッチ100重量部を配合し、ニー
ダ−で150t、1時間混ねつし、放冷後粉砕して混和
物を得た。 実施例1と同様のメソフェーズ小球体にこ
れらを総量に対して25重量%添加し、以下実施例1と
同様の方法で黒鉛材を得た。 その結果を第4図に示す
。 平均粒径が30μmより大きいと曲げ強度の低下が
著しいことがわかる。
(Example 3) A softening point of 107°C (B
100 parts by weight of pitch (I+33 wt%) was blended, kneaded in a kneader at 150 tons for 1 hour, allowed to cool, and then pulverized to obtain a mixture. These were added in an amount of 25% by weight based on the total amount to the same mesophase small spheres as in Example 1, and a graphite material was obtained in the same manner as in Example 1. The results are shown in FIG. It can be seen that when the average particle size is larger than 30 μm, the bending strength decreases significantly.

(実施例4〜5および比較例2) 平均粒径5μIの仮焼ニードルコークスおよびキッシュ
グラファイトそれぞれ100重量部に対し、軟化点90
℃(Br:31wt%)のピッチ70重量部を配合し、
ニーダ−で130℃、1時間混ねつし、放冷後粉砕して
混和物を得た。 実施例1と同様のメソフェーズ小球体
にこれらを総量に対して20重量%添加し、以下実施例
1と同様の方法で黒鉛材を得た(実施例4および5)。
(Examples 4 to 5 and Comparative Example 2) Softening point 90 for each 100 parts by weight of calcined needle coke and quiche graphite with an average particle size of 5 μI
℃ (Br: 31 wt%) pitch 70 parts by weight is blended,
The mixture was kneaded in a kneader at 130°C for 1 hour, allowed to cool, and then ground to obtain a mixture. These were added in an amount of 20% by weight based on the total amount to the same mesophase small spheres as in Example 1, and graphite materials were obtained in the same manner as in Example 1 (Examples 4 and 5).

 その結果を混和物を配合しないで黒鉛材とした比較例
2と共に第1表に示す。 結晶子の発達したニードルコ
ークスまたはキッシュグラファイトを混合することによ
って、電気比抵抗および熱膨張係数が低下している。 
このように、本発明は物理特性を調節する方法として有
用である。
The results are shown in Table 1 together with Comparative Example 2 in which a graphite material was used without blending any admixtures. By mixing needle coke or quiche graphite with developed crystallites, the electrical resistivity and coefficient of thermal expansion are reduced.
Thus, the present invention is useful as a method for adjusting physical properties.

第1表 (注、熱膨張係数は、350〜450℃での値)(比較
例3) タールピッチを450℃で熱処理してメソフェーズ小球
体を発生させ、これを6倍量のタール中油で抽出、濾過
し、さらに360’eで3時間仮焼して自己焼結性を有
する平均粒径15μm1最大粒径30μmのメソフェー
ズ小球体を得た。 上記小球体を混和物を添加すること
なく 550 kg/cm’で冷間静水圧成形、10t
/hで1000℃まで昇温して焼成し、次いで2500
℃で黒鉛化した。 得られた黒鉛材の物理特性および放
電加工を加工面10XIOI、ピーク電流16A、パル
ス幅と休止時間24μsecの苛酷な条件で行った際の
電極消耗率と加工速度を第2表に示した。
Table 1 (Note: The coefficient of thermal expansion is the value at 350 to 450°C) (Comparative Example 3) Tar pitch is heat treated at 450°C to generate mesophase spherules, which are extracted with 6 times the amount of oil in tar. , filtered, and further calcined at 360'e for 3 hours to obtain mesophase spherules having self-sintering properties with an average particle size of 15 μm and a maximum particle size of 30 μm. The above small spheres were cold isostatically pressed at 550 kg/cm' without adding any admixtures, and 10 tons
/h to raise the temperature to 1000℃ and bake, then 2500℃
Graphitized at ℃. Table 2 shows the physical properties of the graphite material obtained, and the electrode wear rate and machining speed when electrical discharge machining was performed under severe conditions of a machined surface of 10×IOI, a peak current of 16 A, a pulse width and a rest time of 24 μsec.

