[go: up one dir, main page]

JPH0258677B2 - - Google Patents

Info

Publication number
JPH0258677B2
JPH0258677B2 JP56113950A JP11395081A JPH0258677B2 JP H0258677 B2 JPH0258677 B2 JP H0258677B2 JP 56113950 A JP56113950 A JP 56113950A JP 11395081 A JP11395081 A JP 11395081A JP H0258677 B2 JPH0258677 B2 JP H0258677B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
lens
fiber sensor
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56113950A
Other languages
Japanese (ja)
Other versions
JPS5816397A (en
Inventor
Tsutomu Tanaka
Akimoto Serizawa
Satoshi Ishizuka
Kyoshi Kubo
Yasuhito Ookawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11395081A priority Critical patent/JPS5816397A/en
Publication of JPS5816397A publication Critical patent/JPS5816397A/en
Publication of JPH0258677B2 publication Critical patent/JPH0258677B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

【発明の詳細な説明】 本発明は光フアイバセンサに関するものであ
り、特に温度変化等の環境変化に対し、安定に動
作する光フアイバセンサを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber sensor, and in particular provides an optical fiber sensor that operates stably against environmental changes such as temperature changes.

光フアイバセンサは温度センサ、電流センサ、
振動センサ等多数の用途に利用できることが知ら
れている。光フアイバセンサは第1図に示した様
に発光部1で出た光が光フアイバ2、光コネクタ
6を通つて光センサ3に入射する。この光は例え
ば温度変化によりバイメタルに接着されたミラー
が動き、結合損失が変化することにより光の強度
変化を受けた後、受光部4でも光電変換され、信
号処理部5で、目的の温度に関する情報を得る。
Optical fiber sensors are temperature sensors, current sensors,
It is known that it can be used for many applications such as vibration sensors. In the optical fiber sensor, as shown in FIG. 1, light emitted from a light emitting section 1 passes through an optical fiber 2 and an optical connector 6 and enters an optical sensor 3. For example, this light undergoes a change in intensity due to the movement of a mirror bonded to a bimetal due to a temperature change and a change in coupling loss, and is then photoelectrically converted in the light receiving section 4. get information.

この様に受光部での光出力の強度変化から目的
の物理量を測定する方式では、光フアイバ2にお
いて温度変化等で伝送損失が変化したり、コネク
タ1の着脱により結合損失が変化すると測定誤差
を生じる。
In this way, in the method of measuring the target physical quantity from the change in the intensity of the optical output at the light receiving part, measurement errors may occur if the transmission loss in the optical fiber 2 changes due to temperature changes, or if the coupling loss changes due to the connection or removal of the connector 1. arise.

そこで他の従来例として、第2図に示した様な
光フアイバセンサが考えられている。この光フア
イバセンサでは波長の異なる2つの光を多重伝送
し、温度等を感知するセンサ部3の直前で分波器
7で2つの光を分離し、波長がλ1の一方の光はセ
ンサ部3を通過させ、波長がλ2の他の光は分波器
7を通させた後そのまま合波器8に入射して多重
伝送させる。次に受光部4で各波長λ1・λ2の光を
別々に検出して、その出力を比較すると、光フア
イバの損失が変動してもこの比較出力は一定であ
るから、測定誤差なく目的の物理量を検出するこ
とができる。
Therefore, as another conventional example, an optical fiber sensor as shown in FIG. 2 has been considered. In this optical fiber sensor, two lights with different wavelengths are multiplexed and transmitted, and the two lights are separated by a demultiplexer 7 just before the sensor part 3 that senses temperature etc., and one light with a wavelength of λ 1 is sent to the sensor part 3. 3, and other light having a wavelength of λ 2 is passed through a demultiplexer 7, and then directly enters a multiplexer 8 for multiplex transmission. Next, if the light receiving section 4 detects the light of each wavelength λ 1 and λ 2 separately and compares the output, this comparison output will remain constant even if the loss of the optical fiber fluctuates, so there will be no measurement error and the target physical quantities can be detected.

しかし、このような構成の従来の光フアイバセ
ンサ分波器7、合波器8の設置が構成要素として
不可欠であり、部品点数が多くなる欠点がある。
例えば第2図では反射型合波器を使用した場合の
構成例で、同じ様な構造のロツドレンズ9を使用
した合波器8・分波器・光センサ3の3組が必要
となる。また、この光フアイバセンサは分波器・
合波器の温度変化等による挿入損失の変動により
測定誤差を生じる欠点があつた。
However, the installation of the conventional optical fiber sensor demultiplexer 7 and multiplexer 8 having such a configuration is essential as a component, and there is a drawback that the number of parts increases.
For example, FIG. 2 shows a configuration example in which a reflection type multiplexer is used, and three sets of a multiplexer 8 using a rod lens 9 having a similar structure, a demultiplexer, and an optical sensor 3 are required. This optical fiber sensor also has a demultiplexer and
There was a drawback that measurement errors occurred due to fluctuations in insertion loss due to temperature changes in the multiplexer.

