JPS6032608B2 - Method for producing unsaturated compounds - Google Patents
Method for producing unsaturated compoundsInfo
- Publication number
- JPS6032608B2 JPS6032608B2 JP51140838A JP14083876A JPS6032608B2 JP S6032608 B2 JPS6032608 B2 JP S6032608B2 JP 51140838 A JP51140838 A JP 51140838A JP 14083876 A JP14083876 A JP 14083876A JP S6032608 B2 JPS6032608 B2 JP S6032608B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- reaction
- optional components
- unsaturated
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【発明の詳細な説明】
本発明は、飽和アルデヒドと分子状酸素から相当する不
飽和カルボン酸を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing the corresponding unsaturated carboxylic acid from a saturated aldehyde and molecular oxygen.
さらに詳しくは、プロピオンアルデヒドもしくはィソプ
チルアルデヒドと分子状酸素を含む混合ガスを高温の気
相で触媒と接触させて、アクロレインとアクリル酸もし
くは、メタクロレインとメタクリル酸を製造する方法に
関する。More specifically, the present invention relates to a method for producing acrolein and acrylic acid or methacrolein and methacrylic acid by contacting a mixed gas containing propionaldehyde or isoptyraldehyde and molecular oxygen with a catalyst in a high-temperature gas phase.
ィソブチルアルデヒドを触媒の存在下に酸化的脱水素す
ることによりメタクロレンおよび(もしくは)メタクリ
ル酸を製造する方法に関しては従釆から多くの提案があ
る。There are many proposals in the art regarding a method for producing methachlorene and/or methacrylic acid by oxidative dehydrogenation of isobutyraldehyde in the presence of a catalyst.
例えばモリブデンと鉛酸化物触媒を用いる方法(特公昭
43一6202号)、モリブデンの一部がバナジウムお
よび(または)タングステンで置換されてもよいリンモ
リブデン酸を用いる方法(侍開昭48一78112号)
、リン、モリブデン、アンチモン、亜鉛およびN比基を
必須成分とする触媒を用いる方法(特開昭50一149
611号)等がある。For example, a method using molybdenum and a lead oxide catalyst (Japanese Patent Publication No. 43-16202), a method using phosphomolybdic acid in which a portion of molybdenum may be replaced with vanadium and/or tungsten (Samurai Publication No. 48-78112) )
, a method using a catalyst containing phosphorus, molybdenum, antimony, zinc, and an N ratio group as essential components (JP-A-50-149
611) etc.
一方、本発明者らの一部も上記の反応に用いる触媒につ
いて既にモリブデンとコバルト、モリブデンとタングス
テンもしくはモリブデンとタングステンとテルルを用い
る方法(特開昭47−14085号)およびアンチモン
とチタンおよび(または)タングステンを用いる方法(
特公昭46−28001号)を提案した。しかしこれら
の提案による方法ではいずれも目的物であるメタクロレ
インおよび(もしくは)メタクリル酸の収率が低いか、
もしくは使用する触媒の寿命が短かし、などの欠点を有
しており工業的見地からは実用性が無かった。On the other hand, some of the present inventors have already reported a method using molybdenum and cobalt, molybdenum and tungsten, or molybdenum and tungsten and tellurium (Japanese Patent Application Laid-open No. 14085/1985) and a method using antimony and titanium and (or ) Method using tungsten (
Special Publication No. 46-28001) was proposed. However, in all of these proposed methods, the yield of the target products, methacrolein and/or methacrylic acid, is low or
Moreover, it has disadvantages such as the short life of the catalyst used, and is not practical from an industrial standpoint.
そこで本発明者らはィソブーチルアルデヒドからメタク
ロレィンとメタクリル酸を製造する際に用いる触媒につ
いて、上記の欠点を改良すべく鋭意研究した結果、目的
物の収率が高く、かつ触媒寿命も長いという実用性が極
めて大きい触媒を見出し、この触媒がプロピオンアルデ
ヒドからアクロレィンとアクリル酸の製造にも有効であ
ることを見出し本発明を完成した。Therefore, the present inventors conducted intensive research on catalysts used to produce methacrolein and methacrylic acid from isobutyraldehyde in order to improve the above-mentioned drawbacks. They discovered a highly practical catalyst, and discovered that this catalyst is also effective in producing acrolein and acrylic acid from propionaldehyde, thereby completing the present invention.