ここで示した電極消耗率とは被加工材 5KD−11を加工した深さに対する電極消耗長さの比
であり、加工速度とは単位時間あたりの加工重量である
The electrode wear rate shown here is the ratio of the length of the electrode wear to the depth at which the workpiece 5KD-11 is machined, and the processing speed is the weight processed per unit time.

(実施例6〜7) 平均粒径4.5μm、最大粒径13μmに粉砕した仮焼
ニードルコークス100重量部に対して、軟化点90℃
(BI:31wt%)のピッチを70重量部と100重
量部の割合で配合して、それぞれニーダ−で130℃、
1時間混ねつし、放冷後粉砕して混和物を得た(それぞ
れ実施例6および7)。
(Examples 6 to 7) A softening point of 90° C. for 100 parts by weight of calcined needle coke pulverized to an average particle size of 4.5 μm and a maximum particle size of 13 μm.
(BI: 31 wt%) pitch was blended at a ratio of 70 parts by weight and 100 parts by weight, and heated at 130°C in a kneader, respectively.
The mixture was mixed for 1 hour, allowed to cool, and then ground to obtain a mixture (Examples 6 and 7, respectively).

比較例3で得たメソフェーズ小球体に対し上記混和物を
総量に対して20重量部添加し、回転ボールミルでエチ
ルアルコール溶剤下5時間湿式混合した。 これらの原
料を比較例3と同様の方法で成形、焼成、黒鉛化して黒
鉛材を得た。 これら黒鉛材の物理特性を第2表に示し
た。 メソフェーズ小球体単独の黒鉛材とほぼ同様の放
電加工特性を有していた。
To the mesophase small spheres obtained in Comparative Example 3, 20 parts by weight of the above mixture was added to the total amount, and wet-mixed for 5 hours in an ethyl alcohol solvent using a rotary ball mill. These raw materials were molded, fired, and graphitized in the same manner as in Comparative Example 3 to obtain a graphite material. The physical properties of these graphite materials are shown in Table 2. It had almost the same electrical discharge machining characteristics as graphite material made of mesophase small spheres alone.

(比較例4) 平均粒径25μm、最大粒径60μmの仮焼ニードルコ
ークス100重量部に対して、軟化点90℃(Bl:3
1wt%)のピッチを65重量部配合し、ニーダ−で1
30℃、1時間混ねつして混和物を得、比較例3で得た
メソフェーズ小球体に対し、上記混和物を総量に対して
20rnifk部添加し、回転ボールミルでエチルアル
コール溶剤下5時間湿式混合した。 混合物を実施例6
.7と同様の方法で処理し黒鉛材を得た。 本黒鉛材の
物理特性を第2表に示した。
(Comparative Example 4) Softening point 90°C (Bl: 3
65 parts by weight of pitch (1wt%) was blended and
A mixture was obtained by mixing at 30° C. for 1 hour, and 20rnifk parts of the above mixture was added to the total amount of the mesophase spherules obtained in Comparative Example 3. The mixture was wet-mixed in a rotary ball mill for 5 hours in an ethyl alcohol solvent. Mixed. Mixture Example 6
.. A graphite material was obtained by processing in the same manner as in 7. Table 2 shows the physical properties of this graphite material.

比較例3、実施例6.7と同様に高密度、高強度の黒鉛
材が得られたが、放電加工用電極として使用した場合、
電極表面に微小突起物が発生してしまい、放電加工用電
極材としては不適当であった。
A high-density, high-strength graphite material was obtained in the same way as Comparative Example 3 and Example 6.7, but when used as an electrode for electrical discharge machining,
Fine protrusions were generated on the electrode surface, making it unsuitable as an electrode material for electrical discharge machining.

