JPS599526A - Temperature measuring device - Google Patents
Temperature measuring deviceInfo
- Publication number
- JPS599526A JPS599526A JP11770082A JP11770082A JPS599526A JP S599526 A JPS599526 A JP S599526A JP 11770082 A JP11770082 A JP 11770082A JP 11770082 A JP11770082 A JP 11770082A JP S599526 A JPS599526 A JP S599526A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light beams
- temperature
- optical
- temperature sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/12—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は光温度でンサより発する光信号が光ファイバ等
を介して伝送される温度測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measuring device in which an optical signal emitted from a sensor at a light temperature is transmitted via an optical fiber or the like.
光温度センサから光伝送路を介してアナログ量を伝送す
る場合、温度変化および曲げ応力等によシ光伝送路の伝
送特性が変動し、正確な温度測定が困難になるため、こ
の変動を補償し、測定精度を高める必要がある。When transmitting an analog quantity from an optical temperature sensor via an optical transmission line, the transmission characteristics of the optical transmission line fluctuate due to temperature changes and bending stress, making accurate temperature measurement difficult, so compensate for this fluctuation. However, it is necessary to improve measurement accuracy.
第1図はそのような伝送特性変動の補償を行った温度測
定装置の一例を示し1例えばハロゲンランプを用いた光
源1より出た光はレンズ2で平行光線となり、フィルタ
3、二色複合ミラ4,5゜6で可視光線が除かれ、紫外
光線のみがレンズ7により光ファイバ8の端面コア上に
焦点を合わせ、、、y、H右側の放射波長が示すスペク
トルを有する可視−°、ユ、、!
光線を発光する。この可視光線は再び光ファイバ8を経
由しビームスプリッタ10により部分され一方はミラ1
1に反射されてそれぞれ干渉フィルタ12.13により
第2図(A)の放射波長a、cの可視光線のみをそれぞ
れ取り出し、この2つの可視光線はそれぞれレンズ14
.15により光検出器16.17に到達する。光信号は
光検出器16で電気信号に変換され、さらに前段増幅器
18.19を経てA/D変換器マルチプレクサ20によ
りA/D変換された後、Ic/Ia(Ic:波長Cの光
強度、■a :波長aの光強度)の演算を行ない、マイ
クロコンピータ21に入力される。読出し専用メモIJ
(ROM)22には、第2図の)に示す温度と放射波長
の相対強度I c / I a との関係が書きこま
れておシ、マイクロコンピュータにより温度情報に変換
され、D/A変換器24を経て表示される。ここで、波
長aとCの相対強度I c /I a を取ること第
3図は別の温度測定装置を示し、パルス発生長λ1とλ
2の光は光コネクタ39を通って温度検出部40に達す
る。検出部40には、Ga、A s 、 Cd Te等
のような半導体装置かれ、光はこの半導体中を通過し、
光ファイバ、光コネクタ41を通って光検出器42に入
り、電気信号に変換される。そして、受光回路43を経
てサンプルホールド増幅器44で増幅した後1割算回路
45でλ1.λ、の光強度■λ3.■λ2 の比■λ+
/Iλ、を求める。ここで、GaAs 、 CdTe等
のような半導体は、光を吸収する波長の範囲が温度依存
性をもっている。つまシ、第4図(6)に曲線Pで示し
たように半導体の吸収端の波長は温度によって変化し、
例えば曲線Qで示す適当な波長の発光ダイオード光を用
いると、半導体を通過した発光ダイオードの光強度は第
4図(ハ)のように温度依存性を有する。そこでλ、の
波長を温度変動によって透過光強度が変化する波長にし
かしこれらの装置における補償方法は、他の原理による
光温度センサを用いた温度測定装置においては適用不可
能である。第1図に示した装置における補償方法は、螢
光物質の発光スペクトルの温度変化を利用した光温度セ
ンサに対してのみ適用可能であり、第3図に示した装置
における補償方法は、透過光強度が温度依存性をもつ波
長と温度依存性のない波長とを利用する原理に基づく光
温度センサにのみ適用可能である。しかし、自然複屈折
あるいは多波干渉の原理を用いた光温度センサなどにお
いては、透過光強贋が温度依存性を持たない波長範囲が
存在しないのでこのような= 5−
補償方法は適用できない。Figure 1 shows an example of a temperature measuring device that compensates for such transmission characteristic fluctuations. 1 Light emitted from a light source 1 using a halogen lamp, for example, becomes a parallel beam at a lens 2, and then passes through a filter 3 and a dichroic composite mirror. At 4,5°6, the visible light is removed, and only the ultraviolet light is focused by the lens 7 onto the end face core of the optical fiber 8, and the visible light with the spectrum indicated by the emission wavelength on the right side of . ,,! Emits light rays. This visible light passes through the optical fiber 8 again and is divided into parts by the beam splitter 10;
1, the interference filters 12 and 13 take out only the visible light rays with emission wavelengths a and c shown in FIG.
