JPH0247518B2 - - Google Patents
Info
- Publication number
- JPH0247518B2 JPH0247518B2 JP57117475A JP11747582A JPH0247518B2 JP H0247518 B2 JPH0247518 B2 JP H0247518B2 JP 57117475 A JP57117475 A JP 57117475A JP 11747582 A JP11747582 A JP 11747582A JP H0247518 B2 JPH0247518 B2 JP H0247518B2
- Authority
- JP
- Japan
- Prior art keywords
- molecular weight
- ethylene
- copolymer
- ethylenically unsaturated
- vinyl acetate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009826 distribution Methods 0.000 claims description 18
- 229920001577 copolymer Polymers 0.000 claims description 17
- 150000002148 esters Chemical class 0.000 claims description 10
- 239000000446 fuel Substances 0.000 claims description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 6
- 239000005977 Ethylene Substances 0.000 claims description 6
- 239000003209 petroleum derivative Substances 0.000 claims description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 125000004185 ester group Chemical group 0.000 claims description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 2
- 239000000178 monomer Substances 0.000 claims description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 27
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 10
- 239000003999 initiator Substances 0.000 description 10
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 9
- 239000005038 ethylene vinyl acetate Substances 0.000 description 9
- 239000000295 fuel oil Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000003921 oil Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 4
- 239000010771 distillate fuel oil Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920006228 ethylene acrylate copolymer Polymers 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Liquid Carbonaceous Fuels (AREA)
Description
本発明は石油留出燃料油の低温流動性改良剤、
更に詳細には、特定のエチレン−エチレン性不飽
和エステル共重合体を含有する比較的範囲の種類
の石油中間留出燃料油についてその低温流動性及
び流動特性を改良することができる低温流動性改
良剤に関する。
石油中間留出燃料油、例えばデイーゼル油、A
重油等は冬期あるいは寒冷地において低温にさら
されると、その中に含まれているワツクス状物質
が析出し、エンジンの燃料配管系のフイルターを
目詰りさせてエンジン始動等に障害を与えると
か、燃料油それ自体が半固体ないしは固体化して
流動性を失い、送油パイプを閉塞させるといつた
問題を生ずる。そしてこの問題は、近年の原油の
重質化傾向あるいは灯軽油の量的な逼迫によつて
さらに増大していく傾向にあり、適切な対策が望
まれている。
従つて、斯かる問題を解決するための多くの研
究がなされており、エチレン−酢酸ビニル共重合
体、エチレン−アクリレート共重合体、エチレン
−メタアクリレート共重合体、枝分れポリエチレ
ン、塩素化ポリエチレン、アルキルナフタレン重
合体等の低温流動性改良剤が報告されている。
これらの改良剤は一般に燃料中のワツクスと共
晶するか、あるいはワツクス結晶に吸着してワツ
クス結晶の形状、大きさを変化させ、低温時にお
ける燃料油の流動性を改善させようとするもので
ある。しかしながら、石油留出燃料油は原油の産
地、油田により、また蒸留、精製の条件により
様々のものが存在し、その結果ワツクス含有量及
びワツクスの分子量分布などもそれぞれ異つてい
るが、これら広範囲の種類の燃料油に対して良好
な低温流動性を発揮する改良剤は見出されていな
い。
斯かる実情において、本発明者は鋭意研究を行
つた結果、特定のエチレン−エチレン性不飽和エ
ステル共重合体が広範囲の種類の石油留出燃料に
ついて低温時に生成するワツクス結晶を微細かつ
安定化し、更に微細結晶同志の凝集巨大化による
三次元網目構造の結晶への成長を著しく阻止し、
流動性を改善することを見出し、本発明を完成し
た。
すなわち、本発明は、
エチレンと次の一般式(1)、
〔式中、R1はH又はCH3を示し、R2は
OCOCH3又はCOOR3(R3は炭素数1〜18のアル
キル基)を示す〕