(実施例8) 平均粒径10μm、最大粒径30μmの黒鉛粉末100
重量部に対して、軟化点110’Cのピッチ85重量部
を配合し、実施例6.7と同様にメソフェーズ小球体と
混合、成形、焼成、黒鉛化して黒鉛材を得た。 黒鉛材
の物理特性を第2表に示した。 曲げ強度800 kg
/cm2以上と高密度で、硬度(ショアー)が69と比
較例3に比べて低く、放電加工時の電極消耗率も十分実
用可能な材料を得た。
(Example 8) 100 graphite powders with an average particle size of 10 μm and a maximum particle size of 30 μm
85 parts by weight of pitch with a softening point of 110'C was blended with respect to the parts by weight, mixed with mesophase small spheres, molded, fired, and graphitized in the same manner as in Example 6.7 to obtain a graphite material. Table 2 shows the physical properties of the graphite material. Bending strength 800 kg
A material was obtained that had a high density of /cm2 or more, a hardness (Shore) of 69, which was lower than that of Comparative Example 3, and an electrode wear rate during electric discharge machining that was sufficiently practical.

(比較例5) 各社市販の放電加工用高級黒鉛材A、Bおよび汎用黒鉛
材Cの物理特性を第2表に示した。
(Comparative Example 5) Table 2 shows the physical properties of high-grade graphite materials A and B for electrical discharge machining and general-purpose graphite material C commercially available from various companies.

本発明による黒鉛材はこれら市販材に比べ、電極消耗率
が同等かそれ以下の優れた特性を有するものであった。
The graphite material according to the present invention had excellent characteristics in that the electrode consumption rate was equal to or lower than these commercially available materials.

(比較例6〜12) タールピッチ(キノリンネ溶分が3wt%、軟化点が8
0℃のもの)を450℃で熱処理してメソフェーズ小球
体を発生させ、これを6倍愈のタール中油(沸点範囲が
150〜230℃のもの)で抽出、濾過を2回繰返又し
、濾過残留物をさらに360℃で3時間不活性雰囲気下
で仮焼して自己焼結性を有する平均粒径15μm、最大
粒径30.unのメソフェーズ小球体を得た。
(Comparative Examples 6 to 12) Tar pitch (quinoline solubility: 3 wt%, softening point: 8
0°C) was heat-treated at 450°C to generate mesophase spherules, which were extracted with tar oil (with a boiling point range of 150 to 230°C) at 6 times the temperature and filtered twice. The filtered residue was further calcined at 360°C for 3 hours in an inert atmosphere to obtain self-sintering particles with an average particle size of 15 μm and a maximum particle size of 30. Mesophase spherules of un were obtained.

一方、平均粒径5μmに粉砕した仮焼コークスに対して
、軟化点100℃(BI:25wt%)のピッチを第3
表に示す各割合で配合して、それぞれニーダ−で130
℃、1時間混ねつし、放冷後粉砕して混和物を得た。 
こ の各混和物と上記小球体を第3表に示す各割合で配
合して、それぞれ回転ボールミルで5時間湿式混合した
のち、これらを濾過および乾燥后、900kg/am”
で冷間静水圧成形、10℃/hで1000℃まで昇温し
で焼成し、次いで2500℃で黒鉛化した(比較例6〜
12)。 得られた各黒鉛材の物理特性を第3表に示す
。 なお、比較例6は混和物を添加することなく、従っ
て湿式混合処理を省略して黒鉛材としたものである。
On the other hand, a third pitch with a softening point of 100°C (BI: 25 wt%) was added to the calcined coke crushed to an average particle size of 5 μm.
Blend in the proportions shown in the table and mix in a kneader to 130%
The mixture was mixed for 1 hour at ℃, allowed to cool, and then ground to obtain a mixture.
Each of these mixtures and the above-mentioned small spheres were blended in the proportions shown in Table 3, wet-mixed for 5 hours in a rotating ball mill, filtered and dried, and then mixed at 900 kg/am.
Cold isostatic pressing was carried out, the temperature was raised to 1000°C at 10°C/h and fired, and then graphitized at 2500°C (Comparative Examples 6 to 6).
12). Table 3 shows the physical properties of each graphite material obtained. In addition, in Comparative Example 6, a graphite material was obtained without adding any admixture, and therefore omitting the wet mixing treatment.

