JPH0243803A - Parabolic antenna - Google Patents
Parabolic antennaInfo
- Publication number
- JPH0243803A JPH0243803A JP19349688A JP19349688A JPH0243803A JP H0243803 A JPH0243803 A JP H0243803A JP 19349688 A JP19349688 A JP 19349688A JP 19349688 A JP19349688 A JP 19349688A JP H0243803 A JPH0243803 A JP H0243803A
- Authority
- JP
- Japan
- Prior art keywords
- main
- reflecting mirror
- change
- radiation direction
- main reflecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 abstract description 14
- 238000012423 maintenance Methods 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 abstract 6
- 238000010586 diagram Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Landscapes
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、パラボラアンテナに関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a parabolic antenna.
(従来の技術)
パラボラアンテナは、方向性の極めて鋭い指向性と高い
利得が得られることに加えて、構造が簡単で廉価でもあ
ることから主としてマイクロ波通信に広く用いられてい
る。パラボラアンテナの構造と4しては、第8図に示す
如く支持構造5に取りつけられた主反射鏡1と1次給電
器3が直接結合されたものと、第9図に示す如く主反射
鏡1と1次給電器3が独立して支持構造5に収り付けら
れたものとに大別される。なお、第8図および第9図に
おいて、7は中継器である。このようなパラボラアンテ
ナにあっては、例えば送信時に1次給電器3から電波を
放射すると、この1次給電器3が主反射鏡1の放物面の
焦点位置に配備されていることから、主反射鏡1の放物
面で電波が反射されて開口面の方向(主照射方向)にほ
ぼ平面波が放射されることになる。(Prior Art) Parabolic antennas are widely used mainly in microwave communications because they have a simple structure and are inexpensive, in addition to providing extremely sharp directivity and high gain. The structure of the parabolic antenna 4 is one in which the main reflector 1 attached to the support structure 5 and the primary feeder 3 are directly coupled as shown in FIG. 8, and the main reflector 1 attached to the support structure 5 as shown in FIG. 1 and one in which the primary power feeder 3 is independently housed in the support structure 5. In addition, in FIG. 8 and FIG. 9, 7 is a repeater. In such a parabolic antenna, when radio waves are emitted from the primary feeder 3 during transmission, for example, since the primary feeder 3 is placed at the focal point of the paraboloid of the main reflector 1, The radio wave is reflected by the paraboloid of the main reflecting mirror 1, and a substantially plane wave is emitted in the direction of the aperture (main irradiation direction).
(発明が解決しようとする課題)
ところで、パラボラアンテナにあっては、主照射方向の
変動がアンテナ利得の低下をもたらすことから、主照射
方向の維持が重要である。しかしながら、主反射鏡1の
形状からすると風雨や積雪などの外力の影響により主照
射方向が変動しやすく、特に近年の衛星通信や天体観測
にみられるように主反射鏡1の極めて大きなパラボラア
ンテナにあっては顕著である。具体的には、主反射鏡1
と支持構造5のなす角度(支持角))が例えばφだけ変
動すると、第8図に示すものにおいては主照射方向がや
はり角度φだけずれ、また第9図に示すものにおいては
角度2φだけずれる。(Problems to be Solved by the Invention) Incidentally, in a parabolic antenna, it is important to maintain the main irradiation direction because fluctuations in the main irradiation direction cause a decrease in antenna gain. However, due to the shape of the main reflector 1, the main irradiation direction is likely to fluctuate due to the influence of external forces such as wind, rain, snow, etc. In particular, as seen in recent satellite communications and astronomical observation, the main reflector 1 has an extremely large parabolic antenna. Yes, it is noticeable. Specifically, the main reflecting mirror 1
If the angle formed by the support structure 5 and the supporting structure 5 (support angle) changes by, for example, φ, the main irradiation direction will also shift by the angle φ in the one shown in FIG. 8, and will shift by the angle 2φ in the one shown in FIG. .
このため支持角の変動量φに応じて主反射鏡1を支持構
造5に対し逆方向に角度φだけ駆動することで主照射方
向を維持するといった対策が採られているが、駆動のた
めの大型で且つ複雑な装置を必要としている。For this reason, measures have been taken to maintain the main irradiation direction by driving the main reflecting mirror 1 in the opposite direction to the support structure 5 by an angle φ according to the amount of variation φ in the support angle. It requires large and complicated equipment.