で表わされるエチレン性不飽和エステルとの共重
合体で、エチレン性不飽和エステル単量体含有量
50重量%以下、数平均分子量3000〜6000、分子量
分布2.0〜3.1以下、エステル基のメチル基以外に
メチレン基100個当り6個未満のメチル末端側鎖
(以下、分岐度と称する)を有するエチレン−エ
チレン性不飽和エステル共重合体を含有する石油
留出燃料の低温流動性改良剤を提供するものであ
る。
本明細書において、「数平均分子量」は気相浸
透圧法(VPO)によつて求めたもの、「分子量分
布」はテトラヒドロフラン溶剤を用い、ポリエチ
レングリコール標準によるゲルパーミツシヨンク
ロマトグラフイー法(GPC)によつて求めたも
の、また「分岐度」は核磁気共鳴法(NMR)に
よつて求めたものである。
()式で表わされたエチレン性不飽和エステ
ルとしては、酢酸ビニルあるいはアクリル酸又は
メタクリル酸のエステルが挙げられる、当該エス
テルとしては例えばメチル、エチル、パルミトイ
ル、ラウリルエステル等が挙げられる。
エチレンと上記エチレン性不飽和エステルとの
共重合体は、後者が50重量%以下であることが必
要であり、特にエチレン90〜50重量%、エチレン
性不飽和エステル10〜50重量%のものが好まし
い。
燃料油の低温流動性を改良するには、当該共重
合がワツクス分子に相当するエチレン主鎖を有し
ていることが望ましいが、前述の如く燃料油中の
ワツクスの分子量分布は様々であるので、共重合
体の分子量分布はある程度の広がりをもたなけれ
ばならない。しかし、共重合体の分子量分布が広
過ぎると、ワツクスの高い分子量分布に相当する
分子量の共重合体濃度が減ぜられるので、適当な
範囲が必要であり、本発明においては当該分子量
分布2.0〜3.1であるのが好ましい。
また、当該共重合体は燃料中のワツクスとの相
互作用において、その分岐度が重要な因子の一つ
であり、同一量のエチレン性不飽和エステルを含
む共重合体においては、分岐度の小さい方が結晶
性がよく、ワツクス分子との共晶が容易であり、
分岐度が大きくなると非晶性が増大してワツクス
との共晶が困難になるので、本発明においては分
岐度が6個未満であるのが好ましい。
更にまた、広範囲の種類の燃料油に対しその低
温流動性を向上させるためには、当該共重合体の
分子量も重要であり、本発明においては数平均分
子量が3000〜7000のものが好ましい。
斯かる条件を具備したエチレン−エチレン性不
飽和エステル共重合体は、例えば特公昭39−
20069号、同48−23165号に記載されているような
フリーラジカル重合法に従つて、参考例に示すよ
うにして製造される。
本発明の低温流動性改良剤は石油留出燃料に50
〜5000ppm添加配合することによつてその低温時
の流動性を改善することができる。
次に参考例及び実施例を挙げて説明する。
参考例 1
オートクレーブ重合装置を用い、溶剤としてベ
ンゼンを使用し、圧力110Kg/cm2、温度100℃の条
件下で、開始剤としてジラウロイルパーオキサイ
ドを用いることにより、酢酸ビニル含有量18重量
%、数平均分子量3890、分岐度3.2、分子量分布
3.1のエチレン酢酸ビニル共重合体を製造した。
参考例 2
オートクレーブ重合装置を用い、溶剤としてベ
ンゼンを使用し、圧力110Kg/cm2、温度100℃の条
件下で、開始剤としてジラウロイルパーオキサイ
ドを用いることにより、酢酸ビニル含有量34重量
%、数平均分子量5460、分岐度2.5、分子量分布
2.2のエチレン酢酸ビニル共重合体を製造した。
参考例 3
オートクレーブ重合装置を用い、溶剤としてベ
ンゼンを使用し、圧力130Kg/cm2、温度90℃の条
件下で、開始剤としてジラウロイルパーオキサイ
ドを用いることにより、酢酸ビニル含有量43重量
%、数平均分子量4920、分岐度2.3、分子量分布
2.0のエチレン酢酸ビニル共重合体を製造した。
参考例 4
オートクレーブ重合装置を用い、溶剤としてベ
ンゼンを使用し、圧力210Kg/cm2、温度90℃の条
件下で、開始剤としてジラウロイルパーオキサイ
ドを用いることにより、エチルアクリレート含有
量25重量%、数平均分子量4070、分岐度3.0、分
子量分布2.6のエチレン−エチルアクリレート共
重合体を製造した。
参考例 5
オートクレーブ重合装置を用い、溶剤としてベ
ンゼンを使用し、圧力50〜210Kg/cm2、温度70〜
100℃の条件で、開始剤としてジラウロイルパー
オキサイドを用いることにより、酢酸ビニル含有
量26重量%、数平均分子量2650、分岐度2.8、分
子量分布5.3のエチレン酢酸ビニル共重合体を製
造した。
参考例 6
オートクレーブ重合装置を用い、圧力700Kg/
cm2、温度225℃の条件で、開始剤としてt−ブチ
ルパーオキシベンゾエート及び連鎖移動剤として
プロピレンを用いることにより酢酸ビニル含有量
31重量%、数平均分子量3120、分岐度8.2、分子
量分布4.0のエチレン酢酸ビニル共重合体を製造
した。
参考例 7
オートクレーブ重合装置を用い、溶剤としてベ
ンゼンを使用し、圧力210Kg/cm2、温度95℃の条
件で、開始剤としてジラウロイルパーオキサイド
を用いることにより、酢酸ビニル含有量42重量
%、数平均分子量7100、分岐度3.2、分子量分布
2.1のエチレン酢酸ビニル共重合体を製造した。
参考例 8
オートクレーブ重合装置を用い、溶剤としてベ
ンゼンを使用し、圧力55Kg/cm2、温度95℃の条件
で、開始剤としてジラウロイルパーオキサイドを
用いることにより酢酸ビニル含有量22重量%、数
平均分子量1810、分岐度3.3、分子量分布2.5のエ
チレン酢酸ビニル共重合体を製造した。
参考例 9
オートクレーブ重合装置を用い、溶剤としてベ
ンゼンを使用し、圧力110Kg/cm2、温度80℃の条
件下で、開始剤としてジラウロイルパーオキサイ
ドを用いることにより酢酸ビニル含有量33重量
%、数平均分子量4800、分岐度3.1、分子量分布
5.4のエチレン酢酸ビニル共重合体を製造した。
参考例 10
オートクレーブ重合装置を用い、溶剤としてベ
ンゼンを使用し、圧力50〜150Kg/cm2、温度70〜
100℃の条件で、開始剤としてジラウロイルパー
オキサイドを用いることにより酢酸ビニル含有量
33重量%、数平均分子量5150、分岐度2.8、分子
量分布6.0のエチレン酢酸ビニル共重合体を製造
した。