(実施例9〜16) Bl : 60wt%の高軟化点ピッチ(R。(Examples 9 to 16) Bl: 60wt% high softening point pitch (R.

B、法では測定できず、フローテスターによる測定で約
200℃のもの)を平均粒径20Iinに粉砕したもの
と比較例6〜12で用いたメソフェーズ小球体および仮
焼コークスを第4表に示す各割合で配合して、それぞれ
回転式ボールミルで5時間乾式混合した。これらの原料
を比較例6〜12と同様の方法で成形、焼成、黒鉛化し
て黒鉛材を得た(実施例9〜16)。 これら黒鉛材の
物理特性を第4表に示す。
Table 4 shows the mesophase small spheres and calcined coke used in Comparative Examples 6 to 12. They were blended in different proportions and dry mixed for 5 hours using a rotary ball mill. These raw materials were molded, fired, and graphitized in the same manner as in Comparative Examples 6 to 12 to obtain graphite materials (Examples 9 to 16). Table 4 shows the physical properties of these graphite materials.

仮焼コークスとピッチとの混和物を作ることなくメソフ
ェーズ小球体と直接乾式で混合できるから製造工程が極
めて簡略化できる。また、BI:40wt%未満のピッ
チを用いた場合と比較して一段と高密度・高強度化した
黒鉛材が得られる。
The production process can be extremely simplified because it can be directly mixed with mesophase small spheres in a dry process without creating a mixture of calcined coke and pitch. Moreover, a graphite material with higher density and higher strength can be obtained compared to the case where a pitch of less than 40 wt% of BI is used.

さらに、メソフェーズ小球体単味から得られた黒鉛材(
比較例6)に比較して電気比抵抗、硬度および熱膨張係
数の低い高密度・高強度黒鉛材を得ることができる。
In addition, graphite material obtained from mesophase spherules (
A high-density, high-strength graphite material with lower electrical resistivity, lower hardness, and lower coefficient of thermal expansion than Comparative Example 6) can be obtained.

〈発明の効果〉 本発明は、以上説明したよ・うに構成されているので、
高密度・高強度の炭素材料を含浸工程を必要とせずに容
易に得ることができ、しかも炭素質メソフェーズ小球体
だけを用いる場合に比較して安価で、かつ広い範囲で電
気比抵抗や熱膨張係数のような物理特性の調節が可能で
ある。 特に、放電加工用、機械用、原子力用など高級
炭素材としての用途に使用可能であり、本発明は工業上
有用なものである。
<Effects of the Invention> Since the present invention is configured as explained above,
A high-density, high-strength carbon material can be easily obtained without the need for an impregnation process, and is cheaper than when using only carbonaceous mesophase spherules, and has a wide range of electrical resistivity and thermal expansion properties. Adjustment of physical properties such as coefficients is possible. In particular, the present invention is industrially useful as it can be used as a high-grade carbon material for electrical discharge machining, machinery, nuclear power, and the like.

また、粘結剤としてBI:40wt%以上95wt%未
満のピッチ類を用いる場合には、乾式混合することがで
き極めて簡略した工程で高密度・高強度炭素材料を製造
することができる。
In addition, when pitches containing BI: 40 wt% or more and less than 95 wt% are used as a binder, dry mixing can be performed, and a high-density, high-strength carbon material can be produced in an extremely simple process.

第2図はメソフェーズ小球体に添加した混和物または生
コークスの割合と、得られた黒鉛材の曲げ強度との関係
を示す図である。
FIG. 2 is a diagram showing the relationship between the proportion of the mixture or raw coke added to the mesophase spherules and the bending strength of the graphite material obtained.

第3図は仮焼ニードルコークス100重量部に対するピ
ッチの配合割合(重量部)と、得られた黒鉛材のカサ密
度との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the blending ratio (parts by weight) of pitch to 100 parts by weight of calcined needle coke and the bulk density of the obtained graphite material.

