[go: up one dir, main page]

JPH0251807A - Manufacture of nb3al superconducting wire rod with extremely fine multiplex structure - Google Patents

Manufacture of nb3al superconducting wire rod with extremely fine multiplex structure

Info

Publication number
JPH0251807A
JPH0251807A JP63200238A JP20023888A JPH0251807A JP H0251807 A JPH0251807 A JP H0251807A JP 63200238 A JP63200238 A JP 63200238A JP 20023888 A JP20023888 A JP 20023888A JP H0251807 A JPH0251807 A JP H0251807A
Authority
JP
Japan
Prior art keywords
superconducting wire
wire
ultrafine
multiple structure
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63200238A
Other languages
Japanese (ja)
Other versions
JPH0644427B2 (en
Inventor
Tadashi Inoue
井上 廉
Takao Takeuchi
孝夫 竹内
Michio Kosuge
小菅 通雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP63200238A priority Critical patent/JPH0644427B2/en
Priority to DE3905805A priority patent/DE3905805C2/en
Priority to US07/315,825 priority patent/US4917965A/en
Publication of JPH0251807A publication Critical patent/JPH0251807A/en
Publication of JPH0644427B2 publication Critical patent/JPH0644427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (技術分野) この発明は、超極細多重構造のNb3Al超電導線材の
製造法に関するものである。さらに詳しある。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing an Nb3Al superconducting wire having an ultrafine multiple structure. There are more details.

(従来の技術とその課題) 強磁界および交流磁界下fこおいてりれた超電導特性を
示す線材は、NMR分析装置、核融合炉、エネルギー貯
蔵、電磁推進船、超電導発を磯、あるいは超電導変圧器
等に有利に用いられるものである。
(Conventional technology and its problems) Wires exhibiting superconducting properties that are exposed to strong magnetic fields and alternating magnetic fields can be used in NMR analyzers, nuclear fusion reactors, energy storage, electromagnetic propulsion ships, superconducting power generation, or superconducting It is advantageously used in transformers and the like.

このよ5な分野lこ利用が期待される強磁界用超電導線
材としては、Nb、snおよびV3Gaからなるものが
知られているが、これらの線材はいくつかの重大な欠点
を有しているため、依然として実用〆こ供するうえで難
点の多い状況にある。
Superconducting wires made of Nb, sn, and V3Ga are known as superconducting wires for strong magnetic fields that are expected to be used in these five fields, but these wires have several serious drawbacks. Therefore, there are still many difficulties in providing practical service.

すなわち、このNb、snおよびVIGm線材は、上部
臨界磁界はたがだが20T程度であり、実用上満足でき
るものではない。また、この線材は、銅合金(Cu−S
n、またはCu−G、)との高温で生成しなければ臨界
温度および上部臨界磁界は低下してしまうという問題が
ある。しかもこのような高温で生成した場合にはNb3
Alの結晶粒は粗くなり、これlこよって臨界電流密度
が低下してしまうとい5予盾がある。
That is, the upper critical magnetic field of these Nb, sn, and VIGm wires is only about 20 T, which is not practically satisfactory. In addition, this wire rod is made of copper alloy (Cu-S
There is a problem in that the critical temperature and upper critical magnetic field will decrease unless it is generated at a high temperature with n, or Cu-G,). Moreover, when generated at such high temperatures, Nb3
There is a problem that the crystal grains of Al become coarser, which lowers the critical current density.

また、このNb3Al超電導材は、臨界温度および上部
臨界磁界の高い実用上有利なものとして線材化すること
が困難でもあった。実験室レベルこれら線材に比べて臨
界温度(’rc)が高く、上部臨界温度も30Tという
優れたレベルにあって、実用的に有望な超電導線材とし
て期待されているものにNb3Al基の超電導材がある
In addition, this Nb3Al superconducting material has a high critical temperature and high upper critical magnetic field, which is advantageous for practical use, and it has been difficult to make it into a wire rod. Laboratory level Compared to these wires, Nb3Al-based superconducting material has a higher critical temperature ('rc) and an excellent upper critical temperature of 30T, and is expected to be a promising superconducting wire material for practical use. be.