.. 15 to a photodetector 16.17. The optical signal is converted into an electric signal by the photodetector 16, and then A/D converted by the A/D converter multiplexer 20 via the preamplifiers 18 and 19. (2) a: light intensity of wavelength a) is calculated and input to the microcomputer 21; Read-only memo IJ
The relationship between the temperature and the relative intensity I c / I a of the radiation wavelength shown in ) in Fig. 2 is written in the (ROM) 22, which is converted into temperature information by the microcomputer and then converted into D/A conversion. The image is displayed via the device 24. Here, the relative intensities I c /I a of wavelengths a and C are taken.
The second light passes through the optical connector 39 and reaches the temperature detection section 40 . The detection unit 40 includes a semiconductor device such as Ga, As, CdTe, etc., and light passes through this semiconductor.
The light passes through an optical fiber and an optical connector 41, enters a photodetector 42, and is converted into an electrical signal. After passing through the light receiving circuit 43 and amplifying it in the sample-and-hold amplifier 44, the λ1. Light intensity of λ,■λ3. ■Ratio of λ2■λ+
/Iλ, is determined. Here, semiconductors such as GaAs and CdTe have temperature dependence in the wavelength range in which they absorb light. As shown by curve P in Figure 4 (6), the wavelength of the absorption edge of a semiconductor changes depending on the temperature.
For example, when light emitting diode light of a suitable wavelength shown by curve Q is used, the light intensity of the light emitting diode passing through the semiconductor has temperature dependence as shown in FIG. 4(c). Therefore, the compensation method used in these devices, however, is not applicable to temperature measuring devices using optical temperature sensors based on other principles. The compensation method in the device shown in FIG. 1 is applicable only to optical temperature sensors that utilize temperature changes in the emission spectrum of fluorescent substances, and the compensation method in the device shown in FIG. It is applicable only to optical temperature sensors based on the principle of using wavelengths whose intensity is temperature-dependent and wavelengths whose intensity is not temperature-dependent. However, in an optical temperature sensor using the principle of natural birefringence or multiwave interference, such a = 5- compensation method cannot be applied because there is no wavelength range in which the intensity of transmitted light does not have temperature dependence.
本発明は上記の欠点を解消するためのもので、他の原理
に基づく光温度センサを用いた場合にも光伝送路特性の
変動の補償が行われる温度測定装置を提供することを目
的とする。The present invention is intended to eliminate the above-mentioned drawbacks, and aims to provide a temperature measurement device that can compensate for fluctuations in optical transmission path characteristics even when an optical temperature sensor based on another principle is used. .
れて一方の波長の光の強度のみ温度に依存して変を比較
して温度を算出する手段とを備えることによって達成さ
れる。This is achieved by comprising means for calculating the temperature by comparing the change in the intensity of light of one wavelength depending on the temperature.