本発明は上記に鑑みてなされたもので、主照射方向の維
持を容易にし、アンテナ利得の低下防止を確実にしたパ
ラボラアンテナを提供することにある。The present invention has been made in view of the above, and an object of the present invention is to provide a parabolic antenna that facilitates maintenance of the main irradiation direction and ensures prevention of decrease in antenna gain.
[発明の構成コ
(課題を解決するための手段)
上記目的を達成するため、主反射鏡の変動に伴う主照射
方向の変化に応じて当該主照射方向の変化をなくすよう
に1次給電器を移動させる移動手段を具備することを要
旨とする。[Configuration of the Invention (Means for Solving the Problems) In order to achieve the above object, the primary power feeder is designed to eliminate changes in the main irradiation direction in response to changes in the main irradiation direction due to fluctuations in the main reflecting mirror. The gist is to provide a moving means for moving the.
(作用)
本発明に係るパラボラアンテナにあっては、1次給電器
の移動手段を設けて、主反射鏡の変動による主照射方向
の変化に応じて1次給電器をこの主照射方向の変化を相
殺するように移動させるようにしたものである。(Function) In the parabolic antenna according to the present invention, a means for moving the primary power feeder is provided, and the primary power feeder is moved according to a change in the main irradiation direction due to a change in the main reflecting mirror. It is designed to move so as to cancel out the .
(実施例) 以下、図面を用いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail using the drawings.
第1図は本発明の第1の実施例に係るパラボラアンテナ
の構成を示す図である。なお、第1図において、第8図
および第9図と同一部材には同一符号を付して詳細な説
明は省略する。FIG. 1 is a diagram showing the configuration of a parabolic antenna according to a first embodiment of the present invention. In FIG. 1, the same members as in FIGS. 8 and 9 are designated by the same reference numerals, and detailed explanations thereof will be omitted.
第1図において9a乃至9Cは支持構造5に設けられた
主反射鏡1の変位を検出する変位検出器、11はこの変
位検出器98〜9Cから出力される変位情報に基づき1
次給電器3の移動量を演算する演算装置、13はこの演
算装置11で演算された移動量だけ1次給電器3の位置
を主反射鏡1に対し相対移動させる駆動装置である。な
お、変位検出器9a、9b、9c、演算装置11、駆動
装置13は移動手段を構成するものである。In FIG. 1, 9a to 9C are displacement detectors that detect the displacement of the main reflecting mirror 1 provided on the support structure 5, and 11 is a displacement detector 11 based on the displacement information output from the displacement detectors 98 to 9C.
A calculation device 13 that calculates the amount of movement of the secondary power feeder 3 is a drive device that moves the position of the primary power feeder 3 relative to the main reflecting mirror 1 by the amount of movement calculated by the calculation device 11. Note that the displacement detectors 9a, 9b, 9c, arithmetic device 11, and drive device 13 constitute a moving means.
次に、本実施例の作用を演算装置11の動作として第2
図乃至第4図を用いて説明する。Next, the operation of this embodiment will be described as a second operation of the arithmetic unit 11.
This will be explained using FIGS. 4 to 4.
演算装置11は、各変位検出器9a〜9Cから出力され
る変位情報の監視状態において何らかの外力により主反
射鏡1の支持角に角度φの変動を生じたことを検知する
と、これによる主反射鏡1の主照射方向の変化を相殺す
るような1次給電器3の移動量を演算する。When the arithmetic unit 11 detects that the support angle of the main reflector 1 has changed by an angle φ due to some external force while monitoring the displacement information output from each of the displacement detectors 9a to 9C, the calculation device 11 detects that the support angle of the main reflector 1 has changed by an angle φ due to some external force. The amount of movement of the primary power feeder 3 that cancels out the change in the main irradiation direction of the primary power supply device 3 is calculated.
具体的には、次のような演算を行なう。Specifically, the following calculations are performed.
第2図に示す様に支持構造5上の平面り上に変位検出器
9a、9b、9cがあり、それぞれU。As shown in FIG. 2, there are displacement detectors 9a, 9b, and 9c on a plane on the support structure 5, each having a U.
U、、U。たけ変位して平面M上に移ったとする。U,,U. Suppose that it is displaced by a certain amount and moves onto the plane M.