しかしながら、このNb3Alはその特性はNb1Sn
や’V s G aよりもはるかに優れているものの、
その特性の優れた化学量論組成からなるものは低温では
不安定であって、150’0 ’C以上たとえば、この
Nb、Al線材の製造法としては、拡散反応を利用した
ものが有望なものと考えられている。この方法には、具
体的には、粉末冶金法、ジェリーロール法、浸透法、お
よびa&刀ロ工法がある。粉末冶金法は、第2図(a)
に示したように、Nbパイプ(ア)に充填したNb粉末
(イ)とA1またはA1合金の粉末(つ)とからなる複
合体(1)を冷間加工して極めて細いNb/Al多重構
造の複合線材lこ加工し、次いで750〜1100℃の
比較的低い温度で熱処理して、Nb3Alを拡散生成し
、NbおAl@材とするものである。ジェリーロール法
は、第2図(b)に示したようにNb箔(オ)とAIま
たはA1合金箔(力)とを重ねて巻き込んだ複合体(1
)を同様fζ加工、処理するものであり、浸透法は、第
2図(C)に示したよづにNb粉末の多孔質muVIG
m線材と同じ程度の特性しか得られない。
However, the characteristics of this Nb3Al are Nb1Sn
Although it is much better than 'V s G a,
Those with excellent stoichiometric composition are unstable at low temperatures, and above 150'0'C.For example, as a manufacturing method for this Nb, Al wire, one that utilizes a diffusion reaction is a promising method. It is believed that. Specifically, this method includes a powder metallurgy method, a jelly roll method, an infiltration method, and an a & knife method. The powder metallurgy method is shown in Figure 2 (a).
As shown in Figure 3, a composite (1) consisting of Nb powder (B) filled in a Nb pipe (A) and A1 or A1 alloy powder (X) is cold-worked to create an extremely thin Nb/Al multilayer structure. The composite wire is then processed and then heat treated at a relatively low temperature of 750 to 1100°C to diffuse and generate Nb3Al to form a Nb-Al@ material. The jelly roll method uses a composite (1) in which Nb foil (O) and AI or A1 alloy foil (T) are overlapped and rolled up as shown in Figure 2(b).
) is similarly fζ-processed and treated.
Only the same characteristics as m-wire can be obtained.

この欠点を解消しようとして高温度で熱処理すると、ま
た同様に優れた超電4特性のl’Jb、Al線材を得る
ことはできない。
If heat treatment is performed at high temperature in an attempt to eliminate this drawback, it is impossible to obtain l'Jb, Al wire with similarly excellent superelectric properties.

このように、Nb、Al線材には、その実用化のために
どうしても克服しなければならない熱処理温度と特性と
の関係についての課題があった。
As described above, Nb and Al wires have a problem regarding the relationship between heat treatment temperature and characteristics that must be overcome in order to put them into practical use.

この発明は、このような事情に鑑みてなされたのである
This invention was made in view of these circumstances.

しかしながら、これらの方法により得られるNb、Al
線材は、その細かな金属組織によって低磁界においての
臨界電流密度は比較的良好であるものの、低温度で熱処
理してNb3Alを生成させているため1こ、化学量論
組成からずれた上部臨界磁界の低いNb3Alから生成
しやす(、高磁界における臨界電流密度は従来のNb1
Snや線材を容易1cH造することのできる新しい製造
方法を提供することを目的としてる。
However, Nb, Al obtained by these methods
Although the wire rod has a relatively good critical current density in a low magnetic field due to its fine metal structure, the upper critical magnetic field deviates from the stoichiometric composition because it is heat-treated at a low temperature to generate Nb3Al. It is easy to generate from Nb3Al with low
The purpose of this invention is to provide a new manufacturing method that can easily produce 1chH of Sn or wire.

(課題を解決するための手段) この発明は、上記の課題を解決するために、アルミニウ
ムまたはアルミニウム合金とニオブ母材とからなる複合
体を金属または合金のマトリックス材中Iこ配し、これ
を冷間加工lこよって線材化してアルミニウムまたはア
ルミニウム合金の径または厚みが0.5 J m以下の
複合線材とし、10秒以下の短時間に高温熱処理するこ
とを特徴とする超極細多重構造のNb3Al超電導線材
の製造法を提供する。
(Means for Solving the Problems) In order to solve the above problems, the present invention disposes a composite consisting of aluminum or an aluminum alloy and a niobium base material in a metal or alloy matrix material, and Nb3Al with an ultra-fine multi-layered structure characterized by cold working and forming into a wire into a composite wire with a diameter or thickness of 0.5 J m or less of aluminum or aluminum alloy, and then subjecting it to high-temperature heat treatment for a short time of 10 seconds or less. Provides a method for manufacturing superconducting wire.

またこの発明は、この方法に二って得られるNb、Al
線材をさらに600〜800℃の温度で追加熱処理する
方法をも提供するものである。
This invention also provides Nb and Al obtained by this method.
The present invention also provides a method for additionally heat-treating the wire at a temperature of 600 to 800°C.

この表造法は、上記の通り、冷間加工した複合ら連続的
に加熱・冷却させることにLうて行うことができる。加
熱・冷却は、不活性ガス雰囲気中、液化不活性ガス中で
行うことができる。
As mentioned above, this surface forming method can be carried out by continuously heating and cooling the cold-worked composite. Heating and cooling can be performed in an inert gas atmosphere or in a liquefied inert gas.

もちろんこれらlこ限定されること(才な(、たとえば
その冷却は、水冷した銅リール等で連続的に行うことも
できる。
Of course, this is not limited to the above (for example, the cooling can also be performed continuously using a water-cooled copper reel or the like).

アルミニウム合金を用いる場合には、15.目%以下の
Mg、l Q a1%以下のz”s 10 at%以下
と検証によってはじめて見出された知見に基づいている
ものである。
When using aluminum alloy, 15. This is based on the knowledge discovered for the first time through verification that Mg is less than 1% and z''s is less than 1%.