すなわち本発明は、プロピオンアルデヒドもしくはィソ
ブチルアルデヒドと分子状酸素を含む混合ガスをリン、
モリブデンおよび酸素からなり、さらにカリウム、ルビ
ジウムおよびセシウムより成る群から選ばれる1種また
は2種以上と任意成分として枇素、銅、バナジウム、タ
ングステン、鉄、マンガン、スズ、アンチモン、マグネ
シウム、アルミニウム、珪素、カルシウム、チタン、ジ
ルコニウム、銀、テルル、バリウム、タンタル、クロム
、ニオブ、コバルト、ニッケル、ストロンチウム、亜鉛
、カドミウム、ゲルマニウム、鉛、ビスマス、セレン、
ルテニウム、ロジウム、白金、パラジウム、レニウム、
金およびハフニウムより成る群から選ばれる少くとも1
種を含む触媒と高温の気相で接触させることを特徴とす
るアクロレィンとアクリル酸もしくは、メタクロレイン
とメタクリル酸の製造方法である。That is, the present invention converts a mixed gas containing propionaldehyde or isobutyraldehyde and molecular oxygen into phosphorus,
Consisting of molybdenum and oxygen, and one or more selected from the group consisting of potassium, rubidium, and cesium, and optional components of phosphorus, copper, vanadium, tungsten, iron, manganese, tin, antimony, magnesium, aluminum, and silicon. , calcium, titanium, zirconium, silver, tellurium, barium, tantalum, chromium, niobium, cobalt, nickel, strontium, zinc, cadmium, germanium, lead, bismuth, selenium,
Ruthenium, rhodium, platinum, palladium, rhenium,
At least one selected from the group consisting of gold and hafnium
This is a method for producing acrolein and acrylic acid or methacrolein and methacrylic acid, which is characterized by bringing them into contact with a catalyst containing seeds in a high-temperature gas phase.
本発明による触媒を用いた場合の第1の特徴は、300
00以下の比較的低温で飽和アルデヒドの転化率が極め
て大きく、実質的には飽和アルデヒドの転化率を100
%にしても、目的物である不飽和アルデヒドと不飽和酸
の収率を高水準に維持出来ることである。The first feature when using the catalyst according to the present invention is that 300
The conversion rate of saturated aldehyde is extremely high at a relatively low temperature of 0.00 or less, and the conversion rate of saturated aldehyde is substantially reduced to 100%.
%, the yield of the target products, unsaturated aldehyde and unsaturated acid, can be maintained at a high level.
原料物質である飽和アルデヒドの転化率を実質的に10
0%にまで上げうるということは未反応原料をリサイク
ルする必要がないということであり、装置の小型化、ユ
ーティリティーの減少などが可能となり工業的価値は極
めて大きい。The conversion rate of the saturated aldehyde, which is the raw material, was substantially reduced to 10
The fact that it can be increased to 0% means that there is no need to recycle unreacted raw materials, which makes it possible to downsize the equipment and reduce utilities, which is of extremely great industrial value.
第2の特徴は触媒活性の安定性がきわめて大きいことで
ある。The second feature is that the stability of the catalyst activity is extremely high.
従来の提案による触媒では反応初期には高活性を示して
も、反応を長期間継続させると触媒活性が経時的に低下
するものが多かった。しかるに本発明による触媒では5
00時間の連続反応後でも目的物である不飽和アルデヒ
ドと不飽和酸の生成活性は殆んど不変であった。本発明
の触媒から必須成分であるアルカリ金属を除くと目的物
の不飽和アルデヒドと不飽和酸の収率が低下し、かつ触
媒活性の経時的低下が大きいことを考え合せると本発明
に関する上記の二つの特徴はいずれも触媒中の必須成分
であるアルカリ金属に基因するものと考えられる。本発
明による方法では通常は不飽和アルデヒドおよび不飽和
酸の併産であるが、反応温度を上げることにより不飽和
アルデヒドの生成量を減らして不飽和酸の生成量を増加
させることも出来るし、または、本発明による触媒を連
結した2本の反応管に充填し、第1反応塔に飽和アルデ
ヒドを供給して酸化的脱水素反応させ、不飽和アルデヒ
ドを含んだ生成ガスを第1反応塔よりも高い温度に維持
した第2反応塔に供給することにより実質的に飽和アル
デヒドから不飽和酸を1段で合成することも可能である
。Even if the catalysts proposed in the past exhibit high activity at the initial stage of the reaction, in many cases the catalytic activity decreases over time if the reaction is continued for a long period of time. However, in the catalyst according to the present invention, 5
Even after 00 hours of continuous reaction, the production activity of the target products, unsaturated aldehyde and unsaturated acid, remained almost unchanged. Considering that if the alkali metal, which is an essential component, is removed from the catalyst of the present invention, the yield of the target unsaturated aldehyde and unsaturated acid decreases, and the catalytic activity decreases significantly over time, the above-mentioned problems regarding the present invention are considered. Both of these characteristics are thought to be due to the alkali metal, which is an essential component in the catalyst. In the method according to the present invention, unsaturated aldehydes and unsaturated acids are usually co-produced, but by increasing the reaction temperature, the amount of unsaturated aldehydes produced can be reduced and the amount of unsaturated acids produced can be increased. Alternatively, the catalyst according to the present invention is packed into two connected reaction tubes, saturated aldehyde is supplied to the first reaction column to cause an oxidative dehydrogenation reaction, and the product gas containing unsaturated aldehyde is passed from the first reaction column. It is also possible to synthesize an unsaturated acid from a substantially saturated aldehyde in one step by supplying the aldehyde to a second reaction column maintained at a high temperature.