まず平面りの単位法線ベクトルnと平面Mの単位法線ベ
クトルn゛の内積をとって変動角φをφ−cos−I
(n−n−)より求める。次に主反射鏡1の焦点距離F
、変動角φ、係数αを次式に代入し1次給電器3の移動
量dを求める。First, take the inner product of the unit normal vector n of the plane and the unit normal vector n of the plane M, and calculate the variation angle φ by φ-cos-I
(n-n-). Next, the focal length F of the main reflector 1
, the fluctuation angle φ, and the coefficient α are substituted into the following equation to obtain the movement amount d of the primary power feeder 3.
φ
d=F tan
α
なお、係数αは焦点圧NFと主反射鏡1の直径りの比F
/Dの値から第3図のグラフを用いて求める。φ d=F tan α The coefficient α is the ratio F of the focal pressure NF and the diameter of the main reflecting mirror 1.
It is determined from the value of /D using the graph in FIG.
このように移動量dが求まると、駆動装置13は、この
結果に従って1次給電器3を第4図に示すようにdだけ
移動させることになる。なお、1次給電器3の移動方向
としては、平面Mの単位法線ベクトルnを平面し上へ正
射影したベクトル愛の方向である。Once the amount of movement d is determined in this manner, the drive device 13 moves the primary power feeder 3 by d as shown in FIG. 4 in accordance with this result. Note that the direction of movement of the primary power feeder 3 is the direction of a vector A which is obtained by orthogonally projecting the unit normal vector n of the plane M onto the plane.
したがって、本実施例によれば、主照射方向の変化を1
次給電器3を主反射鏡1に対して相対移動させることで
相殺するようにしているので、主照射方向の維持を確実
に図れ、もってアンテナ利得の低下を防止できる。加え
て、従来のように主反射鏡1本体を主照射方向の変化を
なくすように移動させる場合に比べて、主反射鏡1より
小さい1次給電器3を移動すればよいので駆動装置13
の構成が簡単になる。Therefore, according to this embodiment, the change in the main irradiation direction is
Since the secondary feeder 3 is moved relative to the main reflecting mirror 1 to compensate, the main irradiation direction can be reliably maintained, thereby preventing a decrease in antenna gain. In addition, compared to the conventional case in which the main body of the main reflector 1 is moved to eliminate changes in the main irradiation direction, it is only necessary to move the primary power feeder 3, which is smaller than the main reflector 1.
The configuration becomes easier.
なお、本実施例では、主反射鏡1と1次給電器3が直接
結合されるタイプ(前記第8図に対応)のものについて
説明したが、第5図に示す如く、主反射鏡1と1次給電
器3が独立して支持構造5に採り付けられるタイプ(前
記第9図に対応)のものにも同様に適用可能である。な
お、第5図の場合には、支持角の変動角がφとすると主
照射方向の変化を2φとして演算することが必要である
。In this embodiment, the main reflecting mirror 1 and the primary power feeder 3 are directly coupled (corresponding to FIG. 8), but as shown in FIG. The present invention is also applicable to a type in which the primary power feeder 3 is independently attached to the support structure 5 (corresponding to the above-mentioned FIG. 9). In the case of FIG. 5, if the variation angle of the support angle is φ, it is necessary to calculate the change in the main irradiation direction as 2φ.
第6図は、本発明の第2の実施例に係るパラボラアンテ
ナの構成を示す図である。その特徴としては、主反射鏡
1の変動に応じて1次給電器3を移動されるようなリン
ク機構を形成し、主反射鏡1の変動に連動して1次給電
器3を主反射方向の変化を相殺するように移動させるこ
とにある。なお、第6図において、15.17,19.
20はこのリンク機構を構成するリンク、21.23゜
25.27は滑節点、29はアンテナの柔軟性を代表す
る等価バネであり、第1図と同一部材はに同一符号を付
して詳細な説明は省略する。なお、リンク15.17.
19.20は移動手段を構成するものである。FIG. 6 is a diagram showing the configuration of a parabolic antenna according to a second embodiment of the present invention. Its feature is that it forms a link mechanism that moves the primary power feeder 3 according to the fluctuations of the main reflecting mirror 1, and moves the primary power feeder 3 in the main reflection direction in conjunction with the fluctuations of the main reflecting mirror 1. The purpose is to move the object so as to offset the changes in the area. In addition, in FIG. 6, 15, 17, 19.
20 is a link that constitutes this link mechanism, 21.23° and 25.27 are sliding nodes, and 29 is an equivalent spring that represents the flexibility of the antenna. The same members as in Fig. 1 are given the same reference numerals and detailed. Further explanation will be omitted. In addition, links 15.17.
19.20 constitutes a transportation means.