この場合の高温熱処理は、従来のNb3Al製造時の7
50〜1100℃の温度t゛りは高い温度より好ましく
は約1400℃以上の高温度となる条件において行うも
のであり、Nb/At複金線材の直接通電加熱、mη加
昂、あるいは幅対加熱等によって・N b / A 1
複合線材を移動させながGeを合計で4at96以下の
比率で含有させてもよいO この組成範囲内にある場合にはNb、Al線材のffi
電導特性に悪影響を与えることはない。その加工特性は
ニオブと類似している。
The high temperature heat treatment in this case is 7
The temperature increase of 50 to 1100°C is performed under conditions of high temperature, preferably about 1400°C or higher, and is performed under conditions such as direct current heating of Nb/At double metal wire, mη expansion, or width vs. heating. etc.・N b / A 1
Ge may be contained in a total ratio of 4at96 or less without moving the composite wire.If the composition is within this range, the ffi of Nb and Al wires may be
It does not adversely affect the conductive properties. Its processing properties are similar to niobium.

ニオブ母材は、ニオブまたは、上記と同様の81および
Qeを合計で4 at%以下含有するニオブ合金等を用
いることができる。
As the niobium base material, niobium or a niobium alloy containing 4 at% or less of 81 and Qe in total as described above can be used.

アルミニウムまたはアルミニウム合金とニオブ母材とか
らなる複合材をさらに再複合するための合鴨または合金
のマ) IJツクス材としては、母材ニオブと反応しに
くい、または反応しない融点2000℃以上のものとす
ることが好ましく、たとえば、ニオブ、タンタル、バナ
ジウム、タングステン、モリブデン、チタン、ジルコニ
ウム、マたはその合金を好適なものとして例示すること
が電導線材が得られる。この場合、さらに600〜80
0℃に追加熱処理を行うと、Nb3Alの結晶秩序が向
上し、高磁界特性がさらに向上する。
As an IJTx material for further recompositing a composite material consisting of aluminum or aluminum alloy and a niobium base material, a material with a melting point of 2000°C or higher that does not easily or does not react with the niobium base material is used. It is preferable to use niobium, tantalum, vanadium, tungsten, molybdenum, titanium, zirconium, or an alloy thereof to obtain a conductive wire. In this case, an additional 600 to 80
Additional heat treatment at 0° C. improves the crystalline order of Nb3Al and further improves the high-field properties.

純アルミニウムを用いる場合は、いわゆる複合加工法が
難しくなるので、前述した粉末法、ジェリーロール法、
あるいは浸透法を使用するのが好ましい。
When using pure aluminum, the so-called composite processing method becomes difficult, so the powder method, jelly roll method,
Alternatively, it is preferred to use an infiltration method.

いずれlこおいても、アルミニウムまたはアルミ加工す
る。この際にマドvツクス材によって複合化する0 この加工により、複合線材中のアルミニウムまたはアル
ミニウム合金の径または厚みは0.51mm以下とする
。この点もこの発明の特徴の一つである0 10秒以下の短時間に、高温度に加熱・冷却することに
よって強磁界特性の優れたNb3Al超Nb3Al超電
導線材の交流損失を極めて小さくするには複合加工法が
特に有利である。
In either case, aluminum or aluminum processing is used. At this time, the diameter or thickness of the aluminum or aluminum alloy in the composite wire is reduced to 0.51 mm or less by this processing. This point is also one of the features of this invention.0 It is possible to extremely reduce the AC loss of Nb3Al superconducting wire with excellent strong magnetic field characteristics by heating and cooling it to a high temperature in a short time of 10 seconds or less. Combined processing methods are particularly advantageous.

この発明の製造方法においては、マトリックス材として
金属または合金を用いるが、これを使用しない場合には
N’b3Alフィラメントが互いに電気的に接触してし
まい、径が巨大なフィラメントと等価になるため線材の
交流損失が極めて大きくなり、電磁気的lこ不安定な使
いlこくい縁材上なる0 また、この発明においては、無酸素鋼や純アルミニウム
をさらに複合化すると超電導線材の電磁気的安定性はさ
らに向上する。
In the manufacturing method of this invention, a metal or alloy is used as the matrix material, but if this is not used, the N'b3Al filaments will electrically contact each other and the diameter will be equivalent to a huge filament. In addition, in this invention, if oxygen-free steel or pure aluminum is further composited, the electromagnetic stability of the superconducting wire becomes Further improvement.