実施例
参考例で製造した共重合体について石油中間留
出燃料油に対する低温流動性を試験した。尚試験
は英国規格IP−309によつて低温過器目詰り点
(CEPP)を求めることによつて行つた。その結
果は第1表のとおりである。
尚第1表の軽油A、軽油B及び軽油Cは次の物
性を示すものである。
The present invention provides a low temperature fluidity improver for petroleum distillate fuel oil,
More particularly, the cold flow properties can be improved for a relatively wide range of petroleum middle distillate fuel oils containing certain ethylene-ethylenically unsaturated ester copolymers. Regarding drugs. Petroleum middle distillate fuel oil, such as diesel oil, A
When heavy oil, etc. is exposed to low temperatures in winter or in cold regions, the wax-like substances contained therein precipitate, clogging the filter in the engine's fuel piping system and causing trouble in starting the engine. The oil itself becomes semi-solid or solid and loses fluidity, causing problems such as clogging of oil pipes. This problem has been aggravating due to the recent trend toward heavier crude oil and the tighter supply of kerosene and diesel oil, and appropriate countermeasures are desired. Therefore, many studies have been carried out to solve this problem, including ethylene-vinyl acetate copolymers, ethylene-acrylate copolymers, ethylene-methacrylate copolymers, branched polyethylene, and chlorinated polyethylene. , alkylnaphthalene polymers, and other low-temperature fluidity improvers have been reported. These modifiers generally eutecticize with the wax in the fuel or adsorb to the wax crystals to change the shape and size of the wax crystals, thereby improving the fluidity of fuel oil at low temperatures. be. However, there are various types of petroleum distillate fuel oil depending on the region of crude oil production, oil field, and distillation and refining conditions.As a result, the wax content and wax molecular weight distribution are also different. No improver has been found that exhibits good low-temperature fluidity for this type of fuel oil. Under these circumstances, the present inventor conducted extensive research and found that a specific ethylene-ethylenically unsaturated ester copolymer finely and stabilizes the wax crystals formed at low temperatures in a wide range of petroleum distillate fuels. In addition, it significantly inhibits the growth of three-dimensional network structure crystals due to the aggregation of microcrystals into large size,
The present invention was completed based on the discovery that fluidity can be improved. That is, the present invention provides ethylene and the following general formula (1), [In the formula, R 1 represents H or CH 3 , and R 2
A copolymer with an ethylenically unsaturated ester represented by OCOCH 3 or COOR 3 (R 3 is an alkyl group having 1 to 18 carbon atoms) with an ethylenically unsaturated ester monomer content.
