JPH0258677B2 - - Google Patents
Info
- Publication number
- JPH0258677B2 JPH0258677B2 JP56113950A JP11395081A JPH0258677B2 JP H0258677 B2 JPH0258677 B2 JP H0258677B2 JP 56113950 A JP56113950 A JP 56113950A JP 11395081 A JP11395081 A JP 11395081A JP H0258677 B2 JPH0258677 B2 JP H0258677B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical fiber
- lens
- fiber sensor
- end surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013307 optical fiber Substances 0.000 claims description 33
- 230000001934 delay Effects 0.000 claims 1
- 239000000835 fiber Substances 0.000 description 16
- 230000003287 optical effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Description
【発明の詳細な説明】
本発明は光フアイバセンサに関するものであ
り、特に温度変化等の環境変化に対し、安定に動
作する光フアイバセンサを提供するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber sensor, and in particular provides an optical fiber sensor that operates stably against environmental changes such as temperature changes.
光フアイバセンサは温度センサ、電流センサ、
振動センサ等多数の用途に利用できることが知ら
れている。光フアイバセンサは第1図に示した様
に発光部1で出た光が光フアイバ2、光コネクタ
6を通つて光センサ3に入射する。この光は例え
ば温度変化によりバイメタルに接着されたミラー
が動き、結合損失が変化することにより光の強度
変化を受けた後、受光部4でも光電変換され、信
号処理部5で、目的の温度に関する情報を得る。 Optical fiber sensors are temperature sensors, current sensors,
It is known that it can be used for many applications such as vibration sensors. In the optical fiber sensor, as shown in FIG. 1, light emitted from a light emitting section 1 passes through an optical fiber 2 and an optical connector 6 and enters an optical sensor 3. For example, this light undergoes a change in intensity due to the movement of a mirror bonded to a bimetal due to a temperature change and a change in coupling loss, and is then photoelectrically converted in the light receiving section 4. get information.
この様に受光部での光出力の強度変化から目的
の物理量を測定する方式では、光フアイバ2にお
いて温度変化等で伝送損失が変化したり、コネク
タ1の着脱により結合損失が変化すると測定誤差
を生じる。 In this way, in the method of measuring the target physical quantity from the change in the intensity of the optical output at the light receiving part, measurement errors may occur if the transmission loss in the optical fiber 2 changes due to temperature changes, or if the coupling loss changes due to the connection or removal of the connector 1. arise.
そこで他の従来例として、第2図に示した様な
光フアイバセンサが考えられている。この光フア
イバセンサでは波長の異なる2つの光を多重伝送
し、温度等を感知するセンサ部3の直前で分波器
7で2つの光を分離し、波長がλ1の一方の光はセ
ンサ部3を通過させ、波長がλ2の他の光は分波器
7を通させた後そのまま合波器8に入射して多重
伝送させる。次に受光部4で各波長λ1・λ2の光を
別々に検出して、その出力を比較すると、光フア
イバの損失が変動してもこの比較出力は一定であ
るから、測定誤差なく目的の物理量を検出するこ
とができる。 Therefore, as another conventional example, an optical fiber sensor as shown in FIG. 2 has been considered. In this optical fiber sensor, two lights with different wavelengths are multiplexed and transmitted, and the two lights are separated by a demultiplexer 7 just before the sensor part 3 that senses temperature etc., and one light with a wavelength of λ 1 is sent to the sensor part 3. 3, and other light having a wavelength of λ 2 is passed through a demultiplexer 7, and then directly enters a multiplexer 8 for multiplex transmission. Next, if the light receiving section 4 detects the light of each wavelength λ 1 and λ 2 separately and compares the output, this comparison output will remain constant even if the loss of the optical fiber fluctuates, so there will be no measurement error and the target physical quantities can be detected.
しかし、このような構成の従来の光フアイバセ
ンサ分波器7、合波器8の設置が構成要素として
不可欠であり、部品点数が多くなる欠点がある。
例えば第2図では反射型合波器を使用した場合の
構成例で、同じ様な構造のロツドレンズ9を使用
した合波器8・分波器・光センサ3の3組が必要
となる。また、この光フアイバセンサは分波器・
合波器の温度変化等による挿入損失の変動により
測定誤差を生じる欠点があつた。 However, the installation of the conventional optical fiber sensor demultiplexer 7 and multiplexer 8 having such a configuration is essential as a component, and there is a drawback that the number of parts increases.
For example, FIG. 2 shows a configuration example in which a reflection type multiplexer is used, and three sets of a multiplexer 8 using a rod lens 9 having a similar structure, a demultiplexer, and an optical sensor 3 are required. This optical fiber sensor also has a demultiplexer and
There was a drawback that measurement errors occurred due to fluctuations in insertion loss due to temperature changes in the multiplexer.