以下図を引用して本発明の実施例について説明する。各
図において前に引用した各図と共通の部分には同一符号
が付されている。第5図において、異なる波長λ1.λ
、の発光素子33.34を駆動部32によって発光させ
る。発光素子駆動部32の一例を第6図に示す。パルス
発生器31でパルス−6=
を発生させ、一方の発光素子駆動回路51にはそのパル
スを直接加えるが、他方の発光素子駆動回路52には、
インバータ53全通してからパルスを加える。これによ
り発光素子33を駆動する回路51、発光素子34を駆
動する回路52を交互に働かせ1発光素子33.34を
交互に発光させる。Embodiments of the present invention will be described below with reference to the drawings. In each figure, parts common to the previously cited figures are given the same reference numerals. In FIG. 5, different wavelengths λ1. λ
, the light emitting elements 33 and 34 are caused to emit light by the drive section 32. An example of the light emitting element driving section 32 is shown in FIG. The pulse generator 31 generates a pulse -6=, and the pulse is directly applied to one light emitting element drive circuit 51, but the other light emitting element drive circuit 52 is
A pulse is applied after passing through the inverter 53. As a result, the circuit 51 for driving the light emitting element 33 and the circuit 52 for driving the light emitting element 34 are operated alternately to cause each light emitting element 33 and 34 to emit light alternately.
発光素子33.34を出射した光は、光ファイバ35.
36に入り光合波器37で一つの光ファイバ38に入る
。次いで光分岐器54でλ1とλ2の光の1.41ii
イ1バ55と異なる光ファイバ58に入シ、受光素子5
9に入射し、信号処理部61によって電気信号に変換さ
れる。第7図は信号処理部の一例を示す。受光素子59
で受けるλ1.λ2の光に対する電気信号をそれぞれ■
、λ1.■、λ、とし、光源子ユタ用受光素子60で受
けるλ1.λ、の光に対する電気信号をそれぞれv2λ
1.■、λ2とする。電気信号を増幅器62で増幅して
から1割算器45へ入力し。The light emitted from the light emitting elements 33, 34 is transmitted to the optical fiber 35.
36 and enters into one optical fiber 38 at an optical multiplexer 37. Next, in the optical splitter 54, the 1.41ii of the λ1 and λ2 lights enters the optical fiber 58 different from the optical fiber 55, and the light receiving element 5
9 and is converted into an electrical signal by the signal processing section 61. FIG. 7 shows an example of a signal processing section. Light receiving element 59
received at λ1. The electric signal for the light of λ2 is
, λ1. (2), λ, and λ1. which is received by the light receiving element 60 for the light source element UT. The electric signal for the light of λ is v2λ, respectively.
1. ■, λ2. The electrical signal is amplified by an amplifier 62 and then input to a divider 45 .
V1λ1/■、λ、と■、λ1α、λ、の割算を交互に
行なう。Divisions of V1λ1/■, λ and ■, λ1α, λ are performed alternately.
なぜなら、λ1とλ2の光が交互に受光素子59と光源
モニタ用受光素子60に入射するからである。This is because the lights of λ1 and λ2 are alternately incident on the light receiving element 59 and the light receiving element 60 for monitoring the light source.
両割算の結果をサンプルホールド増幅器44.44’で
ホールドし、両割算の結果を再び第2の割算器45’に
入力する。割算結果のホールドは発光素子駆動部32か
らの信号によって行なう。その結果、(V+λUα、λ
+ )/ (Vtλv%λ2)の値が割算器45’ カ
ら出力される。この出力は増幅器63で増幅し。The results of both divisions are held in sample-and-hold amplifiers 44 and 44', and the results of both divisions are input again to the second divider 45'. Holding of the division result is performed by a signal from the light emitting element driving section 32. As a result, (V+λUα, λ
+)/(Vtλv%λ2) is output from the divider 45'. This output is amplified by an amplifier 63.