また触媒組成を変えることによっても不飽和アルデヒド
と不飽和酸の生成比率を変えることが出来る。The production ratio of unsaturated aldehyde and unsaturated acid can also be changed by changing the catalyst composition.
たとえば本発明の触媒の基本組成であるリンーモリブデ
ンーアルカリ成分に対しルテニウム、ロジウム、白金、
レニウム、金、パラジウム又はハフニウムを加えた場合
は不飽和酸の生成比率を著しく高めることができる。一
方カルシウム、チタン、ジルコニウム、銀、テルル、バ
リウム、タンタル又はクロムを加えた場合は不飽和アル
デヒドの生成比率をより高めることができる。本発明に
用いる触媒ではリンならびに金属元素の原子比は比較的
広い範囲にわたって変えることが出来るが、特に実用に
適した原子比はモリブデンを12としたとき、リンは0
.5〜6、カリウム、ルビジウムおよびセシウムは合計
で0.2〜6、任意成分として加える金属はその合計で
0.01〜6の範囲である。触媒を調製する方法は特殊
な方法に限定する必要はなく、成分の著しい偏在を伴わ
ない限り従来からよく知られている蒸発乾固法、沈澱法
、酸化物混合法等の種々の方法を用いることができる。For example, ruthenium, rhodium, platinum,
When rhenium, gold, palladium or hafnium is added, the production rate of unsaturated acids can be significantly increased. On the other hand, when calcium, titanium, zirconium, silver, tellurium, barium, tantalum or chromium is added, the production ratio of unsaturated aldehydes can be further increased. In the catalyst used in the present invention, the atomic ratio of phosphorus and metal elements can be varied over a relatively wide range, but the atomic ratio particularly suitable for practical use is 12 for molybdenum and 0 for phosphorus.
.. The total amount of potassium, rubidium and cesium is 0.2 to 6, and the total amount of metals added as optional components is 0.01 to 6. The method for preparing the catalyst does not need to be limited to a special method, and various conventionally well-known methods such as evaporation to dryness method, precipitation method, oxide mixing method, etc. can be used as long as the method does not involve significant uneven distribution of components. be able to.
触媒調製に用いる原料化合物として各元素の硝酸塩、ア
ンモニウム塩、ハロゲン化物、あるいは酸化物などを組
合せて使用することが出来る。触媒の熱処理温度は30
0〜650q0、好ましくは350〜600午0の範囲
、熱処理時間は温度によって異なるが、一時間〜数十時
間が適当である。本発明の方法で用いる触媒はシリカ、
アルミナ、シリカァルミナ、シリコンカーバイト等の不
活性担体に担持させるかあるいはこれらで稀釈して用い
ることができる。A combination of nitrates, ammonium salts, halides, or oxides of each element can be used as a raw material compound for catalyst preparation. The heat treatment temperature of the catalyst is 30
The heat treatment time ranges from 0 to 650 q0, preferably from 350 to 600 q0, and the heat treatment time varies depending on the temperature, but is suitably from one hour to several tens of hours. The catalyst used in the method of the present invention is silica,
It can be used by supporting it on an inert carrier such as alumina, silica alumina, silicon carbide, or by diluting it with these.