本発明は前記従来の欠点を除去するためになさ
れたもので、分波器・合波器・光センサ部を一体
化し、2種類の光を比較することにより温度・電
流等の測定が外部環境の影響を受けない様にする
構成を1個のロツドレンズで実現した光フアイバ
センサを提供する。 The present invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology, and by integrating a demultiplexer, a multiplexer, and an optical sensor, and by comparing two types of light, temperature, current, etc. can be measured in the external environment. To provide an optical fiber sensor that realizes a configuration with one rod lens that is not affected by
以下本発明の一実施例について図面とともに詳
細に説明する。 An embodiment of the present invention will be described in detail below with reference to the drawings.
第3図は本発明の一実施例における温度センサ
の実施例で従来列と同一箇所には同一番号を付し
てある。同図において1/4周期長の集束性ロツド
レンズ9の端面に波長λ1の光を反射し、波長λ2の
光を透過するフイルタ10が構成されており、他
端の焦点面上に入射フアイバ12と出射フアイバ
13が接着されている。 FIG. 3 shows an example of a temperature sensor according to an embodiment of the present invention, and the same parts as in the conventional row are given the same numbers. In the figure, a filter 10 that reflects light with a wavelength λ 1 and transmits light with a wavelength λ 2 is configured on the end face of a converging rod lens 9 with a 1/4 period length, and an incident fiber is formed on the focal plane of the other end. 12 and an output fiber 13 are bonded together.
反射鏡11はバイメタル11′に支持されてお
り、温度変化に応じて、レンズ端面との傾斜角が
変化する。フアイバ12から入射した波長λ1・λ2
の光はレンズ9を通過後平行光となり、波長λ1の
光はフイルタ10で反射され、レンズ9を再び通
つてフアイバ13に入射する。一方波長λ2の光は
フイルタ10を通過し、ミラー11で反射された
後、フイルタ10、レンズ9を通過してフアイバ
13に入射するが、ミラー11の傾斜角度、即ち
温度変化によつて結合効率が変化する。 The reflecting mirror 11 is supported by a bimetal 11', and its inclination angle with respect to the lens end surface changes according to temperature changes. Wavelengths λ 1 and λ 2 incident from the fiber 12
After passing through the lens 9, the light becomes parallel light, and the light with wavelength λ 1 is reflected by the filter 10, passes through the lens 9 again, and enters the fiber 13. On the other hand, light of wavelength λ 2 passes through the filter 10, is reflected by the mirror 11, passes through the filter 10 and the lens 9, and enters the fiber 13, but is combined due to the inclination angle of the mirror 11, that is, the temperature change. Efficiency changes.
上記実施例の光学装置を用いたセンサ1個のレ
ンズのみで光分波器第2図の分波器7,8も兼ね
ているため、波長λ1・λ2の光を別々に受光し、出
力強度比較をすれば、伝送路で外部環境の影響に
よる損失変動あるいはコネクタの着脱による損失
変化に影響されることなく安定した測定が出来
る。 Since the sensor using the optical device of the above embodiment has only one lens, which also serves as the optical demultiplexer 7 and 8 in FIG. By comparing the output intensities, stable measurements can be made without being affected by loss fluctuations due to the influence of the external environment in the transmission line or loss changes due to the attachment and detachment of connectors.
第4図に本発明の光フアイバセンサの別の実施
例を示す。同図においてレンズ9に接着してある
フアイバ14〜16は等間隔で配列しており、フ
アイバ14と14′はレンズ軸に対して対称であ
る。レンズ9の他端面の下半分には反射鏡17が
形成されている。フアイバ14から入射する光の
うちミラー17で反射された光はフアイバ15に
入射する。ミラー17で反射されない残りの光は
ミラー11で反射されフアイバ14′に入射する
が、この時の結合効率はバイメタル11′による
ミラーの傾き角即ち温度に依存する。一方フアイ
バ15に入射した光のうちミラー17で再び反射
した光はフアイバ14′に入射する。 FIG. 4 shows another embodiment of the optical fiber sensor of the present invention. In the figure, fibers 14-16 bonded to lens 9 are arranged at equal intervals, and fibers 14 and 14' are symmetrical about the lens axis. A reflecting mirror 17 is formed in the lower half of the other end surface of the lens 9. Among the light incident from the fiber 14, the light reflected by the mirror 17 enters the fiber 15. The remaining light that is not reflected by the mirror 17 is reflected by the mirror 11 and enters the fiber 14', and the coupling efficiency at this time depends on the tilt angle of the mirror by the bimetal 11', that is, the temperature. On the other hand, the light that is incident on the fiber 15 and reflected again by the mirror 17 is incident on the fiber 14'.