第1図は、以上の通りのこの発明の製造法についてその
要部を示したものである0第2図(、)(b)(、)(
d)に示した従来公知の複合加工法、粉末冶金法、ジェ
リーロール法、浸透法iこよ−て生成したNb/Al複
合体(1)を、マトリ1.14mの線lこ加工した。こ
の単芯復合線を110本束ね、外径20m、内径14陽
のニオブバイブ中に挿入して、多重複合体を作製し、冷
間伸線加工1こよって外径1.14111の110芯複
合線に加工した。この110芯複合I腺をさら(こ11
0本束ねてニオブバイブ中に挿入した多重複合体を伸線
加工するという工程を2回繰り返し、外径0.3〜10
腸のll0XIIOXIIO芯複合線以下、この発明の
実施例を示し、さらに詳しくこの発明の製造法について
説明する。
Figure 1 shows the main parts of the manufacturing method of this invention as described above.
The Nb/Al composite (1) produced by the conventionally known composite processing method, powder metallurgy method, jelly roll method, and infiltration method shown in d) was processed into a 1.14 m line. 110 of these single-core composite wires were bundled and inserted into a niobium vibrator with an outer diameter of 20 m and an inner diameter of 14 yen to create a multiplex composite, which was then subjected to cold wire drawing. Processed into. This 110-core compound I gland is exposed (this 11
The process of wire-drawing the multiplex composite, which was bundled and inserted into a niobium vibe, was repeated twice, and the outer diameter was 0.3 to 10.
Intestinal 110

(実施例) 実施例1 外径6WのA1−61t%Mgの丸棒を外径12謡、内
径6腸のニオブバイブ中に挿入して、複合体を作製し、
溝ロール加工、スウエージング加工または引き抜き加工
等の冷間伸線加工により外径生成させた。芯径が0.5
μm以下の線材を複信製造した。各々の線材について超
電導臨界温度(TC)、臨界電流度(Jc)を測定した
。この結果を示したものが表1である。
(Example) Example 1 A round bar of A1-61t%Mg with an outer diameter of 6W was inserted into a niobium vibe with an outer diameter of 12 mm and an inner diameter of 6 mm to prepare a composite.
The outer diameter was generated by cold wire drawing such as groove rolling, swaging, or drawing. Core diameter is 0.5
We manufactured duplex wire rods with a diameter of less than μm. The superconducting critical temperature (TC) and critical current degree (Jc) of each wire were measured. Table 1 shows the results.

芯径が0.3μm以下の場合、加熱時の全印加エネルギ
ーが100 KJ/ cd程度の場合に17に以上の高
いTcが得られた。また、その線材を700℃付近で数
日間の追加熱処理を行うと18に以上の高いTcを示し
た。また、Jcは芯径に依存し、芯径が0.3μm以下
にならないと10”A/d以上の高いJc(4,2に、
l0T)は得られなかった。T C>18にの試料はH
ct  (4,2K )>30Tであった。
When the core diameter was 0.3 μm or less, a high Tc of 17 or more was obtained when the total energy applied during heating was about 100 KJ/cd. Further, when the wire rod was subjected to additional heat treatment for several days at around 700°C, it exhibited a high Tc of 18 or more. In addition, Jc depends on the core diameter, and unless the core diameter is 0.3 μm or less, Jc will be higher than 10"A/d (4, 2,
l0T) was not obtained. Samples with T C > 18 are H
ct(4,2K)>30T.

これらの線材は、極めて高い超電導特性を有しており、
さらにこれらの超電導線材に追加熱処理した後、銅鍍金
したものは、電磁気的に極めて安表  1 実施例2 Al− 1−I I−I I−I I−8 Al−5 3aI%M 5 a電%M Qa+%2 Q  at%L at%Ag。
These wires have extremely high superconducting properties,
Furthermore, after additional heat treatment on these superconducting wires, those plated with copper are electromagnetically extremely stable. %MQa+%2Q at%L at%Ag.

a優Cu。ayuCu.

a+%M g  −5 1Q   at% Mg。a+%M g -5 1Q at% Mg.

5  m1%Zn。5 m1%Zn.

5  at%Ll。5 at% Ll.

4  at%Ag 、 at%Cu。4 at%Ag, at%Cu.

11%Zn。11% Zn.

騰、内径6鵡のニオブパイプ中に挿入して、複合体を作
製し、溝ロール加工、スウエージング加工または引き抜
き加工等の冷間伸線加工により、外径1.14jE16
の線に加工した。この単芯複合線を110本束ね、外径
20鶏、内径14鵡のタンタルパイプ中に挿入して、多
重複合体を作製し・、冷間伸線加工によって外径1.1
4mの110芯複合線に加工した。この110芯複合懸
をさらに110合金フィラメントを挿入した構造の0.
5μm以下の芯径の極細多芯線を作製して、直接通′#
M、71D熱により10秒以下の短時間熱処理した。次
いで700℃で追加熱処理を行ったところ17に以上の
Tc、30T以上のHC! 、1 ×10 ’ A /
 cd以上のJ c (4,2に、 10T )が得ら
れた。
A composite body is prepared by inserting the wire into a niobium pipe with an inner diameter of 6mm, and then cold wire drawing processing such as groove rolling, swaging, or drawing is performed to reduce the outer diameter to 1.14JE16.
Processed into lines. 110 of these single-core composite wires were bundled and inserted into a tantalum pipe with an outer diameter of 20mm and an inner diameter of 14mm to create a multilayer composite.
It was processed into a 4m 110-core composite wire. This 110-core composite suspension has a structure in which 110 alloy filament is further inserted.
An ultra-fine multifilamentary wire with a core diameter of 5 μm or less is made to allow direct threading.
M, 71D heat treatment was performed for a short time of 10 seconds or less. Then, when additional heat treatment was performed at 700°C, Tc of 17 or more and HC of 30T or more! , 1 × 10' A /
A J c (4,2, 10 T) greater than cd was obtained.