/l’tN=の光はフィルタ66で反射される。すなわ
ち、フィルタ66はλ、の光を透過し、λ2の光を反射
するという特性を持っている。光学的平行平面(を有す
る)透明固体67に入射したλ、の光は、多波干渉を起
こし、入射した光の一部が反射光となって透明固体67
よシ出射する。この出射光の強度は、光学的平行平面固
体67の温度により変化する。こうして反射光となった
λ、とλ2の光は、ビームスプリッタ10によって光路
を曲げられ、ミラ11、レンズ65を経て、検出端57
に入射した時と異なる光ファイバ58に入射する。/l'tN= light is reflected by the filter 66. That is, the filter 66 has a characteristic of transmitting light of λ and reflecting light of λ2. The light of λ incident on the transparent solid 67 (having an optically parallel plane) causes multiwave interference, and a part of the incident light becomes reflected light and the transparent solid 67
I'm going to emit it. The intensity of this emitted light changes depending on the temperature of the optical parallel plane solid 67. The reflected lights λ and λ2 have their optical paths bent by the beam splitter 10, pass through the mirror 11 and the lens 65, and then pass through the detection end 57.
It enters into a different optical fiber 58 than when it entered.
第9図は自然複屈折の原理に基づく光温度センサの例で
ある。第9図では、レンズ65より出射”した平行ビー
ムは偏光ビームスプリッタ68を通り、直線偏光となっ
た後、波長板69を通っ1て位相差を与えられる。この
後、λ2の光はフィルタ66ケ着し、反射膜71によっ
て反射し、再び光学的−異方性結晶70中を入射光とは
逆向きに進行し、−9=
学的異方性結晶中でさらに位相差を与えられる。FIG. 9 is an example of an optical temperature sensor based on the principle of natural birefringence. In FIG. 9, the parallel beam emitted from the lens 65 passes through a polarizing beam splitter 68, becomes linearly polarized light, passes through a wavelength plate 69, and is given a phase difference. It is reflected by the reflective film 71, travels again through the optically anisotropic crystal 70 in the opposite direction to the incident light, and is further given a phase difference within the optically anisotropic crystal.
方向の光の振動成分(S成分)を取シ出し、ミラ11、
レンズ65を経て、検出端57に入射した時と異なる光
ファイバ58に入射する。この時。Extract the vibration component (S component) of the light in the direction, Mira 11,
The light passes through the lens 65 and enters the optical fiber 58 different from the one that entered the detection end 57 . At this time.
波長板69によって与えられる位相差は、はとんど温度
依存性はないが、光学的異方性結晶7oによって与えら
れる位相差は温度依存性をもつ。っまシ、λ1の光に与
えられる位相差は温度依存性を性をもつが、λ2のS成
分はほとんど温度依存性をもたない。The retardation provided by the wave plate 69 has almost no temperature dependence, but the retardation provided by the optically anisotropic crystal 7o has temperature dependence. However, the phase difference given to the light of λ1 has a temperature dependence, but the S component of λ2 has almost no temperature dependence.
上述した構成をとることにより1発光素子の出力変動、
光ファイバの光損失特性の変動等に基づく測定誤差を補
償することができる。その理由を−10=
以下に述べる。第5図において発光素子33がら発せら
れるλ1の光の強度を1λ1.受光素子59でバ35.
光合波器37、光ファイバ38.光分岐−i−での光損
失、M(T)は温度センサ57での光強度の温度依存性
をあられす。Bλ1.Dλl、Iλ1はそれぞれ時間依
存性をもつ。一方、光源モニタ用受光素子60で受光す
るλ、の光の強度を■2λ、とすると、■、λ1は、
■2λ、=Cλ、 i)λ11λ1(2)で与えられる
。ここで、C20は光分岐器54を出射してから光ファ
イバ56を通過し、光源モニタ用受光素子60に入射す
るまでの光損失である。By adopting the above configuration, output fluctuation of one light emitting element,
Measurement errors due to variations in optical loss characteristics of optical fibers can be compensated for. The reason for this will be explained below. In FIG. 5, the intensity of the light of λ1 emitted from the light emitting element 33 is 1λ1. With the light receiving element 59, the bar 35.