本発明は前記従来の欠点を除去するためになさ
れたもので、分波器・合波器・光センサ部を一体
化し、2種類の光を比較することにより温度・電
流等の測定が外部環境の影響を受けない様にする
構成を1個のロツドレンズで実現した光フアイバ
センサを提供する。
The present invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology, and by integrating a demultiplexer, a multiplexer, and an optical sensor, and by comparing two types of light, temperature, current, etc. can be measured in the external environment. To provide an optical fiber sensor that realizes a configuration with one rod lens that is not affected by

以下本発明の一実施例について図面とともに詳
細に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第3図は本発明の一実施例における温度センサ
の実施例で従来列と同一箇所には同一番号を付し
てある。同図において1/4周期長の集束性ロツド
レンズ9の端面に波長λ1の光を反射し、波長λ2
光を透過するフイルタ10が構成されており、他
端の焦点面上に入射フアイバ12と出射フアイバ
13が接着されている。
FIG. 3 shows an example of a temperature sensor according to an embodiment of the present invention, and the same parts as in the conventional row are given the same numbers. In the figure, a filter 10 that reflects light with a wavelength λ 1 and transmits light with a wavelength λ 2 is configured on the end face of a converging rod lens 9 with a 1/4 period length, and an incident fiber is formed on the focal plane of the other end. 12 and an output fiber 13 are bonded together.

反射鏡11はバイメタル11′に支持されてお
り、温度変化に応じて、レンズ端面との傾斜角が
変化する。フアイバ12から入射した波長λ1・λ2
の光はレンズ9を通過後平行光となり、波長λ1
光はフイルタ10で反射され、レンズ9を再び通
つてフアイバ13に入射する。一方波長λ2の光は
フイルタ10を通過し、ミラー11で反射された
後、フイルタ10、レンズ9を通過してフアイバ
13に入射するが、ミラー11の傾斜角度、即ち
温度変化によつて結合効率が変化する。
The reflecting mirror 11 is supported by a bimetal 11', and its inclination angle with respect to the lens end surface changes according to temperature changes. Wavelengths λ 1 and λ 2 incident from the fiber 12
After passing through the lens 9, the light becomes parallel light, and the light with wavelength λ 1 is reflected by the filter 10, passes through the lens 9 again, and enters the fiber 13. On the other hand, light of wavelength λ 2 passes through the filter 10, is reflected by the mirror 11, passes through the filter 10 and the lens 9, and enters the fiber 13, but is combined due to the inclination angle of the mirror 11, that is, the temperature change. Efficiency changes.

上記実施例の光学装置を用いたセンサ1個のレ
ンズのみで光分波器第2図の分波器7,8も兼ね
ているため、波長λ1・λ2の光を別々に受光し、出
力強度比較をすれば、伝送路で外部環境の影響に
よる損失変動あるいはコネクタの着脱による損失
変化に影響されることなく安定した測定が出来
る。
Since the sensor using the optical device of the above embodiment has only one lens, which also serves as the optical demultiplexer 7 and 8 in FIG. By comparing the output intensities, stable measurements can be made without being affected by loss fluctuations due to the influence of the external environment in the transmission line or loss changes due to the attachment and detachment of connectors.

第4図に本発明の光フアイバセンサの別の実施
例を示す。同図においてレンズ9に接着してある
フアイバ14〜16は等間隔で配列しており、フ
アイバ14と14′はレンズ軸に対して対称であ
る。レンズ9の他端面の下半分には反射鏡17が
形成されている。フアイバ14から入射する光の
うちミラー17で反射された光はフアイバ15に
入射する。ミラー17で反射されない残りの光は
ミラー11で反射されフアイバ14′に入射する
が、この時の結合効率はバイメタル11′による
ミラーの傾き角即ち温度に依存する。一方フアイ
バ15に入射した光のうちミラー17で再び反射
した光はフアイバ14′に入射する。
FIG. 4 shows another embodiment of the optical fiber sensor of the present invention. In the figure, fibers 14-16 bonded to lens 9 are arranged at equal intervals, and fibers 14 and 14' are symmetrical about the lens axis. A reflecting mirror 17 is formed in the lower half of the other end surface of the lens 9. Among the light incident from the fiber 14, the light reflected by the mirror 17 enters the fiber 15. The remaining light that is not reflected by the mirror 17 is reflected by the mirror 11 and enters the fiber 14', and the coupling efficiency at this time depends on the tilt angle of the mirror by the bimetal 11', that is, the temperature. On the other hand, the light that is incident on the fiber 15 and reflected again by the mirror 17 is incident on the fiber 14'.