原料ガス組成は広い範囲で変えることが出来るが、飽和
アルデヒドと酸素がそれぞれ1〜20モル%、不活性ガ
スが60〜98モル%の範囲であることが好ましい。通
常反応物は窒素、水蒸気、炭酸ガス等の不活性ガスで稀
釈して反応に供する。Although the raw material gas composition can be varied within a wide range, it is preferable that the saturated aldehyde and oxygen are each in the range of 1 to 20 mol %, and the inert gas is in the range of 60 to 98 mol %. Usually, the reactant is diluted with an inert gas such as nitrogen, steam, carbon dioxide, etc., and then subjected to the reaction.
とくに水蒸気の存在は目的物の不飽和化合物の収率を向
上させることがある。反応は常圧でよいが若干の減圧も
しくは若干の圧下、例えば0.5〜20気圧(絶対圧)
で行ないうる。In particular, the presence of water vapor may improve the yield of the target unsaturated compound. The reaction may be carried out at normal pressure, but under a slight reduced pressure or pressure, for example 0.5 to 20 atm (absolute pressure).
You can do it.
反応温度は220〜3200○、特に240〜3000
0が好ましい。以下実施例および比較例を用いて本発明
の内容を具体的に説明する。The reaction temperature is 220-3200°, especially 240-3000°
0 is preferred. The content of the present invention will be specifically explained below using Examples and Comparative Examples.
部は全て重量部をあらわす。実施例
パラモリブデン酸アンモニウム42.4部を60qCの
純水20戊部‘こ溶解した。All parts represent parts by weight. Example 42.4 parts of ammonium paramolybdate was dissolved in 20 parts of 60 qC pure water.
これに85%リン酸2.3部と硝酸カリウム2.0部を
加えた。混合液を加熱し、蝿拝しながら蒸発乾間した。
得られた固形物を130午0で岬時間乾燥し粉砕した後
、加圧成形しこれを10〜20メッシュに破砕したのち
空気流通下に400qoで5時間焼成した。触媒の組成
は原子比でP,Mo,2K,である。To this were added 2.3 parts of 85% phosphoric acid and 2.0 parts of potassium nitrate. The mixture was heated and evaporated to dryness while stirring.
The obtained solid was dried at 130 pm for an hour, pulverized, pressure molded, pulverized into 10 to 20 mesh, and then fired at 400 qo for 5 hours under air circulation. The composition of the catalyst is P, Mo, and 2K in atomic ratio.
得られた触媒を反応器に充填し、ィソブチルアルデヒド
4%、酸素10%、水蒸気30%、窒素56%(いずれ
も容量%)の混合ガスを反応温度260℃、接触時間0
.9秒で触媒層を通過させた。生成物を補集し、ガスク
ロマトグラフィ‐で分析したところ、イソブチルアルデ
ヒド転化率98.0%、メタクロレィン選択率77.5
%、メタクリル酸選択率4.3%であった。他に酢酸、
アセトン、一酸化炭素、二酸化炭素等が生成した。同一
条件で50餌時間反応せたところ、ィソブチルアルデヒ
ド転化率97.5%、メタクロレィン選択率77.3%
、メタクリル酸選択率4.1%であった。The obtained catalyst was packed into a reactor, and a mixed gas of 4% isobutyraldehyde, 10% oxygen, 30% steam, and 56% nitrogen (all by volume) was heated at a reaction temperature of 260°C and a contact time of 0.
.. It passed through the catalyst layer in 9 seconds. When the product was collected and analyzed by gas chromatography, the conversion of isobutyraldehyde was 98.0% and the selectivity of methacrolein was 77.5.
%, and the methacrylic acid selectivity was 4.3%. In addition, acetic acid,
Acetone, carbon monoxide, carbon dioxide, etc. were generated. When reacted for 50 hours under the same conditions, the isobutyraldehyde conversion rate was 97.5% and the methacrolein selectivity was 77.3%.
, the methacrylic acid selectivity was 4.1%.
実施例 2実施例1の触媒を用い、プロピオンアルデヒ
ド4%、酸素10%、水蒸気30%、窒素56%の混合
ガスを反応温度250qC、接触時間0.9秒で触媒層
を通過させたところ、プロピオンアルデヒド転化率81
%、アク。Example 2 Using the catalyst of Example 1, a mixed gas of 4% propionaldehyde, 10% oxygen, 30% water vapor, and 56% nitrogen was passed through the catalyst layer at a reaction temperature of 250 qC and a contact time of 0.9 seconds. Propionaldehyde conversion rate 81
%, Ak.