Optical multiplexer 37, optical fiber 38. The optical loss at the optical branch -i-, M(T), represents the temperature dependence of the optical intensity at the temperature sensor 57. Bλ1. Dλl and Iλ1 each have time dependence. On the other hand, if the intensity of the light λ received by the light-receiving element 60 for monitoring the light source is 2λ, 2, λ1 is given by 2λ,=Cλ, i) λ11λ1 (2). Here, C20 is the optical loss from outputting the optical splitter 54 to passing through the optical fiber 56 and entering the light receiving element 60 for monitoring the light source.
同様に発光素子34から発せられたλ2の波長の光の強
度を■λ2.受光素子59.光源モニタ用受光素子60
で受光するλ、の光の強度を各々、11λ、。Similarly, the intensity of the light of wavelength λ2 emitted from the light emitting element 34 is determined as ■λ2. Light receiving element 59. Light receiving element 60 for light source monitor
The intensity of the light of λ received at is 11λ, respectively.
I−宜とすると
■1λ、=13λ2Dλ、■λ2(3)I2λ2=Cλ
、 I)λ、■λ2(4)で与えられる。ここで、Bλ
1+Cλ2.Dλ、はλ、ノ場合と同様に、λtの光に
対する光伝送路の損失をあとなる。(6)式の右辺は、
温度検出端の温度依存性をあられしており、光源変動、
光伝送路の損失変動は消去されている。このことから、
本構成をとることによって光源変動、光伝送路の損失変
動にかかわりなく、精度のよい温度測定が可能であるこ
とがわかる。If I-I, ■1λ, = 13λ2Dλ, ■λ2(3) I2λ2=Cλ
, I) λ, ■λ2 (4) is given. Here, Bλ
1+Cλ2. As in the case of λ, Dλ is the loss of the optical transmission path for the light of λt. The right side of equation (6) is
The temperature dependence of the temperature detection end is detected, and light source fluctuations,
Loss fluctuations in the optical transmission line are eliminated. From this,
It can be seen that by adopting this configuration, accurate temperature measurement is possible regardless of variations in the light source and variations in loss in the optical transmission line.
次に第5図の変形例を述べる。第10図はλ鳳とλ2の
光を交互に発光するのでは々く、同時に発光するように
した例である。第5図と異なるところは、光が受光素子
59.光源モニタ用受光素子60に入射する前に、光分
波器72でλ1とλ2の光を分波し、λ1とλ2で異な
る受光素子59.59’、光源モニタ用受光素子60
、60’に光が入射する点である。Next, a modification of FIG. 5 will be described. FIG. 10 shows an example in which light of λ2 and light of λ2 are emitted alternately, but at the same time. The difference from FIG. 5 is that the light is transmitted to the light receiving element 59. Before entering the light receiving element 60 for monitoring the light source, the light of λ1 and λ2 are separated by an optical demultiplexer 72, and different light receiving elements 59, 59' for λ1 and λ2, and the light receiving element 60 for monitoring the light source are separated.
, 60' is the point where light is incident.
シ
三
−を同時に発光させる構成であるが、光が光合波器54
に入射する前に光分岐器54により分岐し光源モニタ用
受光素子60 、60’に入射させる方式で=13−
あシ、光源モニタ用受光素子60 、60’の前に光分
波器72を必要としない。第13図は、λ、とλ、の光
を交互に発光させる方式であるが、検出端57へ入射す
る光と出射する光を同一の光ファイバにした構成である
。発光素子33.34から出射した光は光ファイバ35
、36 、光合波器37、光ファイバ38を通り、光
方向性結合器74に入射する。Although the configuration is such that the three lights emit light at the same time, the light is transmitted to the optical multiplexer 54.
In this method, the optical branching device 54 branches the light before the light enters the light receiving element 60, 60' for monitoring the light source. do not need. FIG. 13 shows a system in which the lights λ and λ are emitted alternately, but the configuration is such that the light entering the detection end 57 and the light exiting the detection end 57 are transmitted through the same optical fiber. The light emitted from the light emitting elements 33 and 34 is transmitted through the optical fiber 35.
, 36 , passes through the optical multiplexer 37 and the optical fiber 38 and enters the optical directional coupler 74 .