この温度センサの使用方法について第5図とと
もに説明する。図中のフアイバの番号14〜16
は第3図の構成のものと同じであり、フアイバ1
8は遅延用フアイバである。発光部からパルス状
の入力を与えるとセンサ部を通らない光はセンサ
部を通る光よりも時間遅れがある。したがつて受
光素子の出力は第6図の様な波形が得られる。同
図において19はセンサ出力、20は比較出力、
tは時間おくれである。このパルスの波高値の比
較値を求めれば、伝送路の外部環境の影響による
損失変動、あるいはコネクタの損失変化があつて
も目的の物理量の測定が安定に行なえるのは容易
にわかる。以上に温度センサについての実施例を
示したが、電流センサ等についても同様の測定が
行なえる。
How to use this temperature sensor will be explained with reference to FIG. Fiber numbers 14 to 16 in the diagram
is the same as the configuration shown in Figure 3, and the fiber 1
8 is a delay fiber. When a pulse-like input is applied from the light emitting section, the light that does not pass through the sensor section has a time delay compared to the light that passes through the sensor section. Therefore, the output of the light receiving element has a waveform as shown in FIG. In the figure, 19 is the sensor output, 20 is the comparison output,
t is the time delay. If a comparison value of the peak values of these pulses is obtained, it is easy to see that the target physical quantity can be measured stably even if there is a loss variation due to the influence of the external environment of the transmission line or a loss change of the connector. Although the embodiments related to temperature sensors have been described above, similar measurements can be performed with current sensors and the like.

以上説明した様に、本発明の光フアイバセンサ
によれば、分波・合波器等の独立した複数の光部
品を用いずに、伝送路損失の変動に影響されるこ
となく、目的の物理量を測定出来る。又光フアイ
バセンサが分波器・合波器を兼ねているため部品
点数が減少するので信頼性が向上するとともにシ
ステムを安価に構成することが出来る。
As explained above, according to the optical fiber sensor of the present invention, it is possible to obtain the desired physical quantity without using a plurality of independent optical components such as a demultiplexer/combiner, and without being affected by fluctuations in transmission path loss. can be measured. Furthermore, since the optical fiber sensor also serves as a demultiplexer and multiplexer, the number of parts is reduced, so reliability is improved and the system can be configured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図はそれぞれ従来の光フアイバセ
ンサの構成を示す図、第3図は本発明の一実施例
による光フアイバセンサの構成図、第4図は本発
明の他の実施例における光フアイバセンサの要部
を示す図、第5図は同光フアイバセンサの全体の
構成を示す図、第6図は同光フアイバセンサの動
作を説明するための図である。 2,12,13,14,15,16……光フア
イバ、3……センサ部、9……ロツドレンズ、1
0……フイルタ、11……ミラー、11′……バ
イメタル、17……反射鏡、18……遅延用フア
イバ。
1 and 2 are diagrams each showing the configuration of a conventional optical fiber sensor, FIG. 3 is a configuration diagram of an optical fiber sensor according to an embodiment of the present invention, and FIG. 4 is a diagram showing the configuration of an optical fiber sensor according to another embodiment of the present invention. FIG. 5 is a diagram showing the main parts of the optical fiber sensor, FIG. 5 is a diagram showing the overall configuration of the optical fiber sensor, and FIG. 6 is a diagram for explaining the operation of the optical fiber sensor. 2, 12, 13, 14, 15, 16... Optical fiber, 3... Sensor section, 9... Rod lens, 1
0...Filter, 11...Mirror, 11'...Bimetal, 17...Reflector, 18...Delay fiber.

Claims (1)