次に、本実施例の作用を第7図を用いてリンク機構の働
きを中心に説明する。Next, the operation of this embodiment will be explained with reference to FIG. 7, focusing on the operation of the link mechanism.
外力等により主反射鏡1の支持角に変動を生じることで
主反射鏡1上の滑節点21および23がUlだけ移動す
ると、これに連動してL字すンク17が支点31を中心
として移動して滑節点25においてU2の移動量を生じ
る。そして、このL字すンク17の移動に伴い、第2リ
ンク1つを介して滑節点27においてもU2の移動量を
生じるため、1次給電器3としては1次給電器リンク2
0を介して滑節点28を中心に回動され距離りだけ移動
せしめられる。When the sliding nodes 21 and 23 on the main reflecting mirror 1 move by Ul due to a change in the support angle of the main reflecting mirror 1 due to an external force, etc., the L-shaped sunk 17 moves around the fulcrum 31 in conjunction with this. As a result, a movement amount of U2 is generated at the sliding node 25. With the movement of this L-shaped sink 17, a movement amount of U2 is also generated at the sliding node 27 via one second link, so the primary power feeder link 2
0 and is rotated about the sliding node 28 and moved by a distance.
なお、上述したリンク機構としては、主反射鏡1の変動
に伴なう滑節点21および23における移動量UIと1
次給電器3の移動iDとの間に次式が成立するように構
成される。In addition, as for the above-mentioned link mechanism, the movement amount UI at the sliding nodes 21 and 23 due to the fluctuation of the main reflecting mirror 1 and 1
The configuration is such that the following equation holds true between the movement iD of the next power feeder 3 and the movement iD of the next power feeder 3.
D−(愛1 ・愛4/愛2 ・愛3)・Ulしたがって
、本実施例によっても、簡単な構成で主照射方向の維持
を確実にしてアンテナ利得の低下を防止できる。D-(Ai1・Ai4/Ai2・Ai3)・Ul Therefore, according to this embodiment as well, it is possible to securely maintain the main irradiation direction with a simple configuration and prevent a decrease in antenna gain.
[発明の効果]
以上説明したように、本発明によれば、1次給電器の移
動手段を設けて、主反射鏡の変動による主照射方向の変
化に応じて1次給電器をこの主照射方向の変化を相殺す
るように移動せさるようにしたもので、主照射方向の維
持を容易に実現でき、もってアンテナ利得の低下を確実
に防止できる。[Effects of the Invention] As explained above, according to the present invention, a means for moving the primary power feeder is provided, and the primary power feeder is moved to the main irradiation direction according to the change in the main irradiation direction due to the fluctuation of the main reflecting mirror. The main irradiation direction can be easily maintained by moving the antenna so as to offset the change in direction, thereby reliably preventing a decrease in antenna gain.
第1図は本発明の第1の実施例を示す図、第2図乃至第
4図は第1の実施例を説明するための図、第5図は第1
の実施例の変形例を示す図、第6図は本発明の第2の実
施例を示す図、第7図は第2図の実施例を説明するため
の図、第8図および第9図は従来例を示す図である。
1・・・主反射鏡 3・・・1次給電器5・・・
支持構造 7・・・中継器9a、9b、9c・・
・変位検出器
11・・・演算装置 13・・・駆動装置15.1
7,19.20・・・リンク
第1 図
代理人 弁理士 三 好 保 男第2図
F/D
第3図
第4図
第7図
第8図
第6図
第9
図FIG. 1 is a diagram showing a first embodiment of the present invention, FIGS. 2 to 4 are diagrams for explaining the first embodiment, and FIG. 5 is a diagram showing a first embodiment of the present invention.
FIG. 6 is a diagram showing a second embodiment of the present invention, FIG. 7 is a diagram for explaining the embodiment of FIG. 2, FIGS. 8 and 9 1 is a diagram showing a conventional example. 1... Main reflector 3... Primary power feeder 5...
Support structure 7...Relayers 9a, 9b, 9c...