ここで、光の一部を分岐し、分岐された光は光ファイバ
56を通り、光源モニタ用受光素子6oに入射する。光
方向性結合器74を出射するもう一方の光は、光ファイ
バ55を通シ、温度検出端57に入射し、その内部で反
射され、入射した光7アイパ55に再び入射し、光方向
性結合器7+に達する。ここで光は、光源モニタ用受光
素子6oに14−
を第15.第16図に示す。第15図は自然複屈折の原
理を、第16図は多波干渉の原理を使用したものでおる
。両図においてλ、の光はフィルタ66によって反射さ
れ、光学的異方性結晶70あるいは光学的平行平面を有
する透明固体67に入射せず戻るが、λ1の光はフィル
タ66を通過し、異方性結晶70あるいは透明固体67
に入射し1反射膜71あるいは透明固体67の端面に反
射されて戻る。Here, a part of the light is branched, and the branched light passes through the optical fiber 56 and enters the light source monitoring light receiving element 6o. The other light emitted from the optical directional coupler 74 passes through the optical fiber 55, enters the temperature detection end 57, is reflected inside, enters the input light 7 eyeper 55 again, and changes the optical directionality. It reaches combiner 7+. Here, the light is transmitted from 14- to 15- to light-receiving element 6o for light source monitoring. It is shown in FIG. Fig. 15 uses the principle of natural birefringence, and Fig. 16 uses the principle of multiwave interference. In both figures, the light of λ is reflected by the filter 66 and returns without entering the optically anisotropic crystal 70 or the transparent solid 67 having optically parallel planes, but the light of λ1 passes through the filter 66 and is anisotropic. crystal 70 or transparent solid 67
The light enters and is reflected by the end face of the reflective film 71 or the transparent solid body 67 and returns.
以上述べたように本発明は波長の異なる二つの光を用い
、同一の光伝送路を通過させ、温度センサにおいて一方
の波長の光の強度のみを温度に依存して変化させ、温度
センサに入射する前に分岐したそれぞれの波長の光の強
度との比を計算し、さらにそれらの商を比較することに
よって温度を測定するもので、これにより自然複屈折の
温度変化あるいは多波干渉の温度依存性等の原理に基づ
うち一方の波長に対してのみ温度に依存した強度第1図
は従来の光温度センサを用いた温度測定装置の一例の系
統図、第2図(ハ))はそれに利用される螢光物質の特
性を示す励起紫外線と放射光とのスペクトル図、第2図
(ハ)は放射光の波長a、cの光強度およびその比と温
度との関係線図、第3図は別の従来例の系統図、第4図
(ト)はそれに利用される半導体の吸収端特性の温度依
存性、第4図(ロ)はそれに基づく半導体を通過した光
の光強度の依存性をそれぞれ示す線図、第5図は本発明
による温度測定装置の一実施例の構成図、第6図はその
発光素子駆動部の系統図、第7図はその信号処理部の系
統図、第8図はその光温度センサの一実施例を示す系統
図、第9図は別の実施例を示す系統図、第10図は温度
測定装置の別の実施例を示す系統図、第11図はその変
形例における信号処理16一
部の系統図、第12ないし第14図はそれぞれ温度測定
装置のさらに異なる実施例の系統図、第15゜!1.”