Ethylene having a number average molecular weight of 50% by weight or less, a number average molecular weight of 3000 to 6000, a molecular weight distribution of 2.0 to 3.1 or less, and less than 6 methyl terminal side chains per 100 methylene groups (hereinafter referred to as the degree of branching) in addition to the methyl groups of the ester group. - A low-temperature fluidity improver for petroleum distillate fuels containing an ethylenically unsaturated ester copolymer is provided. In this specification, "number average molecular weight" is determined by vapor phase osmosis (VPO), and "molecular weight distribution" is determined by gel permeation chromatography (GPC) using a polyethylene glycol standard using tetrahydrofuran solvent. The "degree of branching" was determined by nuclear magnetic resonance (NMR). Examples of the ethylenically unsaturated ester represented by the formula ( ) include vinyl acetate or esters of acrylic acid or methacrylic acid. Examples of the esters include methyl, ethyl, palmitoyl, and lauryl esters. The copolymer of ethylene and the above-mentioned ethylenically unsaturated ester must contain 50% by weight or less of the latter, especially one with 90 to 50% by weight of ethylene and 10 to 50% by weight of ethylenically unsaturated ester. preferable. In order to improve the low-temperature fluidity of fuel oil, it is desirable that the copolymer has an ethylene main chain corresponding to wax molecules, but as mentioned above, the molecular weight distribution of wax in fuel oil varies. , the molecular weight distribution of the copolymer must have a certain degree of spread. However, if the molecular weight distribution of the copolymer is too wide, the concentration of the copolymer with a molecular weight corresponding to the high molecular weight distribution of the wax will be reduced, so an appropriate range is necessary. 3.1 is preferred. In addition, the degree of branching of the copolymer is one of the important factors in its interaction with the wax in the fuel, and copolymers containing the same amount of ethylenically unsaturated ester have a small degree of branching. It has better crystallinity and is easier to form a eutectic with wax molecules.
If the degree of branching increases, amorphousness increases and eutectic formation with wax becomes difficult, so in the present invention, the degree of branching is preferably less than 6. Furthermore, in order to improve the low-temperature fluidity of a wide variety of fuel oils, the molecular weight of the copolymer is also important, and in the present invention, those having a number average molecular weight of 3,000 to 7,000 are preferred. Ethylene-ethylenically unsaturated ester copolymers meeting such conditions are disclosed, for example, in
It is produced as shown in Reference Examples according to the free radical polymerization method as described in No. 20069 and No. 48-23165. The low-temperature fluidity improver of the present invention is applied to petroleum distillate fuels at a temperature of 50%.
By adding ~5000 ppm, the fluidity at low temperatures can be improved. Next, reference examples and examples will be given and explained. Reference Example 1 Using an autoclave polymerization apparatus, using benzene as a solvent, under conditions of a pressure of 110 Kg/cm 2 and a temperature of 100°C, using dilauroyl peroxide as an initiator, a vinyl acetate content of 18% by weight, Number average molecular weight 3890, degree of branching 3.2, molecular weight distribution
An ethylene vinyl acetate copolymer of 3.1 was produced. Reference Example 2 Using an autoclave polymerization apparatus, using benzene as a solvent, under conditions of a pressure of 110 Kg/cm 2 and a temperature of 100°C, using dilauroyl peroxide as an initiator, a vinyl acetate content of 34% by weight, Number average molecular weight 5460, degree of branching 2.5, molecular weight distribution
An ethylene vinyl acetate copolymer of 2.2 was produced. Reference Example 3 Using an autoclave polymerization apparatus, using benzene as a solvent, under conditions of a pressure of 130 Kg/cm 2 and a temperature of 90°C, using dilauroyl peroxide as an initiator, a vinyl acetate content of 43% by weight, Number average molecular weight 4920, degree of branching 2.3, molecular weight distribution
2.0 ethylene vinyl acetate copolymer was produced. Reference Example 4 Using an autoclave polymerization apparatus, using benzene as a solvent, under conditions of a pressure of 210 Kg/cm 2 and a temperature of 90°C, using dilauroyl peroxide as an initiator, an ethyl acrylate content of 25% by weight, An ethylene-ethyl acrylate copolymer having a number average molecular weight of 4070, a degree of branching of 3.0, and a molecular weight distribution of 2.6 was produced. Reference Example 5 Using an autoclave polymerization device, using benzene as a solvent, pressure 50 to 210 Kg/cm 2 , temperature 70 to
An ethylene vinyl acetate copolymer having a vinyl acetate content of 26% by weight, a number average molecular weight of 2650, a degree of branching of 2.8, and a molecular weight distribution of 5.3 was produced under conditions of 100°C and using dilauroyl peroxide as an initiator. Reference example 6 Using autoclave polymerization equipment, pressure 700Kg/
cm 2 and a temperature of 225°C, the vinyl acetate content was reduced by using t-butyl peroxybenzoate as an initiator and propylene as a chain transfer agent.
