[go: up one dir, main page]

JPH0237919B2 - KAPURORAKUTON NOSEIZOHOHO - Google Patents

KAPURORAKUTON NOSEIZOHOHO

Info

Publication number
JPH0237919B2
JPH0237919B2 JP7881383A JP7881383A JPH0237919B2 JP H0237919 B2 JPH0237919 B2 JP H0237919B2 JP 7881383 A JP7881383 A JP 7881383A JP 7881383 A JP7881383 A JP 7881383A JP H0237919 B2 JPH0237919 B2 JP H0237919B2
Authority
JP
Japan
Prior art keywords
reaction
copper
catalyst
caprolactone
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7881383A
Other languages
Japanese (ja)
Other versions
JPS59204184A (en
Inventor
Takao Maki
Toshiharu Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP7881383A priority Critical patent/JPH0237919B2/en
Publication of JPS59204184A publication Critical patent/JPS59204184A/en
Publication of JPH0237919B2 publication Critical patent/JPH0237919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pyrane Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はカプロラクトン(6―またはε―カプ
ロラクトン)の新規な製造方法に関するものであ
り、詳しくはアジポアルデヒド酸を銅を必須成分
とする触媒の存在下、気相において水素と反応さ
せるカプロラクトンの製造方法に関するものであ
る。 カプロラクトンは高分子原料、有機合成中間体
として有用な物質であるが、従来広く行なわれて
いる製造方法は、シクロヘキサノンを過酢酸等の
有機過酸と反応させるいわゆるバイヤービリガー
(BayerVilliger)反応によるものである。しかし
ながら、この方法は以下に挙げる欠点を有する。
すなわち、原料として使用する過酸は危険で取り
扱い難く、かつ、高価な上に、この反応のために
は大量に使用されなければならず、またこの結
果、過酸由来のカルボン酸が大量に副生するとい
う欠点もあつた。従つてかかる欠点のないカプロ
ラクトンの新規な製造方法の開発が強く望まれて
いた。 本発明者は、かかる実情に鑑み鋭意検討の結
果、シクロヘキサノンの酸素酸化により容易に得
られるアジポアルデヒド酸を、銅を必須成分とす
る触媒の存在下、気相において水素と反応させる
と、一段階で水素化反応と環化反応が同時に進行
し、カプロラクトンが収率良く生成することを見
出し、本発明方法に到達した。すなわち、本発明
方法は、シクロヘキサノン、酸素及び水素のみを
原料とし、従来方法の過酸を必要とすることな
く、かつ大量のカルボン酸を副生しない、カプロ
ラクトンの新規な製造方法に存する。 以下に本発明を詳細に説明する。 本発明方法で用いる触媒は銅を必須元素として
含有する。この触媒中の銅成分を提供する出発原
料としては、多くの種類のものの中から選ぶこと
ができる。たとえば、硝酸銅、酸化銅、塩化銅、
水酸化銅などが使用できる。 ただし、銅を単独で使用すると、触媒の過度還
元、シンタリング等による失活、低沸点の分解生
成物の増加による選択率の低下等の問題があり、
銅と他の元素との多元系触媒として使用するのが
より好ましい。銅と組み合わせられる元素は、例
えば、周期律表族の元素としてマグネシウム、
カルシウム、バリウム、亜鉛、カドミウム等、
族の元素としてアルミニウム、希土類元素等、
族の元素としてケイ素、ゲルマニウム、錫、鉛、
チタン、ジルコニウム、ハフニウム、V族の元素
としてバナジウム、ニオブ、タンタル、アンチモ
ン、ビスマス、族の元素としてクロム、モリブ
デン、タングステン、族の元素としてマンガ
ン、レニウム、族の元素として鉄、コバルト等
が挙げられるが、クロム、マンガン、バリウム、
亜鉛等が好ましい。銅と他の元素の比率は原子比
で1:0.02乃至1.5が好ましい。これらの元素を
組み合わせて用いることにより、カプロラクトン
の収率が向上し、触媒の寿命が延長するという効
果が得られる。 触媒は担体なしでも優秀な活性を示すが、また
適当な担体に担持して使用することもできる。即
ち全体の10%から90%の活性成分を含有するよう
に処方できる。担体としては珪藻土、軽石、アル
ミナ、シリカ、チタニア等が使用できる。触媒は
反応前に水素により前処理して使用することもで
きる。 しかしながら、触媒は、水素による前処理、あ
るいは反応中に還元を受け、場合により一部金属
銅の状態にまでになり、活性は残つているものの
目的生成物であるカプロラクトンの収率を低下さ
せる。反応中における銅の真の原子価状態は不明
ではあるが、外見上多量の金属銅を生成するよう
な組成の触媒は避けた方が好ましい。 反応は銅の溶出を避けるために気相で行なうの
が好ましい。反応温度は150〜400℃、より好まし
くは200〜300℃が適当である。反応圧力は常圧で
十分であるが、若干の減圧あるいは加圧下で行な
うこともできる。反応時の水素の分圧は、反応に
より消費される他、触媒の活性を維持するために
も重要であり、0.05〜3気圧程度に保つのが好ま
しい。反応時に水蒸気を共存させると、収率が向
上し、触媒の活性が維持されるという効果があ
る。水蒸気の添加量は、アジポアルデヒド酸に対
し、0.5〜200モル、より好ましくは3〜50モル程
度が好適である。ガスの空間速度は100〜
10000hr-1、より好ましくは500〜5000hr-1程度で
行なわれる。 反応生成物は冷却捕集され、蒸留、抽出等公知
の方法により、カプロラクトンが回収される。
尚、開環生成物である6―ヒドロキシカプロン酸
及びそのオリゴマーの副生が通常見られるが、こ
れらは公知の方法によりカプロラクトンに転化可
能である。 以下、実施例により本発明を更に具体的に説明
するが、本発明はその要旨を超えない限り、以下
の実施例に限定されるものではない。 尚、アジポアルデヒド酸の転化率、6―カプロ
ラクトンの選択率、6―ヒドロキシカプロン酸及
びそのオリゴマーの選択率及び6―カプロラクト
ンの収率は下記式により定義される。
The present invention relates to a new method for producing caprolactone (6- or ε-caprolactone), and more specifically, the production of caprolactone by reacting adipaldehyde acid with hydrogen in the gas phase in the presence of a catalyst containing copper as an essential component. It is about the method. Caprolactone is a useful substance as a raw material for polymers and an intermediate in organic synthesis, but the conventionally widely used production method is the so-called BayerVilliger reaction, in which cyclohexanone is reacted with an organic peracid such as peracetic acid. be. However, this method has the following drawbacks.
In other words, the peracid used as a raw material is dangerous, difficult to handle, and expensive, and it must be used in large quantities for this reaction.As a result, a large amount of carboxylic acid derived from the peracid is produced as a by-product. There was also the disadvantage of being born alive. Therefore, there has been a strong desire to develop a new method for producing caprolactone that does not have these drawbacks. In view of the above circumstances, the present inventors have conducted intensive studies and found that when adipaldehyde acid, which is easily obtained by oxygen oxidation of cyclohexanone, is reacted with hydrogen