6図は第13 第14図に〒す装置に用いらる光温度セ
ンサの二つの実施例をそれぞれ示す′読図である。As described above, the present invention uses two lights of different wavelengths, passes them through the same optical transmission path, changes only the intensity of the light of one wavelength at the temperature sensor depending on the temperature, and then inputs the light into the temperature sensor. The temperature is measured by calculating the ratio of the intensity of the light of each wavelength that has been split before splitting, and then comparing the quotients. Figure 1 shows a system diagram of an example of a temperature measuring device using a conventional optical temperature sensor, and Figure 2 (c) shows the temperature-dependent intensity for only one of the wavelengths based on the principle of A spectral diagram of excitation ultraviolet rays and synchrotron radiation showing the characteristics of the fluorescent substance used; Fig. 2 (c) is a diagram of the relationship between the light intensity of wavelengths a and c of synchrotron radiation and their ratio and temperature; Fig. 3 The figure is a systematic diagram of another conventional example, Figure 4 (g) is the temperature dependence of the absorption edge characteristics of the semiconductor used in it, and Figure 4 (b) is the dependence of the light intensity of light passing through the semiconductor based on it. FIG. 5 is a block diagram of an embodiment of the temperature measuring device according to the present invention, FIG. 6 is a system diagram of its light emitting element driving section, and FIG. 7 is a system diagram of its signal processing section. Fig. 8 is a system diagram showing one embodiment of the optical temperature sensor, Fig. 9 is a system diagram showing another embodiment, Fig. 10 is a system diagram showing another embodiment of the temperature measuring device, and Fig. 11. is a system diagram of a part of the signal processing 16 in the modified example, and FIGS. 12 to 14 are system diagrams of further different embodiments of the temperature measuring device, respectively. 1. ”
FIG. 6 is a reading diagram showing two embodiments of the optical temperature sensor used in the apparatus shown in FIGS. 13 and 14, respectively.
訃呵−−
地部、64・・・表示部、67・・・光学的平行平面を
有する透明固体、70・・・光学的異方性結晶、74・
・・光方向性結合器。Part 64 Display part 67 Transparent solid having optically parallel planes 70 Optically anisotropic crystal 74
...Optical directional coupler.
に、t+矢=フ羊1ヱ^ミ1Nこ 特許出願人 石 坂 誠 − 17− オ1閃 44 才3図 ’lt’4閃 才5図 オフ(3)To, t + arrow = fu sheep 1ヱ^mi 1N Patent applicant: Makoto Ishizaka 17- O1 flash 44 3rd figure 'lt'4 flash 5th figure Off (3)
Claims (1)
れぞれ二つの部分に分ける分岐器と、その一方の部分の
光が導かれて一方の波長の光の強度のみを温度に依存し
て変化させる光温度センサと、その光温度センサを経た
一方の部分の光と他方の部分の光の強度の比を計算し、
さらに両波長の光ゴ一対するそれぞれの比を比較して温
度を算出する段とを備えたことを特徴とする温度測定装
置。 )特許請求の範囲第1項記載の装置において、]温度セ
ンサが自然複屈折の温度依存性を利用しものであること
を特徴とする温度測定装置。 ミ“田 ’、 、3i )特許請求の範囲第1項記載0装置にゝ
″″・光温度センナが多波干渉の温度依存性を利用した
ものであることを特徴とする温度測定装置。[Claims] 1) A light emitting source that emits two lights of different wavelengths, a splitter that separates the lights into two parts, and a splitter that separates the lights into two parts, and the light of one part is guided to produce the intensity of the light of one wavelength. An optical temperature sensor that changes only the temperature depending on the temperature, and calculates the ratio of the intensity of one part of the light passing through the optical temperature sensor to the light intensity of the other part,
The temperature measuring device further comprises a step for calculating the temperature by comparing the ratio of the light beams of both wavelengths. ) The temperature measuring device according to claim 1, wherein the temperature sensor utilizes the temperature dependence of natural birefringence. 3i) A temperature measuring device according to claim 1, characterized in that the optical temperature sensor utilizes the temperature dependence of multiwave interference.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11770082A JPS599526A (en) | 1982-07-08 | 1982-07-08 | Temperature measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11770082A JPS599526A (en) | 1982-07-08 | 1982-07-08 | Temperature measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS599526A true JPS599526A (en) | 1984-01-18 |
JPH0131580B2 JPH0131580B2 (en) | 1989-06-27 |
Family