レイン選択率62%、アクリル酸選択率3%であった。
実施例3および4実施例1と比べて硝酸カリウムの代り
に硝酸ルビジウム2.95部もしくは硝酸セシウム3.
9部を加えることだけが異なる触媒を用い、実施例1と
同様にして反応させた。The rhein selectivity was 62% and the acrylic acid selectivity was 3%.
Examples 3 and 4 Compared to Example 1, 2.95 parts of rubidium nitrate or 3.95 parts of cesium nitrate was used instead of potassium nitrate.
The reaction was carried out in the same manner as in Example 1, except that 9 parts of the catalyst were added.
結果を表1に示した。表 1比較例
実施例1において硝酸カリウムを添加しないことだけが
異なる触媒を調製し、実施例1と同様にして反応させた
。The results are shown in Table 1. Table 1 Comparative Examples A catalyst different from Example 1 except that potassium nitrate was not added was prepared and reacted in the same manner as in Example 1.
結果を表2に示した。表 2
実施例 5〜49
実施例1の方法に準じて次の各触媒を調製し実施例1と
同様にて反応させ、結果を表3に示した。The results are shown in Table 2. Table 2 Examples 5 to 49 The following catalysts were prepared according to the method of Example 1 and reacted in the same manner as in Example 1, and the results are shown in Table 3.
表 3
比較例 2〜4
実施例5,41,48においてそれぞれアルカリ金属を
添加しないことだけが異なる触媒を調製し実施例1と同
様にして反応させた。Table 3 Comparative Examples 2 to 4 Catalysts were prepared in Examples 5, 41, and 48, except that no alkali metal was added, and the reactions were carried out in the same manner as in Example 1.
結果を表4に示した。表 4
上言己の結果よりアルカリ金属を添加しない触媒は同一
条件で6〜7%の選択率低下がみられることがわかる。The results are shown in Table 4. Table 4 From the above results, it can be seen that the catalyst to which no alkali metal is added exhibits a selectivity decrease of 6 to 7% under the same conditions.
Claims (1)
ドと分子状酸素を含む混合ガスをリン、モリブデンおよ
び酸素からなり、さらにカリウム、ルビジウムおよびセ
ジウムより成る群から選ばれる1種または2種以上と任
意成分として砒素、銅、バナジウム、タングステン、鉄
、マンガン、スズ、アンチモン、マグネシウム、アルミ
ニウム、硅素、カルシウム、チタン、ジルコニウム、銀
、テルル、バリウム、タンタル、クロム、ニオブ、コバ
ルト、ニツケル、ストロンチウム、亜鉛、カドミウム、
ゲルマニウム、鉛、ビスマス、セレン、ルテニウム、ロ
ジウム、白金、パラジウム、レニウム、金、およびハフ
ニウムより成る群から選ばれる少くとも1種を含む触媒
と高温の気相で接触させることを特徴とするアクロレイ
ンとアクリル酸もしくはメタクロレインとメタクリル酸
の製造方法。 2 任意成分として用いられる元素を1〜5種含む触媒
を用いることを特徴とする特許請求の範囲第1項記載の
方法。 3 任意成分として用いられる元素が砒素、バナジウム
、銅、硅素、マグネシウム、チタン、ジルコニウム、ク
ロム、タンタルおよびカルシウムから選ばれた触媒を用
いることを特徴とする特許請求の範囲第1項記載の方法
。 4 反応温度220〜320℃の気相で反応させること
を特徴とする特許請求の範囲第1項記載の方法。[Claims] 1. A mixed gas containing propionaldehyde or isobutyraldehyde and molecular oxygen consisting of phosphorus, molybdenum and oxygen, and one or more selected from the group consisting of potassium, rubidium and cedium and optional components. As arsenic, copper, vanadium, tungsten, iron, manganese, tin, antimony, magnesium, aluminum, silicon, calcium, titanium, zirconium, silver, tellurium, barium, tantalum, chromium, niobium, cobalt, nickel, strontium, zinc, cadmium ,
Acrolein is brought into contact with a catalyst containing at least one member selected from the group consisting of germanium, lead, bismuth, selenium, ruthenium, rhodium, platinum, palladium, rhenium, gold, and hafnium in a high-temperature gas phase. Method for producing acrylic acid or methacrolein and methacrylic acid. 2. The method according to claim 1, characterized in that a catalyst containing 1 to 5 types of elements used as optional components is used. 3. The method according to claim 1, characterized in that a catalyst is used in which the elements used as optional components are selected from arsenic, vanadium, copper, silicon, magnesium, titanium, zirconium, chromium, tantalum, and calcium. 4. The method according to claim 1, wherein the reaction is carried out in a gas phase at a reaction temperature of 220 to 320°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51140838A JPS6032608B2 (en) | 1976-11-24 | 1976-11-24 | Method for producing unsaturated compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51140838A JPS6032608B2 (en) | 1976-11-24 | 1976-11-24 | Method for producing unsaturated compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5382715A JPS5382715A (en) | 1978-07-21 |