第4図は仮焼ニードルコークスの平均粒径と、得られた
黒鉛材の曲げ強度との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the average particle size of calcined needle coke and the bending strength of the graphite material obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はメゾフェーズ小球体に添加した混和物の割合と
、得られた黒鉛材のカサ密度および曲げ強度との関係を
示す図である。 FIG、1 FIG、3 FIG、2 FIG、4
FIG. 1 is a diagram showing the relationship between the proportion of the mixture added to the mesophase microspheres and the bulk density and bending strength of the graphite material obtained. FIG, 1 FIG, 3 FIG, 2 FIG, 4

Claims (8)

【特許請求の範囲】[Claims] (1)自己焼結性を有する炭素質メソフェーズ小球体に
対して、黒鉛粉末および/または骨材コークスと粘結剤
との混和物を添加し、次いで成形、焼成および黒鉛化処
理を施すことを特徴とする高密度・高強度炭素材料の製
造方法。
(1) Adding graphite powder and/or a mixture of aggregate coke and binder to carbonaceous mesophase small spheres having self-sintering properties, and then subjecting them to molding, firing, and graphitization treatment. A method for producing a characteristic high-density, high-strength carbon material.
(2)前記混和物が黒鉛粉末および/または骨材コーク
ス100重量部に対し粘結剤30〜120重量部を配合
し、混ねつしたものであり、かつこの混和物を総量に対
して40重量%以下の割合で添加する請求項1記載の高
密度・高強度炭素材料の製造方法。
(2) The mixture is a mixture of 30 to 120 parts by weight of a binder to 100 parts by weight of graphite powder and/or aggregate coke, and this mixture is 40 to 120 parts by weight based on the total amount. 2. The method for producing a high-density, high-strength carbon material according to claim 1, wherein the carbon material is added in a proportion of not more than % by weight.
(3)前記粘結剤がベンゼン不溶分を40重量%以上9
5重量%未満含有するピッチ類である請求項1記載の高
密度・高強度炭素材料の製造方法。
(3) The binder has a benzene insoluble content of 40% by weight or more9
The method for producing a high-density, high-strength carbon material according to claim 1, which contains less than 5% by weight of pitches.
(4)前記混和物が黒鉛粉末および/または骨材コーク
ス100重量部に対し、前記ピッチ類15〜60重量部
の割合で配合したものを総量に対して60重量%以下の
割合で添加する請求項3記載の高密度・高強度炭素材料
の製造方法。
(4) A claim in which the mixture is blended at a ratio of 15 to 60 parts by weight of the pitch to 100 parts by weight of graphite powder and/or aggregate coke, and is added at a ratio of 60% by weight or less to the total amount. Item 3. A method for producing a high-density and high-strength carbon material according to item 3.
(5)自己焼結性を有する炭素質メソフェーズ小球体と
黒鉛粉末および/または骨材コークスとピッチ類とを、
ピッチ類を加熱することなく乾式混合し、次いで成形、
焼成および黒鉛化処理を施す請求項3または4記載の高
密度・高強度炭素材料の製造方法。
(5) Carbonaceous mesophase small spheres having self-sintering properties, graphite powder and/or aggregate coke, and pitches,
Pitches are dry mixed without heating, then molded,
The method for producing a high-density, high-strength carbon material according to claim 3 or 4, wherein the carbon material is subjected to firing and graphitization treatment.
(6)前記ピッチ類の粒径が10μm以下である請求項
3〜5のいずれかに記載の高密度・高強度炭素材料の製
造方法。
(6) The method for producing a high-density, high-strength carbon material according to any one of claims 3 to 5, wherein the pitch has a particle size of 10 μm or less.
(7)前記黒鉛粉末および/または骨材コークスの粒径
が、30μm以下である請求項1〜6のいずれかに記載
の高密度・高強度炭素材料の製造方法。
(7) The method for producing a high-density, high-strength carbon material according to any one of claims 1 to 6, wherein the graphite powder and/or aggregate coke has a particle size of 30 μm or less.
(8)請求項1〜7のいずれかの方法によって製造され
る放電加工用黒鉛電極材であって、炭素質メソフェーズ
小球体の最大粒子径が 30μm以下で、黒鉛粉末および/または骨材コークス
の粒子径が使用される炭素質メソフェーズ小球体の最大
粒子径以下であることを特徴とする放電加工用黒鉛電極
材。
(8) A graphite electrode material for electric discharge machining produced by the method according to any one of claims 1 to 7, wherein the carbonaceous mesophase small spheres have a maximum particle diameter of 30 μm or less, and are made of graphite powder and/or aggregate coke. A graphite electrode material for electric discharge machining, characterized in that the particle size is less than or equal to the maximum particle size of the carbonaceous mesophase small spheres used.
JP63163626A 1988-02-16 1988-06-30 Production of density and high strength carbon material and graphite electrode material for electric spark machining Pending JPH0288464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63163626A JPH0288464A (en) 1988-02-16 1988-06-30 Production of density and high strength carbon material and graphite electrode material for electric spark machining