ID=14718135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11770082A Granted JPS599526A (en) | 1982-07-08 | 1982-07-08 | Temperature measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS599526A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0225023A2 (en) * | 1985-10-18 | 1987-06-10 | National Power PLC | Temperature measurement |
EP0224943A2 (en) * | 1985-10-01 | 1987-06-10 | Philips Patentverwaltung GmbH | Method to measure selectively, according to wavelength, the diminution in radiation intensity in an optical transmission system |
US7849586B2 (en) | 2003-07-16 | 2010-12-14 | Marvell World Trade Ltd. | Method of making a power inductor with reduced DC current saturation |
US7868725B2 (en) | 2003-07-16 | 2011-01-11 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
JP2014167605A (en) * | 2013-01-30 | 2014-09-11 | Mitsubishi Cable Ind Ltd | Optical sensor device and optical fiber cable used for the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5714729A (en) * | 1980-07-01 | 1982-01-26 | Nec Corp | Temperature measuring device |
-
1982
- 1982-07-08 JP JP11770082A patent/JPS599526A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5714729A (en) * | 1980-07-01 | 1982-01-26 | Nec Corp | Temperature measuring device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0224943A2 (en) * | 1985-10-01 | 1987-06-10 | Philips Patentverwaltung GmbH | Method to measure selectively, according to wavelength, the diminution in radiation intensity in an optical transmission system |
EP0224943A3 (en) * | 1985-10-01 | 1989-03-15 | Philips Patentverwaltung GmbH | Method to measure selectively, according to wavelength, the diminution in radiation intensity in an optical transmission system |
EP0225023A2 (en) * | 1985-10-18 | 1987-06-10 | National Power PLC | Temperature measurement |
US7849586B2 (en) | 2003-07-16 | 2010-12-14 | Marvell World Trade Ltd. | Method of making a power inductor with reduced DC current saturation |
US7868725B2 (en) | 2003-07-16 | 2011-01-11 | Marvell World Trade Ltd. | Power inductor with reduced DC current saturation |
US7882614B2 (en) | 2003-07-16 | 2011-02-08 | Marvell World Trade Ltd. | Method for providing a power inductor |
US7987580B2 (en) | 2003-07-16 | 2011-08-02 | Marvell World Trade Ltd. | Method of fabricating conductor crossover structure for power inductor |
US8028401B2 (en) | 2003-07-16 | 2011-10-04 | Marvell World Trade Ltd. | Method of fabricating a conducting crossover structure for a power inductor |
JP2014167605A (en) * | 2013-01-30 | 2014-09-11 | Mitsubishi Cable Ind Ltd | Optical sensor device and optical fiber cable used for the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0131580B2 (en) | 1989-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4356396A (en) | Fiber optical measuring device with compensating properties | |
US5619326A (en) | Method of sample valuation based on the measurement of photothermal displacement | |
KR100922577B1 (en) | Portable Optical Bio Sensor Measurement System | |
CN111381199B (en) | A pulsed strong magnetic field optical measurement system and method | |
JPS599526A (en) | Temperature measuring device | |
JPH0450639A (en) | Optical sample analyzer | |
EP0735350B1 (en) | Spectroscope comprising an optical fibre branching | |
JP2605385B2 (en) | Optical wavelength resolution measurement device | |
JPS58132637A (en) | Pressure measuring device employing optical fiber | |
JPS59669A (en) | Optical fiber magnetic field sensor | |
JPH01163675A (en) | Multipoint measuring instrument by multiplexed wavelength | |
JPS62159027A (en) | Detecting device for degree of deterioration of oil | |
JPS5816397A (en) | Optical fiber sensor | |
JPH04116416A (en) | Optical-intensity modulation sensor | |
JPS58139038A (en) | Temperature measuring device using optical fiber | |
JPS6160200A (en) | Light-applied measuring apparatus | |
JPH06123661A (en) | Optical fiber distribution type temperature sensor and apparatus for generating two wavelength light | |
JP2023014607A (en) | electric field sensor | |
SU1599685A1 (en) | Pressure gauge | |
JPS6148778A (en) | Measuring instrument | |
JPS59670A (en) | Optical fiber magnetic field sensor | |
JPH01153924A (en) | Coherent light measuring instrument | |
JP2648431B2 (en) | Optical temperature sensor | |
JPS61118633A (en) | Optical fiber sensor | |
JP3339323B2 (en) | Optical fiber sensor |