An ethylene vinyl acetate copolymer having a weight of 31%, a number average molecular weight of 3120, a degree of branching of 8.2, and a molecular weight distribution of 4.0 was produced. Reference Example 7 Using an autoclave polymerization apparatus, using benzene as a solvent, a pressure of 210 kg/cm 2 and a temperature of 95°C, and using dilauroyl peroxide as an initiator, a vinyl acetate content of 42% by weight was produced. Average molecular weight 7100, degree of branching 3.2, molecular weight distribution
An ethylene vinyl acetate copolymer of 2.1 was produced. Reference Example 8 Using an autoclave polymerization apparatus, using benzene as a solvent, under conditions of a pressure of 55 Kg/cm 2 and a temperature of 95°C, using dilauroyl peroxide as an initiator, the vinyl acetate content was 22% by weight, number average. An ethylene-vinyl acetate copolymer with a molecular weight of 1810, a degree of branching of 3.3, and a molecular weight distribution of 2.5 was produced. Reference Example 9 Using an autoclave polymerization apparatus, using benzene as a solvent, under conditions of a pressure of 110 Kg/cm 2 and a temperature of 80°C, using dilauroyl peroxide as an initiator, a vinyl acetate content of 33% by weight was obtained. Average molecular weight 4800, degree of branching 3.1, molecular weight distribution
A 5.4 ethylene vinyl acetate copolymer was produced. Reference example 10 Using an autoclave polymerization device, using benzene as a solvent, pressure 50 to 150 Kg/cm 2 , temperature 70 to
Vinyl acetate content was increased by using dilauroyl peroxide as an initiator at 100°C.
An ethylene vinyl acetate copolymer having a weight of 33%, a number average molecular weight of 5150, a degree of branching of 2.8, and a molecular weight distribution of 6.0 was produced. Example The copolymer produced in Reference Example was tested for low-temperature fluidity with petroleum middle distillate fuel oil. The test was conducted by determining the cryogenic plugging point (CEPP) according to British Standard IP-309. The results are shown in Table 1. Note that light oil A, light oil B, and light oil C in Table 1 exhibit the following physical properties.
【表】【table】
【表】【table】
【表】
第1表から明らかな如く、本発明の流動性改良
剤は、蒸留沸点範囲が狭く、かつワツクスの多い
低温流動性の改善が困難な燃料油に対しても優れ
た低温流動性改善作用を有するものである。[Table] As is clear from Table 1, the fluidity improver of the present invention provides excellent low-temperature fluidity improvement even for fuel oils that have a narrow distillation boiling point range and are waxy, making it difficult to improve low-temperature fluidity. It has an effect.
Claims (1)
OCOCH3又はCOOR3(R3は炭素数1〜18のアル
キル基)を示す〕 で表わされるエチレン性不飽和エステルとの共重
合体で、エチレン性不飽和エステル単量体含有量
50重量%以下、数平均分子量3000〜6000、分子量
分布2.0〜3.1エステル基のメチル基以外にメチレ
ン基100個当り6個未満のメチル末端側鎖を有す
るエチレン−エチレン性不飽和エステル共重合体
を含有することを特徴とする石油留出燃料の低温
流動性改良剤。[Claims] 1. Ethylene and the following general formula [In the formula, R 1 represents H or CH 3 , and R 2
A copolymer with an ethylenically unsaturated ester represented by OCOCH 3 or COOR 3 (R 3 is an alkyl group having 1 to 18 carbon atoms) with an ethylenically unsaturated ester monomer content.