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP63-33750 1988-02-16
JP3375088 1988-02-16
JP63-136590 1988-06-02
JP63163626A JPH0288464A (en) 1988-02-16 1988-06-30 Production of density and high strength carbon material and graphite electrode material for electric spark machining

Publications (1)

Publication Number Publication Date
JPH0288464A true JPH0288464A (en) 1990-03-28

Family

ID=26372493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63163626A Pending JPH0288464A (en) 1988-02-16 1988-06-30 Production of density and high strength carbon material and graphite electrode material for electric spark machining

Country Status (1)

Country Link
JP (1) JPH0288464A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006002A (en) * 2014-04-02 2016-01-14 ジョンソン エレクトリック ソシエテ アノニム Carbon product
US9455609B2 (en) 2010-09-16 2016-09-27 Robert Bosch Gmbh Electric motor with a power output stage and with efficient heat transport and method
US20220153590A1 (en) * 2020-11-19 2022-05-19 Cpc Corporation, Taiwan Method for preparing artificial graphite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455609B2 (en) 2010-09-16 2016-09-27 Robert Bosch Gmbh Electric motor with a power output stage and with efficient heat transport and method
JP2016006002A (en) * 2014-04-02 2016-01-14 ジョンソン エレクトリック ソシエテ アノニム Carbon product
US20220153590A1 (en) * 2020-11-19 2022-05-19 Cpc Corporation, Taiwan Method for preparing artificial graphite
US11459241B2 (en) * 2020-11-19 2022-10-04 Cpc Corporation, Taiwan Method for preparing artificial graphite

Similar Documents

Publication Publication Date Title
CA1090068A (en) Production of high-density carbon materials
JP3765840B2 (en) Carbon material manufacturing method
JPH0288464A (en) Production of density and high strength carbon material and graphite electrode material for electric spark machining
JPH0348154B2 (en)
JPH0124724B2 (en)
JP2910002B2 (en) Special carbon material kneading method
JP3278190B2 (en) Method for producing isotropic high-density graphite material
JPS5978914A (en) Manufacture of special carbonaceous material
JPS61295216A (en) Preparation of isotropic graphite material having high density and high strength
US3202619A (en) Graphitic neutron reflector containing beryllium and method of making same
JPH0337108A (en) Isotropic carbon material
JPS61191509A (en) Production of isotropic graphitic material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH0329001B2 (en)
JPH0791107B2 (en) Method for producing isotropic graphite material having high density and high strength
JPH02271908A (en) Production of high-density and high-strength carbon material
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JP2924062B2 (en) Production method of raw material powder for carbon material
JPH02192412A (en) Production of high-density high-strength carbon material having excellent oxidation resistance
JPH0364448B2 (en)
JPH0269308A (en) Method for producing raw pitch coke and isotropic high-density carbon material
JPS63242912A (en) Carbonaceous powder for carbon material and production thereof
KR100217850B1 (en) Process for production of active carbon
JPS6369756A (en) Manufacturing method of high-density graphite material
JPH0764528B2 (en) Method for producing high-quality carbonaceous compact