この温度センサの使用方法について第5図とと
もに説明する。図中のフアイバの番号14〜16
は第3図の構成のものと同じであり、フアイバ1
8は遅延用フアイバである。発光部からパルス状
の入力を与えるとセンサ部を通らない光はセンサ
部を通る光よりも時間遅れがある。したがつて受
光素子の出力は第6図の様な波形が得られる。同
図において19はセンサ出力、20は比較出力、
tは時間おくれである。このパルスの波高値の比
較値を求めれば、伝送路の外部環境の影響による
損失変動、あるいはコネクタの損失変化があつて
も目的の物理量の測定が安定に行なえるのは容易
にわかる。以上に温度センサについての実施例を
示したが、電流センサ等についても同様の測定が
行なえる。 How to use this temperature sensor will be explained with reference to FIG. Fiber numbers 14 to 16 in the diagram
is the same as the configuration shown in Figure 3, and the fiber 1
8 is a delay fiber. When a pulse-like input is applied from the light emitting section, the light that does not pass through the sensor section has a time delay compared to the light that passes through the sensor section. Therefore, the output of the light receiving element has a waveform as shown in FIG. In the figure, 19 is the sensor output, 20 is the comparison output,
t is the time delay. If a comparison value of the peak values of these pulses is obtained, it is easy to see that the target physical quantity can be measured stably even if there is a loss variation due to the influence of the external environment of the transmission line or a loss change of the connector. Although the embodiments related to temperature sensors have been described above, similar measurements can be performed with current sensors and the like.
以上説明した様に、本発明の光フアイバセンサ
によれば、分波・合波器等の独立した複数の光部
品を用いずに、伝送路損失の変動に影響されるこ
となく、目的の物理量を測定出来る。又光フアイ
バセンサが分波器・合波器を兼ねているため部品
点数が減少するので信頼性が向上するとともにシ
ステムを安価に構成することが出来る。 As explained above, according to the optical fiber sensor of the present invention, it is possible to obtain the desired physical quantity without using a plurality of independent optical components such as a demultiplexer/combiner, and without being affected by fluctuations in transmission path loss. can be measured. Furthermore, since the optical fiber sensor also serves as a demultiplexer and multiplexer, the number of parts is reduced, so reliability is improved and the system can be configured at low cost.
第1図と第2図はそれぞれ従来の光フアイバセ
ンサの構成を示す図、第3図は本発明の一実施例
による光フアイバセンサの構成図、第4図は本発
明の他の実施例における光フアイバセンサの要部
を示す図、第5図は同光フアイバセンサの全体の
構成を示す図、第6図は同光フアイバセンサの動
作を説明するための図である。
2,12,13,14,15,16……光フア
イバ、3……センサ部、9……ロツドレンズ、1
0……フイルタ、11……ミラー、11′……バ
イメタル、17……反射鏡、18……遅延用フア
イバ。
1 and 2 are diagrams each showing the configuration of a conventional optical fiber sensor, FIG. 3 is a configuration diagram of an optical fiber sensor according to an embodiment of the present invention, and FIG. 4 is a diagram showing the configuration of an optical fiber sensor according to another embodiment of the present invention. FIG. 5 is a diagram showing the main parts of the optical fiber sensor, FIG. 5 is a diagram showing the overall configuration of the optical fiber sensor, and FIG. 6 is a diagram for explaining the operation of the optical fiber sensor. 2, 12, 13, 14, 15, 16... Optical fiber, 3... Sensor section, 9... Rod lens, 1
0...Filter, 11...Mirror, 11'...Bimetal, 17...Reflector, 18...Delay fiber.