・Displacement detector 11... Arithmetic device 13... Drive device 15.1
7, 19.20... Link Figure 1 Agent Patent Attorney Yasuo Miyoshi Figure 2 F/D Figure 3 Figure 4 Figure 7 Figure 8 Figure 6 Figure 9
Claims (1)
照射方向の変化をなくすように1次給電器を移動させる
移動手段を具備することを特徴とするパラボラアンテナ
。A parabolic antenna characterized by comprising a moving means for moving a primary power feeder so as to eliminate a change in the main irradiation direction in response to a change in the main irradiation direction due to a change in the main reflecting mirror.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19349688A JPH0243803A (en) | 1988-08-04 | 1988-08-04 | Parabolic antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19349688A JPH0243803A (en) | 1988-08-04 | 1988-08-04 | Parabolic antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0243803A true JPH0243803A (en) | 1990-02-14 |
Family
ID=16309011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19349688A Pending JPH0243803A (en) | 1988-08-04 | 1988-08-04 | Parabolic antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0243803A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08222934A (en) * | 1995-02-10 | 1996-08-30 | Nec Corp | Antenna characteristic controller |
EP0756012A1 (en) * | 1995-07-27 | 1997-01-29 | Kawasaki Steel Corporation | Decarburization refining process for chromium-containing molten metal, and associated top blowing lance |
EP1396526A2 (en) | 2002-09-09 | 2004-03-10 | Oji Paper Company Limited | Aqueous dispersion comprising inorganic pigment-cationic resin composite fine particles and ink jet recording material containing same |
WO2017104598A1 (en) * | 2015-12-18 | 2017-06-22 | ヤマハ株式会社 | Wireless communication device |
-
1988
- 1988-08-04 JP JP19349688A patent/JPH0243803A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08222934A (en) * | 1995-02-10 | 1996-08-30 | Nec Corp | Antenna characteristic controller |
EP0756012A1 (en) * | 1995-07-27 | 1997-01-29 | Kawasaki Steel Corporation | Decarburization refining process for chromium-containing molten metal, and associated top blowing lance |
EP1396526A2 (en) | 2002-09-09 | 2004-03-10 | Oji Paper Company Limited | Aqueous dispersion comprising inorganic pigment-cationic resin composite fine particles and ink jet recording material containing same |
WO2017104598A1 (en) * | 2015-12-18 | 2017-06-22 | ヤマハ株式会社 | Wireless communication device |
JP2017112578A (en) * | 2015-12-18 | 2017-06-22 | ヤマハ株式会社 | Radio communication device |
US10892563B2 (en) | 2015-12-18 | 2021-01-12 | Yamaha Corporation | Wireless communication device |
US11309640B2 (en) | 2015-12-18 | 2022-04-19 | Yamaha Corporation | Wireless communication device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20250020753A1 (en) | Satellite antenna with sensor for line-of-sight detection | |
US10483637B2 (en) | Method and apparatus for beam-steerable antenna with single-drive mechanism | |
US6723912B2 (en) | Space photovoltaic power generation system | |
US6198455B1 (en) | Variable beamwidth antenna systems | |
US4586051A (en) | Reflector distortion compensation system for multiple-beam wave satellite antennas | |
WO1999060656A8 (en) | Multibeam satellite communication antenna | |
EP3706245A1 (en) | Reflector, developed antenna, and aerospace vehicle | |
RU2708908C2 (en) | System, apparatus and method for tuning remote antenna | |
US6747604B2 (en) | Steerable offset antenna with fixed feed source | |
JPH0243803A (en) | Parabolic antenna | |
US6342865B1 (en) | Side-fed offset cassegrain antenna with main reflector gimbal | |
JP2013134059A (en) | Radar system | |
US11901630B1 (en) | Confocal phased array fed reflector antenna beam stabilization | |
KR101514666B1 (en) | STABILIZATION SYSTEM OF SATELLITE TRACKING ANTENNA BY USING Gyro AND Kalman FILTER, STABILIZATION CONTROL METHOD AND OF SATELLITE TRACKING ANTENNA | |
US4479129A (en) | Directive antenna system employing a paraboloidal main dish and ellipsoidal subdish | |
US4814778A (en) | Large scan antenna with fixed main reflector and fixed feed, particularly for use at ultrahigh frequencies, carried on board a satellite and a satellite equipped with such an antenna | |
KR101408070B1 (en) | Relflectarray Antenna | |
JP6456258B2 (en) | Antenna device | |
JPH0514050A (en) | Antenna system | |
US11581663B1 (en) | Shaped reflector dual S-band and Ka-band high gain antenna | |
WO2021199646A1 (en) | Sensor device | |
US3553731A (en) | Antenna comprising restraining means for resilient support members | |
JPH04132403A (en) | Mirror surface control antenna | |
US11909126B2 (en) | Optical system for enhanced wide scan capability of array antennas | |
JP2539104B2 (en) | Antenna device |