実施例3 外径6腸のAl−5a1%Mgの丸棒を外径12窒素中
で直接通電し、0.2秒間の加熱・冷却となるLうに移
動させながら熱処理して、線材内にNb3Alフィラメ
ントを生成させた。
Example 3 An Al-5a 1% Mg round rod with an outer diameter of 6 mm was heat-treated by directly applying electricity in nitrogen with an outer diameter of 12 mm, and was heated and cooled for 0.2 seconds while moving the rod in a straight line. produced a filament.

700℃で追加熱処理をした後、超電導臨界温度(TC
)、臨界電流密度(Jc)を測定した。この例において
もニオブパイプを使った実施例1の結果とほぼ同様であ
った。また、バナジウムパイプ、タンクステンパイプ、
モリブデンパイプ、チタンパイブおよびジルコニウムパ
イプに置き換えてみても超′、IC導特性はほとんど変
わらなかった。
After additional heat treatment at 700℃, superconducting critical temperature (TC
), and the critical current density (Jc) was measured. In this example, the results were almost the same as in Example 1 using a niobium pipe. We also have vanadium pipes, tank steel pipes,
Even when molybdenum pipes, titanium pipes, and zirconium pipes were substituted, there was almost no change in the ultra-IC conductivity characteristics.

実施例4 アルミ粉末とニオブ粉末を混合して外径301B、内径
20111のニオブパイプ中に充填し、溝ロール加工、
スウエージング加工または引き抜き加工等の冷間伸線加
工によって外径0.3 mの線に加工した。実施列1と
同様にしてこの線材を液体窒素中のニオブパイプ中に充
填し、溝ロール加工、スウエージング加工または引き抜
き加工等の冷間伸線加工によって外径0.39の線に加
工した。この線材を実施例1と同様にして液体窒素中で
直接通電し、0.2秒間の加熱・冷却となるように移動
させながら熱処理して、線材内にNb3Alフィラメン
トを生成させた。700℃で追加熱処理をした後、超電
導臨界温度(Te)、臨界電流密度密度(Jc )を測
定した。この例においても実施例1の結果とほぼ同様で
あった。また、アルミ粉末の代わりにAl−3at%M
g、Al−2aj%Mg−1a1%S1およびAl−3
at%Ag扮末を使った場合でもほぼ同一の超電導%注
が得られた。
Example 4 Aluminum powder and niobium powder were mixed and filled into a niobium pipe with an outer diameter of 301B and an inner diameter of 20111B, and grooved roll processing was performed.
The wire was processed into a wire with an outer diameter of 0.3 m by cold wire drawing such as swaging or drawing. In the same manner as in Example 1, this wire was filled into a niobium pipe in liquid nitrogen and processed into a wire with an outer diameter of 0.39 by cold wire drawing such as groove rolling, swaging, or drawing. This wire was heat-treated in the same manner as in Example 1 by directly applying current in liquid nitrogen while moving the wire to heat and cool for 0.2 seconds, thereby generating Nb3Al filaments within the wire. After additional heat treatment at 700° C., the superconducting critical temperature (Te) and critical current density (Jc) were measured. In this example as well, the results were almost the same as in Example 1. Also, instead of aluminum powder, Al-3at%M
g, Al-2aj%Mg-1a1%S1 and Al-3
Almost the same superconductivity was obtained even when at%Ag powder was used.

実施例5 1oam厚さのアルミ箔と40μm厚さのニオブ箔を重
ねて巻き込んで外径30wk、内径2018れた。
Example 5 Aluminum foil with a thickness of 1 oam and niobium foil with a thickness of 40 μm were overlapped and rolled to form an outer diameter of 30 wk and an inner diameter of 2018 mm.