in the gas phase in the presence of a catalyst containing copper as an essential component, It was discovered that the hydrogenation reaction and cyclization reaction proceed simultaneously in the step, producing caprolactone in good yield, and the method of the present invention was achieved. That is, the method of the present invention consists in a novel method for producing caprolactone that uses only cyclohexanone, oxygen, and hydrogen as raw materials, does not require the peracid of the conventional method, and does not produce a large amount of carboxylic acid as a by-product. The present invention will be explained in detail below. The catalyst used in the method of the invention contains copper as an essential element. The starting material that provides the copper component in the catalyst can be selected from among many types. For example, copper nitrate, copper oxide, copper chloride,
Copper hydroxide etc. can be used. However, when copper is used alone, there are problems such as excessive reduction of the catalyst, deactivation due to sintering, etc., and a decrease in selectivity due to an increase in low-boiling decomposition products.
More preferably, it is used as a multi-component catalyst of copper and other elements. Elements that can be combined with copper include, for example, magnesium as an element of the periodic table group,
Calcium, barium, zinc, cadmium, etc.
Group elements include aluminum, rare earth elements, etc.
Group elements include silicon, germanium, tin, lead,
Titanium, zirconium, hafnium, vanadium, niobium, tantalum, antimony, bismuth as group V elements, chromium, molybdenum, tungsten as group elements, manganese, rhenium as group elements, iron, cobalt, etc. as group elements However, chromium, manganese, barium,
Zinc etc. are preferred. The ratio of copper to other elements is preferably 1:0.02 to 1.5 in atomic ratio. By using these elements in combination, the yield of caprolactone is improved and the life of the catalyst is extended. Although the catalyst exhibits excellent activity without a carrier, it can also be used supported on a suitable carrier. That is, it can be formulated to contain 10% to 90% of the total active ingredient. As the carrier, diatomaceous earth, pumice, alumina, silica, titania, etc. can be used. The catalyst can also be used after being pretreated with hydrogen before the reaction. However, the catalyst undergoes pretreatment with hydrogen or reduction during the reaction, and in some cases becomes partially in the state of metallic copper, and although the activity remains, the yield of the desired product, caprolactone, decreases. Although the true valence state of copper during the reaction is unknown, it is preferable to avoid catalysts with compositions that apparently produce a large amount of metallic copper. The reaction is preferably carried out in the gas phase to avoid copper elution. The reaction temperature is suitably 150 to 400°C, more preferably 200 to 300°C. Normal pressure is sufficient for the reaction pressure, but the reaction can also be carried out under slightly reduced pressure or increased pressure. The partial pressure of hydrogen during the reaction is important not only for being consumed by the reaction but also for maintaining the activity of the catalyst, and is preferably maintained at about 0.05 to 3 atm. The coexistence of water vapor during the reaction has the effect of improving the yield and maintaining the activity of the catalyst. The amount of water vapor added is preferably about 0.5 to 200 moles, more preferably about 3 to 50 moles, based on adipaldehyde acid. The space velocity of gas is 100 ~
It is carried out at about 10,000 hr -1 , more preferably about 500 to 5,000 hr -1 . The reaction product is cooled and collected, and caprolactone is recovered by known methods such as distillation and extraction.
Incidentally, 6-hydroxycaproic acid, which is a ring-opening product, and its oligomer by-product are usually observed, but these can be converted into caprolactone by a known method. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Incidentally, the conversion rate of adipaldehyde acid, the selectivity of 6-caprolactone, the selectivity of 6-hydroxycaproic acid and its oligomer, and the yield of 6-caprolactone are defined by the following formula.