JPS6032608B2 true JPS6032608B2 (en) | 1985-07-29 |
Family
ID=15277880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51140838A Expired JPS6032608B2 (en) | 1976-11-24 | 1976-11-24 | Method for producing unsaturated compounds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6032608B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019141203A1 (en) * | 2018-01-18 | 2019-07-25 | 上海华谊新材料有限公司 | Catalyst for preparing methacrylic acid by oxidation of methacrolein and preparation method therefor |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55100325A (en) * | 1979-01-26 | 1980-07-31 | Nippon Kayaku Co Ltd | Preparation of methacrolein and methacrylic acid |
JPS55100324A (en) * | 1979-01-23 | 1980-07-31 | Nippon Kayaku Co Ltd | Preparation of methacrolein and methacrylic acid |
JPWO2010074177A1 (en) * | 2008-12-26 | 2012-06-21 | 株式会社日本触媒 | Acrylic acid production method |
EP2669008A2 (en) * | 2011-01-28 | 2013-12-04 | Nippon Kayaku Kabushiki Kaisha | Catalyst for selectively reducing saturated aldehyde, and production method therefor |
WO2012101471A1 (en) * | 2011-01-28 | 2012-08-02 | Arkema France | Improved process for manufacturing acrolein/acrylic acid |
-
1976
- 1976-11-24 JP JP51140838A patent/JPS6032608B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019141203A1 (en) * | 2018-01-18 | 2019-07-25 | 上海华谊新材料有限公司 | Catalyst for preparing methacrylic acid by oxidation of methacrolein and preparation method therefor |
Also Published As
Publication number | Publication date |
---|---|
JPS5382715A (en) | 1978-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100986898B1 (en) | Composite metal oxide catalyst and method for producing (meth) acrylic acid using the catalyst | |
JP3992112B2 (en) | Process for the selective production of acetic acid and a catalyst suitable for this purpose | |
JPS6214535B2 (en) | ||
JP2001520976A (en) | Method for selective production of acetic acid by catalytic oxidation of ethane | |
JPH03238051A (en) | Preparation of catalyst for preparing methacrylic acid | |
WO2004004900A1 (en) | Process for producing catalysts for the production of methacrylic acid | |
JPS5827255B2 (en) | Method for producing unsaturated fatty acids | |
JPS5826329B2 (en) | Seizouhou | |
JPH0753686B2 (en) | Method for producing methacrylic acid | |
JP2720215B2 (en) | Preparation of catalyst for methacrylic acid production | |
JPS6032608B2 (en) | Method for producing unsaturated compounds | |
US7368599B2 (en) | Ethane oxidation catalyst and process utilising the catalyst | |
JPS6230177B2 (en) | ||
JP3268900B2 (en) | Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
US5420091A (en) | Method of preparing catalyst used for producing methacrylic acids | |
JPS5949214B2 (en) | Process for producing unsaturated carboxylic acids or their esters | |
JP3540623B2 (en) | Method for producing methacrylic acid | |
JPS61114739A (en) | Preparation of catalyst for preparing unsaturated carboxylic acid | |
WO1986001797A1 (en) | Process for producing unsaturated carboxylic acids | |
JP2000210566A (en) | Catalyst for producing methacrylic acid, its production, and production of methacrylic acid using same catalyst | |
JP3859397B2 (en) | Catalyst for production of methacrolein and methacrylic acid | |
JPH1133393A (en) | Fixed bed reactor and production of unsaturated carboxylic acid | |
JPS5824419B2 (en) | Fuhouwa Carbon Sanno Seizouhouhou | |
JPH064559B2 (en) | Method for producing methacrylic acid | |
JP2592325B2 (en) | Method for producing unsaturated carboxylic acid |