実施−@6 ニオブ粉末をプレスして、真空中で2200℃で焼結さ
せた多孔質体に俗融アルミを浸透させた複合体を、外径
30鏝、内径20膓のニオブパイプ中に充填し、溝ロー
ル加工、スウエージング加工または引き抜き加工等の冷
間伸線加工によって外径0.3賜の線に加工した。この
線材を実施例1と同様にして液体窒素中で直接通電し、
0.2秒間の加熱・冷却となるように移動させながら熱
処理した。線材内にNb3Alフィラメントを生成させ
た。700℃で追加熱処理をした後、超電導臨界温度(
Tc)、臨界電流密度(JC)を測定した。この列にオ
dいても実施例1の結果とほぼ同様であった。また、解
融アルミの変わりに溶融Al−381%M g s A
 + −J at%AgおよびA】−3あり、実用上極
めて重要な臨界電流密度が大きく、しかも臨界温度およ
び上部臨界磁界の高い優れた超電導特性を有する。また
、交流損失が極めて小さく、商用周波数の交流に使用す
ることのできる超極細多芯構造を有する線材を製造する
ことも可能である。これらにより、より強磁界を発生す
ることのできる超電導マグネットが実現可能となり、交
流超電導の応用を広げ、高磁界および′9.流超電イブ
の形状および大きさ、アルミ箔およびニオブ箔の形状お
よび大きさ、冷間加工法および熱処理法等の細部につい
ては様々の態様が可能である。
Implementation - @ 6 A composite made by pressing niobium powder and sintering it in a vacuum at 2200°C into a porous body impregnated with molten aluminum was filled into a niobium pipe with an outer diameter of 30 mm and an inner diameter of 20 mm. The wire was processed into a wire with an outer diameter of 0.3 mm by cold wire drawing such as groove roll processing, swaging processing, or drawing processing. This wire was directly energized in liquid nitrogen in the same manner as in Example 1,
The heat treatment was performed while moving the sample so that heating and cooling occurred for 0.2 seconds. Nb3Al filaments were generated within the wire. After additional heat treatment at 700℃, the superconducting critical temperature (
Tc) and critical current density (JC) were measured. Even if this column was changed, the results were almost the same as in Example 1. Also, instead of molten aluminum, molten Al-381% M g s A
+ -J at%Ag and A]-3, it has a large critical current density, which is extremely important in practice, and has excellent superconducting properties with a high critical temperature and high upper critical magnetic field. Furthermore, it is also possible to manufacture a wire having an ultrafine multicore structure that has extremely low AC loss and can be used for AC at commercial frequencies. These have made it possible to realize superconducting magnets that can generate even stronger magnetic fields, expanding the applications of AC superconductivity, and creating high magnetic fields and '9. Various embodiments are possible with respect to details such as the shape and size of the current superconductor tube, the shape and size of the aluminum foil and niobium foil, and the cold working method and heat treatment method.

(発明の効果) 以上詳しく説明してきた通り、この発明にょっ℃、従来
困難であったNb、Al線材を容易に製造することがで
きる。この発明によって得られるNb、Al線材は、そ
の金属組織が極めて微細で度マージンが太き(、有利で
ある。
(Effects of the Invention) As has been explained in detail above, the present invention makes it possible to easily produce Nb and Al wire rods at temperatures as low as 0.degree. C., which has been difficult in the past. The Nb, Al wire rod obtained by this invention has an extremely fine metal structure and a thick margin (which is advantageous).

さらに、この発明の製造法においては、中間焼鈍をほと
んど必要としないため、線材製造コストを低減すること
ができる。
Furthermore, in the manufacturing method of the present invention, since intermediate annealing is hardly required, the wire manufacturing cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明におけるNb/Al多重複合体を示
した断面図である。 1・・・Nb/Al複合体 2・・・マトリックス材 3・・・N b / A +多重複合体第2図(、)(
b)(C)(d)は、各々、従来のNb3Al線材の製
造法におけるN b / A 1複合体を示した断面図
である。 ア・・・ニオブバイブ イ・・・ニオブ粉末 つ・・・アルミ又はアルミ合金扮末 工・・・N b / A 1多重複合体オ・・・ニオブ
箔 力・・・アルミ又はアルミ合金箔 キ・・・ニオブ焼結体 り・・・浸透したアルミ又はアルミ合金ケ・・・ニオブ コ・・・アルミ合金h1 (、)  粉末冶金法 (b)  ジェリーロール法 (c)  浸透法 (d)  複合加工法 (a) 工 (C) (−m−へ一一一一) (d)
FIG. 1 is a sectional view showing the Nb/Al multiplex composite according to the present invention. 1...Nb/Al composite 2...Matrix material 3...Nb/A + multiple composite Figure 2 (,)(
b), (C), and (d) are cross-sectional views showing an Nb/A1 composite in a conventional method for producing an Nb3Al wire. A... Niobium vibrator... Niobium powder... Aluminum or aluminum alloy finishing... N b / A 1 multiple composite O... Niobium foil strength... Aluminum or aluminum alloy foil...・Niobium sintered body...infiltrated aluminum or aluminum alloy...niobium...aluminum alloy h1 (,) Powder metallurgy method (b) Jelly roll method (c) Infiltration method (d) Combined processing method ( a) Engineering (C) (-m-to 1111) (d)

Claims (14)