【表】 実施例 1 〔触媒の調製〕 16〜24メツシユのγ―アルミナ(ローヌ・プー
ラン社製、SCM250)に硝酸銅水溶液を含浸担持
させ、銅の含量が10重量%となるように調製した
後、空気中で500℃、3時間焼成し、さらに水素
気流中で160℃、3時間還元を行ない触媒を調製
した。 〔反応〕 上記方法で調製された触媒1.8mlを反応管に充
填し、アジポアルデヒド酸−水蒸気−水素の混合
ガス(容量組成比=1.6:32:664)を空間速度
2000hr-1で反応管に供給し、280℃で反応を行な
わせた。反応開始1時間後の生成物を冷却捕集し
て得られた液相をガスクロマトグラフにより、定
量分析したところ、6―カプロラクトンの収率は
3.3%であつた。 実施例 2 銅―クロム系市販触媒、日揮N201(原子比;
銅:クロム:マンガン=1:1.27:0.08)(日揮
化学社製)1.8mlを反応管に充填し、160℃で3時
間水素還元を行なつた後、実施例1と同一条件で
アジポアルデヒド酸−水蒸気−水素の混合ガスを
供給し反応を行なつた。反応開始後2時間におけ
る反応成績は以下の通りであつた。 アジポアルデヒド酸の転化率 100% 6―カプロラクトンの選択率 60.5% 6―ヒドロキシカプロン酸及びそのオリゴマー
の選択率 4.3% 実施例 3〜5 下記表―1に示す触媒を使用したこと以外は実
施例2と同様の反応を同一条件で行なつた。結果
を表―1に示す。
[Table] Example 1 [Preparation of catalyst] 16 to 24 meshes of γ-alumina (manufactured by Rhône-Poulenc, SCM250) was impregnated and supported with a copper nitrate aqueous solution, and the copper content was prepared to be 10% by weight. Thereafter, it was calcined in air at 500°C for 3 hours, and further reduced in a hydrogen stream at 160°C for 3 hours to prepare a catalyst. [Reaction] Fill a reaction tube with 1.8 ml of the catalyst prepared by the above method, and add a mixed gas of adipaldehyde acid, water vapor, and hydrogen (volume composition ratio = 1.6:32:664) at a space velocity of 1.8 ml.
It was supplied to the reaction tube at 2000 hr -1 and the reaction was carried out at 280°C. When the liquid phase obtained by cooling and collecting the product one hour after the start of the reaction was quantitatively analyzed by gas chromatography, the yield of 6-caprolactone was found to be
It was 3.3%. Example 2 Copper-chromium commercially available catalyst, JGC N201 (atomic ratio;
Fill a reaction tube with 1.8 ml of copper:chromium:manganese=1:1.27:0.08 (manufactured by JGC Chemical Co., Ltd.), perform hydrogen reduction at 160°C for 3 hours, and then add adipaldehyde under the same conditions as in Example 1. A mixed gas of acid-steam-hydrogen was supplied to carry out the reaction. The reaction results 2 hours after the start of the reaction were as follows. Conversion rate of adipaldehyde acid 100% Selectivity of 6-caprolactone 60.5% Selectivity of 6-hydroxycaproic acid and its oligomer 4.3% Examples 3 to 5 Examples except that the catalysts shown in Table 1 below were used. A reaction similar to 2 was conducted under the same conditions. The results are shown in Table-1.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アジポアルデヒド酸を、銅を必須成分とする
触媒の存在下、気相において水素と反応させるこ
とを特徴とするカプロラクトンの製造方法。
1. A method for producing caprolactone, which comprises reacting adipaldehyde acid with hydrogen in the gas phase in the presence of a catalyst containing copper as an essential component.
JP7881383A 1983-05-04 1983-05-04 KAPURORAKUTON NOSEIZOHOHO Expired - Lifetime JPH0237919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7881383A JPH0237919B2 (en) 1983-05-04 1983-05-04 KAPURORAKUTON NOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7881383A JPH0237919B2 (en) 1983-05-04 1983-05-04 KAPURORAKUTON NOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS59204184A JPS59204184A (en) 1984-11-19
JPH0237919B2 true JPH0237919B2 (en) 1990-08-28