50% by weight or less, number average molecular weight 3000-6000, molecular weight distribution 2.0-3.1 Ethylene-ethylenically unsaturated ester copolymer having less than 6 methyl terminal side chains per 100 methylene groups in addition to the methyl groups of the ester group. A low-temperature fluidity improver for petroleum distillate fuel, characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11747582A JPS598789A (en) | 1982-07-06 | 1982-07-06 | Improving agent for fluidity at low temperature of distillated fuel petroleum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11747582A JPS598789A (en) | 1982-07-06 | 1982-07-06 | Improving agent for fluidity at low temperature of distillated fuel petroleum |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS598789A JPS598789A (en) | 1984-01-18 |
JPH0247518B2 true JPH0247518B2 (en) | 1990-10-19 |
Family
ID=14712606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11747582A Granted JPS598789A (en) | 1982-07-06 | 1982-07-06 | Improving agent for fluidity at low temperature of distillated fuel petroleum |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS598789A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61287985A (en) * | 1985-05-30 | 1986-12-18 | Sumitomo Chem Co Ltd | Method of improving low-temperature flowability of fuel oil |
JPH01103699A (en) * | 1987-07-28 | 1989-04-20 | Sumitomo Chem Co Ltd | Fuel oil composition |
JPH01103698A (en) * | 1987-07-28 | 1989-04-20 | Sumitomo Chem Co Ltd | fuel oil composition |
AU2002309037A1 (en) * | 2001-05-08 | 2002-11-18 | Sanyo Chemical Industries, Ltd. | Fluidity improver and fuel oil composition |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51119705A (en) * | 1975-03-28 | 1976-10-20 | Exxon Research Engineering Co | Combination of polymers used in distilling hydrocarbon oil for improving cold flow property |
-
1982
- 1982-07-06 JP JP11747582A patent/JPS598789A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51119705A (en) * | 1975-03-28 | 1976-10-20 | Exxon Research Engineering Co | Combination of polymers used in distilling hydrocarbon oil for improving cold flow property |
Also Published As
Publication number | Publication date |
---|---|
JPS598789A (en) | 1984-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3649741B2 (en) | Bifunctional additive and fuel composition for imparting cold resistance to fuel | |
DE69117739T2 (en) | ADDITIVES AND COMPOSITIONS FOR FUEL OIL | |
US4882034A (en) | Crude oil or fuel oil compositions | |
JPS59149988A (en) | Fluidity modifier for fuel oil | |
EP0739971A2 (en) | Oil additives and compositions | |
EP1391498B1 (en) | Fluidity improver and fuel oil composition | |
DE69309928T3 (en) | OIL ADDITIVES AND COMPOSITIONS | |
DE69308303T3 (en) | OIL ADDITIONS AND COMPOSITIONS | |
US5684108A (en) | Ethylene-based copolymers and their use as flow improvers in mineral oil middle distillates | |
DE69802198T2 (en) | ADDITIVES FOR OIL COMPOSITIONS | |
DE69624690T2 (en) | FUEL OIL ADDITIVES AND COMPOSITIONS | |
JP3122667B2 (en) | Fuel oil additives and compositions | |
JPH07316116A (en) | New compound with improved low-temperature flowability, intermediate distillate composition containing same,and liquid fuel composition | |
JPH0247518B2 (en) | ||
EP0239320A2 (en) | Liquid fuel compositions | |
US3773478A (en) | Middle distillate fuel containing additive combination to increase low temperature flowability | |
US3309181A (en) | Transesterification product | |
JPH07508778A (en) | Additives and fuel compositions | |
US4772673A (en) | Ethylene copolymers | |
WO1999028417A1 (en) | Fuel oil additives and compositions | |
JPS598790A (en) | Improving agent for fluidity at low temperature of fuel oil | |
JPH0421718B2 (en) | ||
JPS6017399B2 (en) | Additives for petroleum distillate fuel oil | |
JPS6295390A (en) | fuel oil composition | |
KR950014390B1 (en) | Improved Pour Point Reducing Agent and Fuel Oils Comprising the Same |