【特許請求の範囲】[Claims] (1)アルミニウムまたはアルミニウム合金とニオブ母
材とからなる複合体を金属または合金のマトリックス材
中に配し、これを冷間加工によって線材化してアルミニ
ウムまたはアルミニウム合金の径または厚みが0.5μ
m以下の複合線材とし、10秒以下の短時間に高温熱処
理することを特徴とする超極細多重構造のNb_3Al
超電導線材の製造法。
(1) A composite consisting of aluminum or aluminum alloy and a niobium base material is placed in a matrix material of metal or alloy, and this is made into a wire rod by cold working, so that the diameter or thickness of aluminum or aluminum alloy is 0.5 μm.
Nb_3Al with an ultra-fine multi-layered structure, which is made into a composite wire with a diameter of less than m and is subjected to high-temperature heat treatment for a short time of less than 10 seconds.
Manufacturing method of superconducting wire.
(2)1400℃以上の温度で高温熱処理する請求項(
3)記載の超極細多重構造のNb_3Al超電導線材の
製造法。
(2) Claim of high temperature heat treatment at a temperature of 1400°C or higher (
3) The method for producing the Nb_3Al superconducting wire having the ultra-fine multiple structure.
(3)直接通電加熱または誘導加熱により高温熱処理す
る請求項(3)記載の超極細多重構造のNb_3Al超
電導線材の製造法。
(3) The method for producing a Nb_3Al superconducting wire having an ultrafine multiple structure according to claim (3), wherein the Nb_3Al superconducting wire is subjected to high-temperature heat treatment by direct current heating or induction heating.
(4)複合線材を移動させながら連続的に加熱および冷
却する請求項(1)記載の超極細多重構造のNb_3A
l超電導線材の製造法。
(4) Nb_3A having an ultrafine multiple structure according to claim (1), wherein the composite wire is continuously heated and cooled while moving.
l Superconducting wire manufacturing method.
(5)不活性ガス雰囲気および/または液化不活性ガス
中において加熱および冷却する請求項(1)記載の超極
細多重構造のNb_3Al超電導線材の製造法。
(5) The method for producing a Nb_3Al superconducting wire having an ultrafine multiple structure according to claim (1), wherein heating and cooling are performed in an inert gas atmosphere and/or a liquefied inert gas.
(6)アルミニウム合金が15at%以下のMg、10
at%以下のZn、10at%以下のLi、8at%以
下のAgおよび5at%以下のCuを合計で0.5〜1
5at%含有する請求項(1)記載の超極細多重構造の
Nb_3Al超電導線材の製造法。
(6) Aluminum alloy contains 15 at% or less Mg, 10
A total of 0.5 to 1 at% of Zn, 10 at% or less of Li, 8 at% or less of Ag, and 5 at% or less of Cu.
5 at % of the Nb_3Al superconducting wire having an ultrafine multiple structure according to claim 1.
(7)アルミニウム合金がさらにSiおよびGeを合計
で4at%以下含有する請求項(6)記載の超極細多重
構造のNb_3Al超電導線材の製造法。
(7) The method for producing a Nb_3Al superconducting wire having an ultrafine multiple structure according to claim (6), wherein the aluminum alloy further contains Si and Ge in a total of 4 at% or less.
(8)ニオブ母材がSiおよびGeを合計で4at%以
下含有するニオブ合金からなる請求項(3)記載の超極
細多重構造のNb_3Al超電導線材の製造法。
(8) The method for producing a Nb_3Al superconducting wire having an ultrafine multiple structure according to claim (3), wherein the niobium base material is made of a niobium alloy containing 4 at% or less of Si and Ge in total.
(9)複合線材の外部または内部にさらに無酸素鋼また
は高純度アルミニウムを複合させて安定化させる請求項
(1)記載の超極細多重構造のNb_3Al超電導線材
の製造法。
(9) The method for producing a Nb_3Al superconducting wire having an ultrafine multiple structure according to (1), wherein the composite wire is further stabilized by compounding oxygen-free steel or high-purity aluminum on the outside or inside of the composite wire.
(10)複合材がアルミニウム合金芯とニオブ母材とか
らなる請求項(1)記載の超極細多重構造のNb_3A
l超電導線材の製造法。
(10) Nb_3A having an ultrafine multiple structure according to claim (1), wherein the composite material comprises an aluminum alloy core and a niobium base material.
l Superconducting wire manufacturing method.
(11)複合材がアルミニウムまたはアルミニウム合金
の粉末とニオブ粉末とを混合してプレス形成したものか
らなる請求項(1)記載の超極細多重構造のNb_3A
l超電導線材の製造法。
(11) Nb_3A having an ultrafine multiple structure according to claim (1), wherein the composite material is formed by pressing a mixture of aluminum or aluminum alloy powder and niobium powder.
l Superconducting wire manufacturing method.
(12)複合材がアルミニウムまたはアルミニウム合金
の箔とニオブ箔とを重ねて巻き込んでなる請求項(1)
記載の超極細多重構造のNb_3Al超電導線材の製造
法。
(12) Claim (1) in which the composite material is formed by wrapping aluminum or aluminum alloy foil and niobium foil in a layered manner.
A method for manufacturing the Nb_3Al superconducting wire having the ultrafine multiple structure described above.
(13)ニオブ粉末またはニオブ線を焼結した多孔質体
のなかにアルミニウムまたはアルミニウム合金を溶融浸
透させた複合体をマトリックス材中に配する請求項(1
)記載の超極細多重構造のNb_3Al超電導線材の製
造法。
(13) Claim (1) wherein the matrix material is a composite in which aluminum or aluminum alloy is melted and infiltrated into a porous body made by sintering niobium powder or niobium wire.
) A method for producing a Nb_3Al superconducting wire having an ultrafine multiple structure.
(14)さらに600〜800℃の温度で追加熱処理す
る請求項(1)記載の超極細多重構造のNb_3Al超
電導線材の製造法。
(14) The method for producing a Nb_3Al superconducting wire having an ultrafine multiple structure according to claim (1), further comprising additional heat treatment at a temperature of 600 to 800°C.
JP63200238A 1987-08-25 1988-08-12 Nb with ultra-fine multi-layer structure ▼ Bottom 3 ▼ Method for manufacturing A1 superconducting wire Expired - Lifetime JPH0644427B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63200238A JPH0644427B2 (en) 1988-08-12 1988-08-12 Nb with ultra-fine multi-layer structure ▼ Bottom 3 ▼ Method for manufacturing A1 superconducting wire
DE3905805A DE3905805C2 (en) 1988-03-14 1989-02-24 A method of making a wire-form superconducting composite article
US07/315,825 US4917965A (en) 1987-08-25 1989-02-24 Multifilament Nb3 Al superconducting linear composite articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63200238A JPH0644427B2 (en) 1988-08-12 1988-08-12 Nb with ultra-fine multi-layer structure ▼ Bottom 3 ▼ Method for manufacturing A1 superconducting wire