Family

ID=13672277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7881383A Expired - Lifetime JPH0237919B2 (en) 1983-05-04 1983-05-04 KAPURORAKUTON NOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0237919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557011U (en) * 1992-01-10 1993-07-30 三甲株式会社 Guard fence for civil engineering and construction site construction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798816B2 (en) * 1990-04-25 1995-10-25 宇部興産株式会社 Process for producing ε-caprolactone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557011U (en) * 1992-01-10 1993-07-30 三甲株式会社 Guard fence for civil engineering and construction site construction

Also Published As

Publication number Publication date
JPS59204184A (en) 1984-11-19

Similar Documents

Publication Publication Date Title
EP3419955B1 (en) Process for preparing a mixture of terpene alcohols
JP2001520976A (en) Method for selective production of acetic acid by catalytic oxidation of ethane
JP4090885B2 (en) Method for producing cyclohexanone oxime
JP4084044B2 (en) Integrated process for producing vinyl acetate
CN102476975B (en) Method for catalytic oxidation of cycloketone in the presence of magnesium and aluminum modified titanosilicate molecular sieve
EP1099475A1 (en) Catalyst for oxidizing methylbenzene and method for producing aromatic aldehyde
CN102452871B (en) Method for catalytic oxidation of cyclic ketone
JPH0237919B2 (en) KAPURORAKUTON NOSEIZOHOHO
JP2585737B2 (en) Method for producing terpene alcohol
US4000199A (en) Process for the production of acetone
JPH02218638A (en) Preparation of 7-octen-1-al
JP2012056927A (en) METHOD OF PRODUCING δ-VALEROLACTONE
JPH0853386A (en) Production of alicyclic diketone compound
EP0075952A1 (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
KR0179396B1 (en) Method for preparing formyltetrahydropyran
JPS6032608B2 (en) Method for producing unsaturated compounds
JP3444636B2 (en) Method for producing 1,3-cyclohexadiene
JPS6324500B2 (en)
US4661643A (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
JPS6260378B2 (en)
US4649225A (en) Hydrogenolysis of polyalkylene glycols to produce monoethylene glycol monoalkyl ethers, monoethylene glycol and ethanol
US5196609A (en) Preparation of 3-alkoxycarbonyl propenals and 3-dialkoxymethyl propenals
JPH0529018B2 (en)
JP2001335527A (en) Method for producing cyclopentanone
JPS6261941A (en) Production of m-hydroxybenzaldehyde