【特許請求の範囲】 1 光源と、光フアイバセンサと、前記光フアイ
バセンサからの光を受光する受光部と、前記受光
部からの信号をもとに被測定物理量をもとめる信
号処理部とを備えた測定装置において、 前記光源としては、2種類の波長の光を出射す
る光源を用い、 前記光フアイバセンサは、前記光源からの光を
入射するための光フアイバをその一端面に配置し
たレンズと、前記レンズの反対側端面に前記2種
類の内の一方の波長の光を反射し、他方の波長の
光を透過するフイルタと、前記フイルタを透過し
た光を前記レンズへ再入射させる反射部材とを有
し、 前記反射部材は、被測定物理量の変化に応じて
前記受光部に入射される光量を変化させることを
特徴とする光フアイバセンサ。 2 光源と、光フアイバセンサと、前記光フアイ
バセンサからの光を受光する受光部と、前記受光
部からの信号をもとに被測定物理量をもとめる信
号処理部とを備えた測定装置において、 前記光フアイバセンサは、前記光源からの光を
入射するための光フアイバをその一端面に配置し
たレンズと、 前記レンズの反対側端面に設けた、一部の光を
反射する第1の反射部材と、 前記レンズの前記一端面に設けられ、前記第1
の反射部材により反射された光を遅延させる遅延
部材と、 前記レンズの前記反対側端面から出射した光を
前記レンズへ再入射させる第2の反射部材とを有
し、 前記第2の反射部材は、被測定物理量の変化に
応じて前記受光部に入射される光量を変化させる
ことを特徴とする光フアイバセンサ。
[Scope of Claims] 1. A light source, an optical fiber sensor, a light receiving section that receives light from the optical fiber sensor, and a signal processing section that obtains a physical quantity to be measured based on a signal from the light receiving section. In the measuring device, the light source is a light source that emits light of two different wavelengths, and the optical fiber sensor includes a lens having an optical fiber disposed on one end surface of the optical fiber for receiving light from the light source. , a filter that reflects light of one of the two wavelengths and transmits the other wavelength on the opposite end surface of the lens; and a reflecting member that causes the light that has passed through the filter to enter the lens again. An optical fiber sensor, wherein the reflecting member changes the amount of light incident on the light receiving section according to a change in a physical quantity to be measured. 2. A measuring device comprising a light source, an optical fiber sensor, a light receiving section that receives light from the optical fiber sensor, and a signal processing section that obtains a physical quantity to be measured based on a signal from the light receiving section, The optical fiber sensor includes: a lens having an optical fiber arranged on one end surface thereof for receiving light from the light source; and a first reflecting member provided on the opposite end surface of the lens to reflect a part of the light. , provided on the one end surface of the lens, and provided on the first end surface of the lens.
a delay member that delays the light reflected by the reflective member; and a second reflective member that causes the light emitted from the opposite end surface of the lens to re-enter the lens, the second reflective member . An optical fiber sensor, characterized in that an amount of light incident on the light receiving section is changed in accordance with a change in a physical quantity to be measured.
JP11395081A 1981-07-20 1981-07-20 Optical fiber sensor Granted JPS5816397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11395081A JPS5816397A (en) 1981-07-20 1981-07-20 Optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11395081A JPS5816397A (en) 1981-07-20 1981-07-20 Optical fiber sensor

Publications (2)

Publication Number Publication Date
JPS5816397A JPS5816397A (en) 1983-01-31
JPH0258677B2 true JPH0258677B2 (en) 1990-12-10

Family

ID=14625264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11395081A Granted JPS5816397A (en) 1981-07-20 1981-07-20 Optical fiber sensor

Country Status (1)

Country Link
JP (1) JPS5816397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656670U (en) * 1992-02-21 1994-08-05 株式会社前川製作所 Cooling system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073345A (en) * 1983-09-30 1985-04-25 Aloka Co Ltd Biochemical component analytical apparatus using laser beam
JPS6073344A (en) * 1983-09-30 1985-04-25 Aloka Co Ltd Biochemical component analytical apparatus using laser beam
JPS61172399U (en) * 1985-04-10 1986-10-25

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLIED OPTICS=1980 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656670U (en) * 1992-02-21 1994-08-05 株式会社前川製作所 Cooling system

Also Published As

Publication number Publication date
JPS5816397A (en) 1983-01-31

Similar Documents

Publication Publication Date Title
US4356396A (en) Fiber optical measuring device with compensating properties
US4932742A (en) Fiber optic wavelength division multiplexing module
JPS6298218A (en) Fiber optical detecting system
EP0124533A1 (en) Fiber optic displacement sensor with built-in reference
EP0167220B1 (en) Optical transducer and measuring device
US4325638A (en) Electro-optical distance measuring apparatus
US5159190A (en) Radiating and receiving arrangement for a fiber-optic sensor having dual sources and detectors
WO2001002824A1 (en) Method and device for fibre-optical measuring systems
GB2192984A (en) Optical sensing arrangement
SU1179402A1 (en) Smoke transducer
JPH0258677B2 (en)
JPS6111637A (en) Liquid body sensor
GB2219656A (en) Sensor for sensing the light absorption of a gas
JPS58132637A (en) Pressure measuring device employing optical fiber
JPH068724B2 (en) Optical detector
US4947038A (en) Process and arrangement for optically measuring a physical quantity
JPS6147514A (en) Reflective type optical fiber sensor
JPH095021A (en) Optical fiber sensor
JP2918761B2 (en) Optical position detector
JPH0635147Y2 (en) Photo detector
JPS586431A (en) Temperature measuring method using optical fiber
WO2023182359A1 (en) Interferometer and physical quantity measurement device
JPS599526A (en) Temperature measuring device
CN1059970A (en) Compensating method of high-precision and-intensity optical fibre sensor with dual-wavelength modulation
SU877359A1 (en) Device for measuring surface temperature