Claims (1)
バセンサからの光を受光する受光部と、前記受光
部からの信号をもとに被測定物理量をもとめる信
号処理部とを備えた測定装置において、 前記光源としては、2種類の波長の光を出射す
る光源を用い、 前記光フアイバセンサは、前記光源からの光を
入射するための光フアイバをその一端面に配置し
たレンズと、前記レンズの反対側端面に前記2種
類の内の一方の波長の光を反射し、他方の波長の
光を透過するフイルタと、前記フイルタを透過し
た光を前記レンズへ再入射させる反射部材とを有
し、 前記反射部材は、被測定物理量の変化に応じて
前記受光部に入射される光量を変化させることを
特徴とする光フアイバセンサ。 2 光源と、光フアイバセンサと、前記光フアイ
バセンサからの光を受光する受光部と、前記受光
部からの信号をもとに被測定物理量をもとめる信
号処理部とを備えた測定装置において、 前記光フアイバセンサは、前記光源からの光を
入射するための光フアイバをその一端面に配置し
たレンズと、 前記レンズの反対側端面に設けた、一部の光を
反射する第1の反射部材と、 前記レンズの前記一端面に設けられ、前記第1
の反射部材により反射された光を遅延させる遅延
部材と、 前記レンズの前記反対側端面から出射した光を
前記レンズへ再入射させる第2の反射部材とを有
し、 前記第2の反射部材は、被測定物理量の変化に
応じて前記受光部に入射される光量を変化させる
ことを特徴とする光フアイバセンサ。[Scope of Claims] 1. A light source, an optical fiber sensor, a light receiving section that receives light from the optical fiber sensor, and a signal processing section that obtains a physical quantity to be measured based on a signal from the light receiving section. In the measuring device, the light source is a light source that emits light of two different wavelengths, and the optical fiber sensor includes a lens having an optical fiber disposed on one end surface of the optical fiber for receiving light from the light source. , a filter that reflects light of one of the two wavelengths and transmits the other wavelength on the opposite end surface of the lens; and a reflecting member that causes the light that has passed through the filter to enter the lens again. An optical fiber sensor, wherein the reflecting member changes the amount of light incident on the light receiving section according to a change in a physical quantity to be measured. 2. A measuring device comprising a light source, an optical fiber sensor, a light receiving section that receives light from the optical fiber sensor, and a signal processing section that obtains a physical quantity to be measured based on a signal from the light receiving section, The optical fiber sensor includes: a lens having an optical fiber arranged on one end surface thereof for receiving light from the light source; and a first reflecting member provided on the opposite end surface of the lens to reflect a part of the light. , provided on the one end surface of the lens, and provided on the first end surface of the lens.
a delay member that delays the light reflected by the reflective member; and a second reflective member that causes the light emitted from the opposite end surface of the lens to re-enter the lens, the second reflective member . An optical fiber sensor, characterized in that an amount of light incident on the light receiving section is changed in accordance with a change in a physical quantity to be measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11395081A JPS5816397A (en) | 1981-07-20 | 1981-07-20 | Optical fiber sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11395081A JPS5816397A (en) | 1981-07-20 | 1981-07-20 | Optical fiber sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5816397A JPS5816397A (en) | 1983-01-31 |
JPH0258677B2 true JPH0258677B2 (en) | 1990-12-10 |
Family
ID=14625264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11395081A Granted JPS5816397A (en) | 1981-07-20 | 1981-07-20 | Optical fiber sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5816397A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0656670U (en) * | 1992-02-21 | 1994-08-05 | 株式会社前川製作所 | Cooling system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6073345A (en) * | 1983-09-30 | 1985-04-25 | Aloka Co Ltd | Biochemical component analytical apparatus using laser beam |
JPS6073344A (en) * | 1983-09-30 | 1985-04-25 | Aloka Co Ltd | Biochemical component analytical apparatus using laser beam |
JPS61172399U (en) * | 1985-04-10 | 1986-10-25 |
-
1981
- 1981-07-20 JP JP11395081A patent/JPS5816397A/en active Granted
Non-Patent Citations (1)
Title |
---|
APPLIED OPTICS=1980 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0656670U (en) * | 1992-02-21 | 1994-08-05 | 株式会社前川製作所 | Cooling system |
Also Published As
Publication number | Publication date |
---|---|
JPS5816397A (en) | 1983-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4356396A (en) | Fiber optical measuring device with compensating properties | |
US4932742A (en) | Fiber optic wavelength division multiplexing module | |
JPS6298218A (en) | Fiber optical detecting system | |
EP0124533A1 (en) | Fiber optic displacement sensor with built-in reference | |
EP0167220B1 (en) | Optical transducer and measuring device | |
US4325638A (en) | Electro-optical distance measuring apparatus | |
US5159190A (en) | Radiating and receiving arrangement for a fiber-optic sensor having dual sources and detectors | |
WO2001002824A1 (en) | Method and device for fibre-optical measuring systems | |
GB2192984A (en) | Optical sensing arrangement | |
SU1179402A1 (en) | Smoke transducer | |
JPH0258677B2 (en) | ||
JPS6111637A (en) | Liquid body sensor | |
GB2219656A (en) | Sensor for sensing the light absorption of a gas | |
JPS58132637A (en) | Pressure measuring device employing optical fiber | |
JPH068724B2 (en) | Optical detector | |
US4947038A (en) | Process and arrangement for optically measuring a physical quantity | |
JPS6147514A (en) | Reflective type optical fiber sensor | |
JPH095021A (en) | Optical fiber sensor | |
JP2918761B2 (en) | Optical position detector | |
JPH0635147Y2 (en) | Photo detector | |
JPS586431A (en) | Temperature measuring method using optical fiber | |
WO2023182359A1 (en) | Interferometer and physical quantity measurement device | |
JPS599526A (en) | Temperature measuring device | |
CN1059970A (en) | Compensating method of high-precision and-intensity optical fibre sensor with dual-wavelength modulation | |
SU877359A1 (en) | Device for measuring surface temperature |