Publications (2)

Publication Number Publication Date
JPH0251807A true JPH0251807A (en) 1990-02-21
JPH0644427B2 JPH0644427B2 (en) 1994-06-08

Family

ID=16421101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63200238A Expired - Lifetime JPH0644427B2 (en) 1987-08-25 1988-08-12 Nb with ultra-fine multi-layer structure ▼ Bottom 3 ▼ Method for manufacturing A1 superconducting wire

Country Status (1)

Country Link
JP (1) JPH0644427B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554739A (en) * 1991-02-19 1993-03-05 Tokai Univ Manufacture of nb3al group superconductor
JPH05135636A (en) * 1991-11-12 1993-06-01 Sumitomo Electric Ind Ltd Manufacture of compound superconductive wire
WO2014064745A1 (en) 2012-10-22 2014-05-01 三菱電機株式会社 Electronic device and electromagnetic noise control method
WO2014064996A1 (en) 2012-10-23 2014-05-01 三菱電機株式会社 Power conversion device
CN115418588A (en) * 2022-09-15 2022-12-02 西北工业大学 Magnetic field deep supercooling treatment method for improving toughness of cobalt-based high-temperature alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177311A (en) * 1981-04-03 1982-11-01 Rin Samaabiru Robaato Moving belt type filter
JPH01140521A (en) * 1987-08-25 1989-06-01 Natl Res Inst For Metals Manufacture of nb3al compound superconductive wire rod

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177311A (en) * 1981-04-03 1982-11-01 Rin Samaabiru Robaato Moving belt type filter
JPH01140521A (en) * 1987-08-25 1989-06-01 Natl Res Inst For Metals Manufacture of nb3al compound superconductive wire rod

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554739A (en) * 1991-02-19 1993-03-05 Tokai Univ Manufacture of nb3al group superconductor
JPH05135636A (en) * 1991-11-12 1993-06-01 Sumitomo Electric Ind Ltd Manufacture of compound superconductive wire
WO2014064745A1 (en) 2012-10-22 2014-05-01 三菱電機株式会社 Electronic device and electromagnetic noise control method
WO2014064996A1 (en) 2012-10-23 2014-05-01 三菱電機株式会社 Power conversion device
CN115418588A (en) * 2022-09-15 2022-12-02 西北工业大学 Magnetic field deep supercooling treatment method for improving toughness of cobalt-based high-temperature alloy

Also Published As

Publication number Publication date
JPH0644427B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US6687975B2 (en) Method for manufacturing MgB2 intermetallic superconductor wires
US4411959A (en) Submicron-particle ductile superconductor
US3370347A (en) Method of making superconductor wires
US3796553A (en) High field composite superconductive material
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
US4917965A (en) Multifilament Nb3 Al superconducting linear composite articles
Glowacki et al. Niobium based intermetallics as a source of high-current/high magnetic field superconductors
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
US5554448A (en) Wire for Nb3 X superconducting wire
US4385942A (en) Method for producing Nb3 Sn superconductors
JPH0251807A (en) Manufacture of nb3al superconducting wire rod with extremely fine multiplex structure
US4153986A (en) Method for producing composite superconductors
JP3577506B2 (en) Cu-added Nb3Al ultrafine multi-core superconducting wire and method for producing the same
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
US5628835A (en) Nb3 Al Group superconductor containing ultrafine Nb2 Al particles
JP2003297162A (en) Method for producing Nb3Ga ultrafine multicore superconducting wire
US3868769A (en) Method of making superconductors
Smathers A15 Superconductors
JPH0917249A (en) Oxide superconducting wire and its manufacture
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
Kreilick Niobium-titanium superconductors
Iijima et al. New Nb3Al-based A15 multifilamentary wires with high Jc in high fields
JPH028335A (en) Sheath for manufacturing of oxide superconducting wire rod
Tachikawa Recent developments in high-field superconductors
Glowacki Development of Nb-based conductors

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term